
Artificial Intelligence 347 (2025) 104362

Available online 23 May 2025
0004-3702/© 2025 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

Contents lists available at ScienceDirect

Artificial Intelligence

journal homepage: www.elsevier.com/locate/artint

Factored-reward bandits with intermediate observations: Regret

minimization and best arm identification

Marco Mussi ,∗,1, Simone Drago ,1, Marcello Restelli , Alberto Maria Metelli
Politecnico di Milano, Piazza Leonardo da Vinci, 32, Milan, 20133, Italy

A R T I C L E I N F O A B S T R A C T

Keywords:

Factored rewards

Multi-armed bandits

Online learning

Regret minimization

Best arm identification

In several real-world sequential decision problems, at every step, the learner is required to select
different actions. Every action affects a specific part of the system and generates an observable
intermediate effect. In this paper, we introduce the Factored-Reward Bandits (FRBs), a novel
setting able to effectively capture and exploit the structure of this class of scenarios, where the
reward is computed as the product of the action intermediate observations. We characterize the
statistical complexity of the learning problem in the FRBs, by deriving worst-case and asymptotic
instance-dependent regret lower bounds. Then, we devise and analyze two regret minimization
algorithms. The former, F-UCB, is an anytime optimistic approach matching the worst-case lower
bound (up to logarithmic factors) but fails to perform optimally from the instance-dependent
perspective. The latter, F-Track, is a bound-tracking approach, that enjoys optimal asymptotic
instance-dependent regret guarantees. Finally, we study the problem of performing best arm
identification in this setting. We derive an error probability lower bound, and we develop F
SR, a nearly optimal rejection-based algorithm for identifying the best action vector, given a time
budget.2

1. Introduction

In several real-world sequential decision-making problems, the learner is required to select, at every interaction, different actions,
i.e., an action vector, acting on different portions of the system, each producing an intermediate observation. In such scenarios, the
reward is often a combination of these observations. Consider, for instance, the case in which we want to sell a product on an e

commerce website. Our goal is to maximize the overall revenue derived from the sales of a given item. In this business process, we
have to choose (𝑖) the price at which to sell the product and (𝑖𝑖) how much budget to invest in advertising. On the one hand, the
price we set determines the propensity of the users to buy a given item, i.e., the conversion rate, representing, for each price, the
fraction of the customers that will buy the item [6,16]. On the other hand, the advertising budget we invest influences the number of
potential customers that will be exposed to such an item, i.e., the number of impressions we are able to generate with the advertisement
campaign [18]. Thus, every time we select a price-budget pair (i.e., action vector), we observe a noisy realization of the conversion
rate, which depends on the price, and a noisy realization of the expected number of impressions, which depends on the budget we

* Corresponding author.

E-mail addresses: marco.mussi@polimi.it (M. Mussi), simone.drago@polimi.it (S. Drago), marcello.restelli@polimi.it (M. Restelli), albertomaria.metelli@polimi.it

(A.M. Metelli).
1 Equal contribution.
2 A conference version focusing on regret minimization only appeared at the International Conference on Machine Learning [29].

https://doi.org/10.1016/j.artint.2025.104362

Received 5 July 2024; Received in revised form 1 December 2024; Accepted 19 May 2025

http://www.ScienceDirect.com/
http://www.elsevier.com/locate/artint
http://orcid.org/0000-0001-8356-6744
http://orcid.org/0009-0005-3309-4079
http://orcid.org/0000-0002-6322-1076
http://orcid.org/0000-0002-3424-5212
mailto:marco.mussi@polimi.it
mailto:simone.drago@polimi.it
mailto:marcello.restelli@polimi.it
mailto:albertomaria.metelli@polimi.it
https://doi.org/10.1016/j.artint.2025.104362
https://doi.org/10.1016/j.artint.2025.104362
http://creativecommons.org/licenses/by/4.0/

Artificial Intelligence 347 (2025) 104362

2

M. Mussi, S. Drago, M. Restelli et al.

invest in advertising (i.e., intermediate observations). Thus, our objective is to maximize the revenue (i.e., reward) that is computed
as the product between the price, the conversion rate, and the impressions (which will give us our income) subtracting the invested
advertising budget.3

This scenario can be, in principle, addressed as a standard Multi-Armed Bandit [MAB, 25] by looking at the reward (i.e., revenue)
only and considering price-budget couples as actions. However, with such an approach, intermediate observations (i.e., the conversion
rate -- a consequence of the price we set -- and the impressions we generate -- a consequence of the adv budget we invest) that could
provide useful information would be ignored with a possible detrimental effect on the learning process. Indeed, if we look just at the
reward and disregard this factored structure, the learning problem will: (𝑖) present an unnecessarily large action space, including all
possible combinations of action components (e.g., price and budget pairs), and (𝑖𝑖) suffer a possibly amplified effect of the noise in
the reward due to the product of the noisy intermediate observations (e.g., impressions times conversion rate).

A notion of factored bandits has been studied from the regret minimization perspective in [38], in which the expected reward is a
general function of the action components. No intermediate observations are considered and the noise is applied to the final reward
only. Thus, this setting ultimately fails to model the real-world scenarios we are interested in, where the intermediate observations
play a crucial role and are combined with a specific function (i.e., the product). As we shall see later in the paper, this specificity,
motivated by the considered real-world scenarios, will allow us to obtain tighter and more detailed performance guarantees.

Contributions. In this paper, we propose the novel setting of the Factored-Reward Bandits (FRBs) to model sequential decision-making
problems in which the agent is required to play an action vector 𝐚 = (𝑎1,… , 𝑎𝑑)T consisting of 𝑑 action components. Each action
component 𝑎𝑖 provides a noisy intermediate observation 𝑥𝑖 whose product forms the reward 𝑟 = 𝑥1𝑥2⋯𝑥𝑑 . We study this setting
from the computational and statistical perspectives and propose two regret minimization algorithms and a best arm identification
method endowed with theoretical guarantees. The contributions are summarized as follows:

• In Section 2, we introduce the FRB setting, describe the feedback and noise models, and the learning problem.

• In Section 3, we study the statistical complexity of the learning problem in the FRB setting by deriving regret lower bounds. First, in
Theorem 3.1, we present the worst-case regret lower bound of order Ω(𝜎𝑑

√
𝑘𝑇), being 𝜎 the subgaussian proxy, 𝑑 the number of

action components, 𝑘 the number of possible choices for each action component, and 𝑇 the learning horizon.4 This result highlights
how the complexity of the problem scales linearly with 𝑑 and its derivation makes use of technical tools from the multitask bandits
literature. In Theorem 3.2, we show that dependence on 𝜎𝑑 (exponential in 𝑑) is unavoidable when intermediate observations
are not present, motivating their crucial role. Second, we present the instance-dependent asymptotic regret lower bound which
is first formulated as a linear program of (𝑘𝑑) variables (Theorem 3.3) and, subsequently, elaborated in a more explicit form
(Theorem 3.4), whose derivation makes use of the rearrangement inequalities [20] and that enjoys a computational complexity of
(𝑑𝑘 log𝑘). Qualitatively, this result shows how the different action components choices need to coordinate to match the regret
lower bound.

• In Section 4, we provide a novel intuitive optimistic anytime regret minimization algorithm, Factored Upper Confidence Bound
(F-UCB), in which optimism is applied to every action component independently. Then, we characterize its worst-case regret which
has order ̃(𝜎𝑑√𝑘𝑇), matching the regret lower bound up to logarithmic factors (Theorem 4.1). Then, we empirically study
its instance-dependent regret, revealing that it does not match the lower bound (Theorem 4.3). This confirms how coordination
between action components is necessary when we want to minimize the regret.

• In Section 5, we design and analyze a novel algorithm, Factored Track (F-Track). F-Track is based on tracking the
bound [24], and succeeds in matching the instance-dependent regret lower bound in the asymptotic regime (Theorem 5.1). Its
analysis reveals, once more, the need for coordination between action components to achieve optimal performance.

• In Section 6, we study the FRB setting from the best arm identification perspective, given a fixed budget. We derived an adapted lower
bound for the FRB setting and design Factored Successive Rejects (F-SR), an algorithm based on a successive rejection
procedure that nearly matches the lower bound.

Section 7 discusses the related works. The proofs of all the statements are reported in Appendix B.

2. Factored reward bandits

In this section, we introduce the Factored-Reward Bandits (FRBs), the learner-environment interaction, the assumptions, and we
present the two possible learning problems in this setting.5

Problem formulation. Let 𝑇 ∈ ℕ be the learning horizon. In a FRB, at every round 𝑡 ∈ �𝑇 �, the learner chooses an action vector
𝐚(𝑡) = (𝑎1(𝑡),… , 𝑎𝑑 (𝑡))T in the action space  ∶= �𝑘1� ×⋯ × �𝑘𝑑�, where for every 𝑖 ∈ �𝑑� we have that 𝑘𝑖 ∈ ℕ≥2 is the number of
options of the 𝑖th action component 𝑎𝑖(𝑡) of the vector, and 𝑑 ∈ ℕ≥1 is the action vector dimension (i.e., the number of components
that the learner must select at every round 𝑡). As an effect of the action, the learner observes a vector of 𝑑 intermediate observations
𝐱(𝑡) =

(
𝑥1(𝑡),… , 𝑥𝑑 (𝑡)

)T
and receives as reward the product of the intermediate observations 𝑟(𝑡) =

∏
𝑖∈�𝑑� 𝑥𝑖(𝑡). The 𝑖th component

3 The formalization of this example and an additional motivating example are reported in Appendix A.
4 In the following, we provide more general results in which each action component 𝑖 can have a different number 𝑘𝑖 of choices.
5 Let 𝑎, 𝑏 ∈ℕ with 𝑎 ≤ 𝑏, we introduce the symbols: �𝑎, 𝑏� ∶= {𝑎, 𝑎+1,… , 𝑏−1, 𝑏} and �𝑏� ∶= �1, 𝑏�. A zero-mean random variable 𝜉 is 𝜎2-subgaussian if 𝔼[exp(𝜆𝜉)] ≤

exp(𝜆2𝜎2∕2), for every 𝜆∈ℝ.

Artificial Intelligence 347 (2025) 104362

3

M. Mussi, S. Drago, M. Restelli et al.

𝑥𝑖(𝑡) of the intermediate observation vector 𝐱(𝑡) is the effect of the 𝑖th action component 𝑎𝑖(𝑡) in the action vector 𝐚(𝑡). Specifically,
every component 𝑖 ∈ �𝑑� of the intermediate observation vector 𝐱(𝑡) is independent of the others and sampled from a distribution
𝑥𝑖(𝑡) ∼ 𝜈𝑖,𝑎𝑖(𝑡), so that, 𝐱(𝑡) ∼ 𝝂𝐚(𝑡) ∶=⊗𝑖∈�𝑑�𝜈𝑖,𝑎𝑖(𝑡). Thus, we will denote an FRB as 𝝂 ∶=⊗𝑖∈�𝑑�⊗𝑎𝑖∈�𝑘𝑖�

𝜈𝑖,𝑎𝑖 . Furthermore, we can write
𝑥𝑖(𝑡) = 𝜇𝑖,𝑎𝑖(𝑡) + 𝜖𝑖(𝑡), where 𝜇𝑖,𝑎𝑖(𝑡) is the expected intermediate observation of the 𝑖th action component 𝑎𝑖(𝑡), and 𝜖𝑖(𝑡) is 𝜎2-subgaussian
random noise, independent conditioned to the past and the other noise realizations 𝜖𝑗 (𝑡) for 𝑗 ∈ �𝑑� ⧵ {𝑖}. As customary, we assume
bounded expected values for the intermediate observations, i.e., 𝜇𝑖,𝑎𝑖 ∈ [0,1] for every 𝑖 ∈ �𝑑� and 𝑎𝑖 ∈ �𝑘𝑖�, and all intermediate
observation components 𝑥𝑖(𝑡) characterized by the same known subgaussian proxy 𝜎.6

2.1. Learning problem

An optimal action vector is 𝐚∗ = (𝑎∗1 , … , 𝑎
∗
𝑑
)T ∈ arg max𝐚=(𝑎1 ,…,𝑎𝑑)T∈

∏
𝑖∈�𝑑� 𝜇𝑖,𝑎𝑖 and, since all expected intermediate observations

are non-negative, we can factorize the optimization problem observing that 𝑎∗𝑖 ∈ arg max𝑎𝑖∈�𝑘𝑖�
𝜇𝑖,𝑎𝑖 for every 𝑖 ∈ �𝑑�. We denote with

𝜇∗𝑖 = 𝜇𝑖,𝑎∗𝑖 the expected intermediate observation of the optimal 𝑖th action component. We define the suboptimality gap related to the
𝑖th action component as Δ𝑖,𝑎𝑖 ∶= 𝜇

∗
𝑖 − 𝜇𝑖,𝑎𝑖 for 𝑎𝑖 ∈ �𝑘𝑖�, and the suboptimality gap related to the action vector 𝐚 = (𝑎1, … , 𝑎𝑑)T ∈ as Δ𝐚 ∶=

∏
𝑖∈�𝑑� 𝜇

∗
𝑖 −

∏
𝑖∈�𝑑� 𝜇𝑖,𝑎𝑖 . Moreover, we define the notation Δ𝑖,(𝑗) which represents, for a component 𝑖 ∈ �𝑑�, the 𝑗-th

suboptimality gap, ordered from the lowest to the higher; and Δ(𝐣) which represents the action vector with the 𝑗-th suboptimality
gap, ordered from the lowest to the highest.

Regret minimization. Let 𝝂 be a FRB, A a learning algorithm, and 𝑇 ∈ ℕ the learning horizon, we define its cumulative regret as:

𝑅𝑇 (A,𝝂) ∶= 𝑇
∏
𝑖∈�𝑑�

𝜇∗𝑖 −
∑
𝑡∈�𝑇 �

∏
𝑖∈�𝑑�

𝜇𝑖,𝑎𝑖(𝑡) =
∑
𝑡∈�𝑇 �

Δ𝐚(𝑡). (1)

The goal of the learner consists in minimizing the expected cumulative regret 𝔼[𝑅𝑇 (A,𝝂)], where the expectation is taken w.r.t. the
randomness of the observations and the possible randomness of algorithm A.

Best arm identification. Let 𝝂 be an FRB, A be a learning algorithm, and 𝑇 ∈ℕ be the learning budget. We define the error probability
as the probability of selecting the action vector that does not include all the optimal action components at the end of the time budget:

𝑒𝑇 (A,𝝂) ∶= ℙ
(
𝐚̂∗(𝑇) ≠ 𝐚∗

)
. (2)

In this scenario, the goal of the learner consists of minimizing the error probability.

3. Regret lower bounds

In this section, we provide lower bounds to the expected regret that any learning algorithm suffers when addressing the learning
problem in a FRB, both in the minimax (Section 3.1) and the instance-dependent (Section 3.2) cases.

3.1. Worst-case regret lower bound

We present the worst-case lower bound that every algorithm suffers and discuss the role of the structure of the FRB.

Theorem 3.1 (Worst-Case Regret Lower Bound). For every algorithm A, there exists an FRB 𝝂 such that for:

𝑇 ≥ 2
(
1 − 2−

1
𝑑−1

)−2
𝜎2 max
𝑖∈�𝑑�

𝑘𝑖 =(
𝜎2𝑑2𝑘

)
, (3)

A suffers an expected cumulative regret of at least:

𝔼
[
𝑅𝑇 (A,𝝂)

] ≥ 𝜎

4
√
2

∑
𝑖∈�𝑑�

√
𝑘𝑖𝑇 .

In particular, if 𝑘𝑖 =∶ 𝑘 for every 𝑖∈ �𝑑�, we have 𝔼
[
𝑅𝑇 (A,𝝂)

] ≥Ω(𝜎𝑑
√
𝑘𝑇).

Proof Sketch. The challenge is the structure of the regret in a FRB. We lower-bound the regret 𝑅𝑇 (A,𝝂) as a sum of the regrets
𝑅(𝑖)
𝑇
(A,𝝂) that an algorithm A would have suffered by playing 𝑑 parallel MABs. Choosing 𝜇∗𝑖 = 1:

𝑅𝑇 (A,𝝂) =
∑
𝑡∈�𝑇 �

(
1 −

∏
𝑖∈�𝑑�

(
1 −Δ𝑖,𝑎𝑖(𝑡)

)) ≥ 1
2
∑
𝑖∈�𝑑�

∑
𝑡∈�𝑇 �

Δ𝑖,𝑎𝑖(𝑡) =∶
1
2
∑
𝑖∈�𝑑�

𝑅(𝑖)
𝑇
(A,𝝂).

6 The extension with different known subgaussian proxies 𝜎𝑖 for every component 𝑖∈ �𝑑� is straightforward.

Artificial Intelligence 347 (2025) 104362

4

M. Mussi, S. Drago, M. Restelli et al.

This derivation leverages the ad-hoc technical Lemma B.2, which holds for sufficiently small suboptimality gaps, i.e., Δ𝑖,𝑎𝑖 ≤ 1−2−
1
𝑑−1 .

This condition gives rise to the constraint on the minimum time horizon (Equation (3)), since the suboptimality gaps will be chosen
∝ 𝑇 −1∕2. Indeed, intuitively, if the suboptimality gaps Δ𝑖,𝑎𝑖 are too large (depending on 𝑑) we will have 1 −

∏
𝑖∈�𝑑�(1 − Δ𝑖,𝑎𝑖(𝑡))≪∑

𝑖∈�𝑑� Δ𝑖,𝑎𝑖 making the instances more distinguishable and, consequently, reducing the regret. The result is obtained by showing
that each regret component satisfies 𝑅(𝑖)

𝑇
(A,𝝂) ≥Ω(𝜎

√
𝑘𝑖𝑇) redesigning for the subgaussian case the solution designed for Bernoulli

rewards from the multitask bandit literature [36, Theorem 10]. □

To understand the beneficial effect of (𝑖) the factored structure and (𝑖𝑖) the intermediate observations, it is worth comparing the
result of Theorem 3.1 with the regret lower bounds of common settings. If we remove (𝑖), we are in the presence of a MAB with
 = �𝑘1� ×⋯ × �𝑘𝑑� as action space.7 It is worth noting that, even in this case, the reward 𝑟(𝑡) =

∏
𝑖∈�𝑑� 𝑥𝑖(𝑡) is the product of 𝑑

subgaussian random variables which is not, in general, subgaussian (see Lemma C.1). Nevertheless, 𝑟(𝑡) is guaranteed to preserve
a finite variance of order at least 𝜎2 = 𝜎2𝑑 (see Lemma C.3). Thus, we can look at the setting as a heavy-tailed MAB with finite
variance [8] with

∏
𝑖∈�𝑑� 𝑘𝑖 actions, leading to a regret of order Ω(𝜎

√∏
𝑖∈�𝑑� 𝑘𝑖𝑇), which becomes Ω(𝜎𝑑

√
𝑘𝑑𝑇) when 𝑘𝑖 = 𝑘 for

every 𝑖 ∈ �𝑑�.
It is natural to wonder if (𝑖) is enough to break the exponential dependence in 𝑑 (on both 𝜎 and 𝑘). This setting is similar, but not

exactly overlapping, to that of Zimmert and Seldin [38], in which a general ``factored'' structure is considered without intermediate
observations and assuming that the subgaussian noise is applied to the reward directly. Nevertheless, [38] provides neither worst-case
lower bound nor worst-case regret analysis of the proposed algorithm. The following result shows that (𝑖) only is enough to remove
the exponential dependence in 𝑑 on 𝑘 but not on 𝜎, which remains unavoidable without (𝑖𝑖).

Theorem 3.2 (Worst-Case Regret Lower Bound without Intermediate Observations). For every algorithm A† that ignores the intermediate
observations 𝐱(𝑡) and observes the reward 𝑟(𝑡) only, there exists an FRB 𝝂 such that for 𝑇 ≥ 4(min𝑖∈�𝑑� 𝑘𝑖 − 1)∕𝑑, A† suffers an expected
cumulative regret of at least:

𝔼
[
𝑅𝑇 (A†,𝝂)

] ≥max

{
𝜎𝑑

8
√
𝑑
,
𝜎
27

}√
(min
𝑖∈[𝑑]

𝑘𝑖 − 1)𝑇 .

In particular, if 𝑘𝑖 =∶ 𝑘 for every 𝑖∈ �𝑑�, we have 𝔼
[
𝑅𝑇 (A†,𝝂)

] ≥Ω
(
max

{
𝜎𝑑√
𝑑
, 𝜎

}√
𝑘𝑇

)
.

Thus, Theorem 3.2 shows that the exponential dependence of 𝑑 on 𝜎 is maintained even with the factored structure. This is
particularly significant when 𝜎 > 1, a regime in which the function 𝜎𝑑∕

√
𝑑 is exponentially increasing in 𝑑. Instead, when 𝜎 < 1, we

retrieve a lower bound of the same order of standard MABs with a linear dependence on 𝜎. This motivates the interest in studying
this setting combining factored structure (𝑖) and intermediate observations (𝑖𝑖).

Remark 3.1 (About the independence of the intermediate observations). The formulation of FRBs in Section 2 assumes that the compo

nents 𝑥𝑖(𝑡) of the observation vector 𝐱(𝑡) are independent. This is necessary to treat the problem with appropriate advantages over
standard MABs on the combinatorial action space . Indeed, if we rule out the independence assumption, we can always define a
FRB in which 𝐱(𝑡) = (𝑦(𝑡),1,… ,1)T, where 𝑦(𝑡) ∼ 𝜈1,𝐚(𝑡). This corresponds to a standard 𝜎2-subgaussian MAB with  as action space
and arm distributions 𝜈1,𝐚. More formally, consider a MAB 𝝂MAB with

∏𝑑
𝑖=1 𝑘𝑖 arms {1,… ,

∏𝑑
𝑖=1 𝑘𝑖}. Without loss of generality, we

can index each arm of this MAB with a tuple (𝑗1,… , 𝑗𝑑) where 𝑗𝑖 ∈ �𝑘𝑖� for every 𝑖 ∈ �𝑑�. Let 𝜈MAB
(𝑗1 ,…,𝑗𝑑)

be the reward distribution
of the arm of index (𝑗1,… , 𝑗𝑑), that we assume to be 𝜎2-subgaussian. Let us define an FRB so that when pulling the vector action
𝐚 = (𝑗1,… , 𝑗𝑑), we experience the intermediate observation 𝐱 = (𝑦,1,… ,1) where 𝑦 ∼ 𝜈MAB

(𝑗1 ,…,𝑗𝑑)
. Thus, the reward of the FRB is given

by 𝑟 = 𝑦. Thus, we can always reduce a MAB with
∏𝑑
𝑖=1 𝑘𝑖 into an equivalent FRB with dependent observations. Consequently, the

lower bound for MABs, i.e., 27−1𝜎
√(∏𝑑

𝑖=1 𝑘𝑖 − 1
)
𝑇 [25, Theorem 15.2] must hold for the FRB with dependent observations. Never

theless, it is possible to relax the independence assumption, by requiring non-correlation among the intermediate observations. Indeed,
at least non-correlation is needed to ensure that the expectation of the product of the observations is equal to the product of the
expectations of the single observations:

𝔼

[
𝑑∏
𝑖=1
𝑥𝑖(𝑡)

]
= 𝔼

[
𝑑∏
𝑖=1

(𝜇𝑖 + 𝜀𝑖)

]
=

𝑑∏
𝑖=1

𝔼
[
𝜇𝑖 + 𝜀𝑖

]
=

𝑑∏
𝑖=1
𝜇𝑖,

where the second equality follows from the definition of non-correlation of the noises 𝜀𝑖 , and the third equality follows from the fact
that the noise 𝜀𝑖 is zero-mean.

7 Note that makes no sense to consider (𝑖𝑖) without (𝑖).

Artificial Intelligence 347 (2025) 104362

5

M. Mussi, S. Drago, M. Restelli et al.

3.2. Instance-dependent regret lower bound

We present the instance-dependent lower bound that every algorithm suffers on a specific instance 𝝂 of the FRB setting.

Theorem 3.3 (Instance-Dependent Regret Lower Bound). For every consistent8 algorithm A and FRB 𝝂 with unique optimal arm 𝐚∗ ∈ it
holds that:

lim inf
𝑇→+∞

𝔼
[
𝑅𝑇 (A,𝝂)

]
log𝑇

≥ 𝐶(𝝂), (4)

where 𝐶(𝝂) is defined as the solution to the following optimization problem:

min
(𝐿𝐚)𝐚∈⧵{𝐚∗}

∑
𝐚∈⧵{𝐚∗}

𝐿𝐚Δ𝐚 (5)

s.t. 𝐿𝑖,𝑗 =
∑

𝐚∈⧵{𝐚∗}
𝑎𝑖=𝑗

𝐿𝐚, ∀𝑖 ∈ �𝑑�, 𝑗 ∈ �𝑘𝑖� ⧵ {𝑎∗𝑖 } (6)

𝐿𝑖,𝑗 ≥ 2𝜎2

Δ2
𝑖,𝑗

, ∀𝑖 ∈ �𝑑�, 𝑗 ∈ �𝑘𝑖� ⧵ {𝑎∗𝑖 } (7)

𝐿𝐚 ≥ 0, ∀𝐚 ∈ ⧵ {𝐚∗}. (8)

Proof Sketch. Here we provide an informal derivation that captures the intuition, although the formal proof requires some additional
technical effort (see Appendix B.1). Thanks to the factored structure, we can show, as for stochastic bandits, that for every 𝑗 ∈
�𝑘𝑖� ⧵ {𝑎∗𝑖 } and 𝑖 ∈ �𝑑� the expected number of pulls 𝔼[𝑁𝑖,𝑗 (𝑇)] is lower bounded by (Constraint (7)):

𝐿𝑖,𝑗 ∶=
𝔼[𝑁𝑖,𝑗 (𝑇)]

log𝑇
≥ 2𝜎2

Δ2
𝑖,𝑗

for 𝑇 → +∞.

We now want to find the arrangements of the number of pulls of action vectors 𝑁𝐚(𝑇), for every 𝐚 ∈ ⧵ {𝐚∗}, to minimize the cu

mulative regret. Recalling that 𝑁𝑖,𝑗 (𝑇) =
∑

𝐚∈ ∶ 𝑎𝑖=𝑗 𝑁𝐚(𝑇), we define 𝐿𝑖,𝑗 =
∑

𝐚∈⧵{𝐚∗} ∶ 𝑎𝑖=𝑗 𝐿𝐚 (Constraint (6)). Finally, by recalling

the decomposition of the regret 𝔼
[
𝑅𝑇 (A,𝝂)

]
log𝑇 =

∑
𝐚∈𝐿𝐚Δ𝐚 we get the objective function in Equation (5) to be minimized. Notice that

to make the proof fully formal we need to properly manage the asymptotic behavior of the sequences 𝔼[𝑁𝑖,𝑗 (𝑇)] and 𝔼[𝑁𝐚(𝑇)] when
𝑇 → +∞. □

The optimization problem in Theorem 3.3 is a Linear Program (LP) with
∏
𝑖∈�𝑑� 𝑘𝑖 +

∑
𝑖∈�𝑑� 𝑘𝑖 − 𝑑 − 1 variables and

∏
𝑖∈�𝑑� 𝑘𝑖 +

2
∑
𝑖∈�𝑑� 𝑘𝑖 − 2𝑑 − 1 constraints. Constraint (6) establishes the relation between the number of pulls of the action vectors 𝐿𝐚 and the

number of pulls of the action components 𝐿𝑖,𝑗 . This captures the ``information sharing'' of the setting in which we obtain a sample for
the action component (𝑖, 𝑗) whenever we pull an action vector 𝐚 such that 𝑎𝑖 = 𝑗. Being a minimization problem, Constraint (7) will
be satisfied with equality allowing the removal of variables 𝐿𝑖,𝑗 and the relative constraints. Thus, the LP can be solved in polynomial
time w.r.t.

∏
𝑖∈�𝑑� 𝑘𝑖 [33].

Explicit solution of the LP program. We now illustrate how to solve the LP program with a smaller time complexity of order
(∑𝑖∈�𝑑� 𝑘𝑖 log𝑘𝑖). We first provide the intuition and, then, provide the formal argument.

The minimum proportion with which the action component (𝑖, 𝑗) is to be pulled (Constraint (7)) can be accomplished by pulling
different sequences of action vectors 𝐚 such that 𝑎𝑖 = 𝑗. How to ``arrange'' the pulls of the action vectors to satisfy Constraint (7) and
minimize the regret? To start capturing the intuition, consider the simplest setting with 𝑑 = 2, 𝑘1 = 𝑘2 = 2, 𝑎∗1 = 𝑎

∗
2 = 1, 𝜇1,1 = 𝜇2,1 = 1

and 𝜇1,2 = 𝜇2,2 = 𝑦 ∈ (0,1). To satisfy Constraint (7), we have to guarantee 𝐿1,2 = 𝐿2,2 = 2𝜎2(1 − 𝑦)−2 (in the solution the constraint
is satisfied with equality) and we have at our disposal 4 action vectors  = {(1,1), (1,2), (2,1), (2,2)}. We can satisfy the constraint
in two ways:9

(𝑖) playing action (2,2) (i.e., with both suboptimal components) for a proportion of 2𝜎2(1 − 𝑦)−2 times, suffering 1 − 𝑦2 instanta

neous regret;

(𝑖𝑖) playing actions (1,2) and (2,1) (i.e., with one suboptimal component) for a proportion of 2𝜎2(1 − 𝑦)−2 each, suffering 1 − 𝑦
instantaneous regret;

It is simple to convince that (𝑖) is the choice that minimizes the cumulative regret. Indeed, for 𝑦 ∈ (0,1), we have:

2𝜎2(1 − 𝑦)−2(1 − 𝑦2)
⏟ ⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟ ⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

case (𝑖)

≤ 4𝜎2(1 − 𝑦)−2(1 − 𝑦)
⏟ ⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟ ⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

case (𝑖𝑖)

. (9)

8 An algorithm A is consistent if for every FRB 𝝂 and 𝑝 > 0, it holds that lim sup𝑇→+∞ 𝔼[𝑅𝑇 (A,𝝂)]∕𝑇 𝑝 = 0.
9 Any mix between (𝑖) and (𝑖𝑖) is clearly suboptimal.

Artificial Intelligence 347 (2025) 104362

6

M. Mussi, S. Drago, M. Restelli et al.

Fig. 1. E˙icient solution to the LP presented in Theorem 3.3. (For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

Algorithm 1: F-UCB.

Input : Exploration Parameter 𝛼, Subgaussian proxy 𝜎, Action component size 𝑘𝑖, ∀𝑖 ∈ �𝑑�

1 Initialize 𝑁𝑖,𝑎𝑖 (0)← 0, 𝜇𝑖,𝑎𝑖 (0)← 0 ∀𝑎𝑖 ∈ �𝑘𝑖�, 𝑖 ∈ �𝑑�

2 for 𝑡 ∈ �𝑇 � do

3 Select 𝐚(𝑡) ∈ arg max
𝐚=(𝑎1 , … 𝑎𝑑)T∈

∏
𝑖∈�𝑑�

UCB𝑖,𝑎𝑖 (𝑡) where UCB𝑖,𝑎𝑖 (𝑡) = 𝜇𝑖,𝑎𝑖 (𝑡− 1) + 𝜎
√

𝛼 log 𝑡
𝑁𝑖,𝑎𝑖 (𝑡−1)

4 Play 𝐚(𝑡) and observe 𝐱(𝑡) = (
𝑥1(𝑡), … , 𝑥𝑑 (𝑡)

)T
5 Update 𝜇𝑖,𝑎𝑖 (𝑡)(𝑡) and 𝑁𝑖,𝑎𝑖(𝑡)(𝑡) for every 𝑖∈ �𝑑�

6 end

This intuitive reasoning can be extended to the general case. To this end, let us define the sorting functions 𝜋𝑖 ∶ �𝑘𝑖� → �𝑘𝑖� for
every 𝑖 ∈ �𝑑� as any bijective function such that 𝜇𝑖,𝜋𝑖(1) ≤⋯ ≤ 𝜇𝑖,𝜋𝑖(𝑘𝑖−1) ≤ 𝜇𝑖,𝜋𝑖(𝑘𝑖) = 𝜇∗𝑖 . We claim that, in the optimal arrangement,
the action components need to coordinate as illustrated in Fig. 1. For every dimension 𝑖 ∈ �𝑑� (row), we sort the action components
in non-decreasing order of 𝜇𝑖,𝑗 according to the sorting function 𝜋𝑖. To every 𝑗 ∈ �𝑘𝑖 − 1�, an interval of length 𝐿𝑖,𝑗 is associated
corresponding to the proportion of pulls. Now, we combine the different rows to obtain the ``active action vector'' (represented by
different colors) made by the corresponding action components. Each active action vector will be pulled for a proportion (the colored
vertical slices) depending on the 𝐿𝑖,𝑗 values of the corresponding components. Notice that we can have at most

∑
𝑖∈�𝑑� 𝑘𝑖 − 1 active

action vectors and the total proportion of the pulls (the width of the full table in Fig. 1) is given by 𝑀 ∶= max𝑖∈�𝑑�
∑
𝑗∈�𝑘𝑖−1�𝐿𝑖,𝑗 .

To formally characterize the solution, we introduce, for every 𝑖 ∈ �𝑑� and 𝑙 ∈ �𝑘𝑖 − 1�, the variables 𝑀𝑖,𝑙 ∶=
∑
𝑙′∈�𝑙�𝐿𝑖,𝜋𝑖(𝑙′) and

𝑀𝑖,𝑘𝑖 = +∞ as the cumulative proportion of pulls of the action components more suboptimal than (𝑖, 𝜋𝑖(𝑙)), i.e., fixing a row 𝑖, the
position of the black vertical lines in Fig. 1 sorted from left to right. Let us define the sorting function 𝝅 ∶ �𝐾� →

⋃
𝑖∈�𝑑�({𝑖} × �𝑘𝑖�),

where 𝐾 =
∑
𝑖∈�𝑑� 𝑘𝑖, as any bijection such that:

𝑀𝝅(1) ≤⋯ ≤𝑀𝝅(𝐾−𝑑),

with the convention 𝑀𝝅(0) = 0, i.e., the position in which we move from one vertical slice to the next one in Fig. 1 sorted from left
to right. For every 𝓁 ∈ �𝐾�, we define the active action vector as 𝜶𝓁 = (𝑗1,𝓁 ,… , 𝑗𝑑,𝓁)T ∈ where:

𝑗𝑖,𝓁 ∶= 𝜋−1𝑖
(
arg max𝑙∈�𝑘𝑖�

{𝑀𝑖,𝑙 ≥𝑀𝝅(𝓁)}
)
.

This allows us to prove the following result.

Theorem 3.4 (Instance-Dependent Regret Lower Bound �- Explicit). Let 𝐶(𝝂) be the solution of the optimization problem of Theorem 3.3. It
holds that:

𝐶(𝝂) =
𝐾−𝑑∑
𝓁=1

(
𝑀𝝅(𝓁) −𝑀𝝅(𝓁−1)

)
Δ𝜶𝓁

,

that can be computed in (∑𝑖∈�𝑑� 𝑘𝑖 log𝑘𝑖).

Proof Sketch. We generalize Equation (9) with the rearrangement inequality for integrals [26], the continuous version of the more
known rearrangement inequality for sequences [20]. □

4. A worst-case optimal regret minimization algorithm

In this section, we present an optimistic any-time regret minimization algorithm for the FRB setting. Factored Upper Confi
dence Bound (F-UCB), whose pseudo-code is reported in Algorithm 1, is based on the idea of running a UCB-like exploration [4]
independently for every dimension 𝑖 ∈ �𝑑� and estimating the expected observation 𝜇𝑖,𝑎𝑖 for every action component 𝑎𝑖 ∈ �𝑘𝑖�.

The algorithm requires as input the number of action components 𝑘𝑖 for every 𝑖 ∈ �𝑑�, the exploration parameter 𝛼 > 2, and the
subgaussian proxy 𝜎. After initializing the variables to keep track of the number of pulls 𝑁𝑖,𝑎𝑖 (𝑡) and the sample mean 𝜇𝑖,𝑎𝑖 (𝑡) for all

Artificial Intelligence 347 (2025) 104362

7

M. Mussi, S. Drago, M. Restelli et al.

action components (line 1), the algorithm starts the learner-environment interaction. At every round 𝑡 ∈ �𝑇 �, F-UCB computes the
optimistic action, i.e., the action 𝐚(𝑡) maximizing the optimistic index:

𝐚(𝑡) ∈ arg max
𝐚=(𝑎1 , …, 𝑎𝑑)T∈

∏
𝑖∈�𝑑�

UCB𝑖,𝑎𝑖 (𝑡) with UCB𝑖,𝑎𝑖 (𝑡) = 𝜇𝑖,𝑎𝑖 (𝑡− 1) + 𝜎

√
𝛼 log 𝑡

𝑁𝑖,𝑎𝑖 (𝑡− 1)
,

where 𝜇𝑖,𝑎𝑖 (𝑡) is the empirical mean of the observations for the 𝑖th component of the observation vector determined by the action
component 𝑎𝑖, and 𝑁𝑖,𝑎𝑖 (𝑡) is the number of times the corresponding component of the action vector has been played (line 3). Then,
the algorithm plays it and observes the 𝑑-dimensional observation vector 𝐱(𝑡) =

(
𝑥1(𝑡), … , 𝑥𝑑 (𝑡)

)T
(line 4). The observation vector

is used to incrementally update the sample means of all action components involved and the related counters (lines 5). Finally, the
algorithm reduces to UCB1 when 𝑑 = 1.

F-UCB enjoys a time complexity of (𝑇 ∑𝑖∈�𝑑� 𝑘𝑖) and a space complexity of (∑𝑖∈�𝑑� 𝑘𝑖). Indeed, at every round 𝑡∈ �𝑇 �, we need
to recompute the index UCB𝑖,𝑎𝑖 (𝑡) for all

∑
𝑖∈�𝑑� 𝑘𝑖 action components (at least the bonus changes at every round). Note that the

computation of the optimistic action is not combinatorial since the optimization can be performed independently for every 𝑖 ∈ �𝑑�.

4.1. Worst-case regret analysis

In this section, we provide the worst-case regret analysis of F-UCB as summarized in the following result.

Theorem 4.1 (Worst-Case Regret Upper Bound for F-UCB). For any FRB 𝝂, F-UCB with 𝛼 > 2 suffers an expected regret bounded as:

𝔼
[
𝑅𝑇 (F-UCB,𝝂)

] ≤ 4𝜎
∑
𝑖∈�𝑑�

√
𝛼𝑘𝑖𝑇 log𝑇 + 𝑔(𝛼)

∑
𝑖∈�𝑑�

𝑘𝑖,

where 𝑔(𝛼) = ̃(
(𝛼 − 2)−2

)
.10 In particular, if 𝑘𝑖 =∶ 𝑘, for every 𝑖∈ �𝑑�, we have 𝔼

[
𝑅𝑇 (F-UCB,𝝂)

] ≤ ̃(𝜎𝑑√𝑘𝑇).
Proof Sketch. Under a suitable ``good event'', we have that 𝜇𝑖,𝑎𝑖 ≤ UCB𝑖,𝑎𝑖 (𝑡) for every 𝑖 ∈ �𝑑�, 𝑎𝑖 ∈ �𝑘𝑖�, and 𝑡 ∈ �𝑇 �. Thus, the
instantaneous regret is bounded as:∏

𝑖∈�𝑑�

𝜇∗𝑖 −
∏
𝑖∈�𝑑�

𝜇𝑖,𝑎𝑖(𝑡) =
∑
𝑙∈�𝑑�

∏
𝑖∈�𝑙−1�

𝜇∗𝑖
⏟ ⏟ ⏟
∈[0,1]

(
𝜇∗𝑙 − 𝜇𝑙,𝑎𝑙(𝑡)

)
⏟ ⏞⏞⏞⏞⏞⏞⏟ ⏞⏞⏞⏞⏞⏞⏟

≤UCB𝑖,𝑎𝑖(𝑡)(𝑡)−𝜇𝑙,𝑎𝑙 (𝑡)

∏
𝑖∈�𝑙+1,𝑑�

𝜇𝑖,𝑎𝑖(𝑡)
⏟ ⏟ ⏟
∈[0,1]

≤ ∑
𝑙∈�𝑑�

(
UCB𝑙,𝑎𝑙(𝑡)(𝑡) − 𝜇𝑙,𝑎𝑙

)
,

where the first line is obtained by summing and subtracting all mixed terms
∏
𝑖∈�𝑙� 𝜇

∗
𝑖

∏
𝑖∈�𝑙+1,𝑑� 𝜇𝑖,𝑎𝑖(𝑡) and the second by optimism

𝜇∗
𝑙
≤ UCB𝑙,𝑎∗

𝑙
(𝑡) ≤ UCB𝑙,𝑎𝑙(𝑡)(𝑡). □

Comparing the upper bound of Theorem 4.1 with the lower bound in Theorem 3.1, we realize that the dependence on the learning
horizon 𝑇 is tight up to logarithmic factors (just like UCB1) and the dependence on the number of action components 𝑘𝑖 , the number
of dimensions 𝑑, and the subgaussian proxy 𝜎 are tight up to constant factors.

It is worth comparing our results with the ones that could be obtained by applying literature algorithms to our FRB setting. As
already mentioned in Section 3, although each intermediate observation 𝑥𝑖(𝑡) is 𝜎2-subgaussian, their product 𝑟(𝑡), i.e., the reward,
is not in general. This prevents, for instance, the application of UCB1 which assumes subgaussian (or bounded) reward. Precisely,
for 𝑑 = 2, the reward 𝑟(𝑡) = 𝑥1(𝑡)𝑥2(𝑡) is a subexponential random variable, a scenario that can be still approached with the standard
sample mean estimator but leveraging the Bernstein’s concentration bound [5]. However, for 𝑑 ≥ 3, as shown in Lemma C.1, the
reward 𝑟(𝑡) does not admit a moment-generating function and, consequently, displays a heavy-tailed behavior [8]. Nevertheless, the
reward 𝑟(𝑡) random variable maintains a finite variance bounded by 𝜎2 =

(
1 + 𝜎2

)𝑑 −1 (see Lemma C.2). This enables the application
of algorithms designed for heavy-tailed bandits, such as Robust-UCB [8], able to handle generic distributions with finite variance,
by resorting to estimators other than the sample mean. It is easy to verify that by considering, e.g., the Median of Means estimator [8],
we obtain a regret upper bound in the order of ̃(

𝜎
√∏

𝑖∈�𝑑� 𝑘𝑖𝑇
)

. This result is in line with the discussion in Section 3 and, clearly,
not optimal. Indeed, the dependence on the product

∏
𝑖∈�𝑑� 𝑘𝑖 ≫

∑
𝑖∈�𝑑� 𝑘𝑖 is because Robust-UCB does not exploit the factored

property of the FRB setting. Furthermore, the dependence on 𝜎 =
√
(1 + 𝜎2)𝑑 − 1 ≥ 𝜎 is justified by the fact that the intermediate

observations are ignored. Finally, the analysis of Factored Bandit TEA [38] cannot be adapted to our setting since, as already
mentioned, the subgaussian noise is applied to the final reward only.

4.2. Instance-dependent regret analysis

In this section, we provide the analysis of the instance-dependent regret upper bound for the F-UCB algorithm. The following
theorem summarizes the result.

10 The complete expression is reported in the proof.

Artificial Intelligence 347 (2025) 104362

8

M. Mussi, S. Drago, M. Restelli et al.

Theorem 4.2 (Instance-Dependent Regret Upper Bound for F-UCB). For a given FRB 𝝂, F-UCB with 𝛼 > 2 suffers an expected regret bounded
as:

𝔼
[
𝑅𝑇 (F-UCB,𝝂)

] ≤ 𝐶(F-UCB,𝝂),
where 𝐶(F-UCB,𝝂) is defined as the solution to the following optimization problem (where 𝑔(𝛼) = ̃((𝛼 − 2)−2)):

max
(𝑁𝐚)𝐚∈

∑
𝐚∈⧵{𝐚∗}

𝑁𝐚Δ𝐚 (10)

s.t. 𝑁𝑖,𝑗 =
∑

𝐚∈⧵{𝐚∗}
𝑎𝑖=𝑗

𝑁𝐚, ∀𝑖 ∈ �𝑑�, 𝑗 ∈ �𝑘𝑖� ⧵ {𝑎∗𝑖 } (11)

𝑁𝑖,𝑗 ≤ 4𝛼𝜎2 log𝑇
Δ2
𝑖,𝑗

+ 𝑔(𝛼), ∀𝑖 ∈ �𝑑�, 𝑗 ∈ �𝑘𝑖� ⧵ {𝑎∗𝑖 } (12)

∑
𝐚∈
𝑁𝐚 = 𝑇 (13)

𝑁𝐚 ≥ 0, ∀𝐚 ∈ (14)

The derivation of the LP in Theorem 4.2 follows a similar rationale as that of the instance-dependent lower bound of Theorem 3.3.
Since F-UCB runs an optimistic UCB strategy independent for every action component, we can derive an upper bound on the expected
number of pulls for every 𝑖 ∈ �𝑑� and 𝑗 ∈ �𝑘𝑖� ⧵ {𝑎∗𝑖 } (denoted with 𝑁𝑖,𝑗 in the LP) as:

𝔼[𝑁𝑖,𝑗 (𝑇)] ≤ 4𝛼𝜎2 log𝑇
Δ2
𝑖,𝑗

+ 𝑔(𝛼),

generating Constraint (12), that, since the problem involves a maximization, will be satisfied with equality. To relate the expected
number of pulls 𝔼[𝑁𝐚(𝑇)] of the action vectors 𝐚 ∈ ⧵ {𝐚∗} (denoted with 𝑁𝐚 in the LP) with the ones of the action components
𝔼[𝑁𝑖,𝑗 (𝑇)], we use the same argument of Theorem 3.3, producing Constraint (11). Similarly to the LP in Theorem 3.3, the problem
is made of

∏
𝑖∈�𝑑� 𝑘𝑖 +

∑
𝑖∈�𝑑� 𝑘𝑖 − 𝑑 variables and 1 +

∏
𝑖∈�𝑑� 𝑘𝑖 + 2

∑
𝑖∈�𝑑� 𝑘𝑖 − 2𝑑 constraints. We now provide an explicit solution

to a relaxation of the LP of Theorem 4.2.

Corollary 4.3 (Instance-Dependent Regret Upper Bound for F-UCB �- Explicit). For a given FRB 𝝂, F-UCB with 𝛼 > 2 suffers an expected
regret bounded by:

𝔼
[
𝑅𝑇 (F-UCB,𝝂)

] ≤ 𝐶(F-UCB,𝝂)
≤ 4𝛼𝜎2 log𝑇

∑
𝑖∈�𝑑�

𝜇∗−𝑖
∑

𝑗∈�𝑘𝑖�⧵{𝑎∗𝑖 }
Δ−1
𝑖,𝑗 + 𝑔(𝛼)

∑
𝑖∈�𝑑�

𝑘𝑖,

where 𝜇∗−𝑖 =
∏
𝑙∈�𝑑�⧵{𝑖} 𝜇

∗
𝑙
≤ 1 for every 𝑖 ∈ �𝑑�.

Proof Sketch. The result is based on providing a relaxation of the objective function of the optimization problem in Theorem 4.2,
which is based on the following bound on the suboptimality gaps of the action vector 𝐚 = (𝑎1,… , 𝑎𝑑)T in terms of the suboptimality
gaps of the action components:

Δ𝐚 ≤
∑
𝑖∈�𝑑�

Δ𝑖,𝑎𝑖𝜇
∗
−𝑖.

This allows to upper bound the objective function as:∑
𝐚∈⧵{𝐚∗}

𝑁𝐚Δ𝐚 ≤
∑
𝑖∈�𝑑�

𝜇∗−𝑖
∑

𝑗∈�𝑘𝑖�⧵{𝑎∗𝑖 }
𝑁𝑖,𝑗Δ𝑖,𝑗 .

By Constraint (12) to upper bound 𝑁𝑖,𝑎𝑖 , we get the result. Alternatively, we can drop the constraint
∑

𝐚∈⧵{𝐚∗}𝑁𝐚 = 𝑇 and use a
rearrangement inequality [20] to upper bound the objective function. □

It is worth comparing this instance-dependent regret upper bound of F-UCB with the one achievable with an algorithm for heavy

tailed bandits, such as Robust-UCB [8]. Our result of Corollary 4.3 is of order (neglecting the dependence on 𝛼 and on constants):


(
𝜎2

∑
𝑖∈�𝑑�

𝜇∗−𝑖
∑

𝑗∈�𝑘𝑖�⧵{𝑎∗𝑖 }

log𝑇
Δ𝑖,𝑗

)
. (15)

Artificial Intelligence 347 (2025) 104362

9

M. Mussi, S. Drago, M. Restelli et al.

Instead, Robust-UCB, for instance with the Median of Means estimator, is characterized by the following instance-dependent regret
of order (neglecting constants):


(
𝜎2

∑
𝐚∈⧵{𝐚∗}

log𝑇
Δ𝐚

)
. (16)

where 𝜎2 = (1 + 𝜎2)𝑑 − 1 ≥ 𝜎2. It is simple to observe that Equation (16) is larger than Equation (15). Indeed, consider the subset
of action vectors in which exactly one component is not optimal, i.e., ◦ =

⋃
𝑖∈�𝑑� ◦

𝑖 where ◦
𝑖 ∶= {𝐚 ∈ ∶ 𝑎𝑖 ≠ 𝑎∗𝑖 , 𝑎𝑗 = 𝑎∗𝑗 , 𝑗 ∈

�𝑑� ⧵ {𝑖}}. We observe that for every 𝐚 ∈◦
𝑖 , the action vector suboptimality gap is related with equality to that of the suboptimal

component:

Δ𝐚 =
∏
𝑙∈�𝑑�

𝜇∗𝑙 − 𝜇𝑖,𝑎𝑖
∏

𝑙∈�𝑑�⧵{𝑖}
𝜇∗𝑙 = 𝜇

∗
−𝑖Δ𝑖,𝑎𝑖 . (17)

This allows the conclusion of the following as desired:∑
𝐚∈⧵{𝐚∗}

log𝑇
Δ𝐚

≥ ∑
𝐚∈◦

log𝑇
Δ𝐚

≥ ∑
𝑖∈�𝑑�

𝜇∗−𝑖
∑

𝑗∈�𝑘𝑖�⧵{𝑎∗𝑖 }

log𝑇
Δ𝑖,𝑗

.

Finally, let us compare Corollary 4.3 with the instance-dependent regret upper bound of the Factored Bandit TEA algo

rithm [38], although the noise model is different. Theorem 2 of [38] provides a bound of order (neglecting constants):


(
𝜅
∑
𝑖∈�𝑑�

∑
𝑗∈�𝑘𝑖�⧵{𝑎∗𝑖 }

log(𝑇 log𝑇) + log log(𝑇 log𝑇)
Δ2
𝑖,𝑗

Δ𝑖,𝑗

)
,

where 𝜅 is such that Δ𝐚 ≤ 𝜅∑𝑖∈�𝑑� Δ𝑖,𝑎𝑖 . Thus, we can set 𝜅 = max𝑖∈�𝑑� 𝜇
∗
−𝑖. This result is slightly worse than ours because of the

presence of the larger 𝜅 and the additional log log𝑇 and log(1∕Δ2
𝑖,𝑗) terms.

Remark 4.1 (About Instance-Dependent Optimality of F-UCB). We argue about the instance-dependent optimality of F-UCB. To this
end, we focus on a specific FRB instance with generic 𝑑 > 1 and 𝑘1 =⋯ = 𝑘𝑑 = 2. We consider Gaussian intermediate observations
with expected values 𝜇𝑖,1 = 1 and 𝜇𝑖,2 = 1 −Δ where Δ∈ (0,1) for every 𝑖 ∈ �𝑑�. By applying Theorems 3.3 and 4.2, we deduce that,
for 𝑇 → +∞, we have the lower bound and the F-UCB upper bound on the number of pulls of each suboptimal action component
𝑖 ∈ �𝑑� bounded as:

𝔼[𝑁𝑖,2(𝑇)]
log𝑇

≥ 2𝜎2

Δ2 ,

and:

𝔼[𝑁𝑖,2(𝑇)]
log𝑇

≤ 4𝛼𝜎2

Δ2 ,

respectively. Thanks to Theorem 3.4 and Corollary 4.3, we can compute 𝐶(𝝂) and upper bound 𝐶(F-UCB,𝝂):

𝐶(𝝂) = 2𝜎2(1 − (1 −Δ)𝑑)
Δ2 and

𝐶(F-UCB,𝝂)
log𝑇

≤ 4𝑑𝛼𝜎2
Δ

.

It is immediate to realize the following extreme behaviors:

𝐶(F-UCB,𝝂)
𝐶(𝝂) log𝑇

≤ 2𝑑𝛼Δ
1 − (1 −Δ)𝑑

→

{
2𝛼 Δ→ 0
2𝛼𝑑 Δ→ 1

. (18)

This suggests that for sufficiently large Δ ≈ 1, F-UCB can perform significantly worse than the lower bound, introducing an additional
dependence on 𝑑. Instead, for sufficiently small Δ ≈ 0, F-UCB can match the lower bound up to constant factors.11 Clearly, we
conducted this analysis employing an upper bound to the expected regret of F-UCB, which might, in principle, be affected by some
analysis artifacts, making it not tight. In Fig. 2, we compare the ratio between the actual regret obtained by running F-UCB (5 runs) on
the proposed FRB example and the instance-dependent lower bound (left) with the ratio between the upper bound and the instance

dependent lower bound computed in Equation (18) (right). We clearly observe that, although the 𝑦-scales are different, the behavior
confirms a linear dependence of the actual regret of F-UCB on the number of dimensions of the action vector 𝑑.

11 Indeed, when the suboptimality gaps are close to 0, the instantaneous regret ∏𝑖∈�𝑑� 𝜇
∗
𝑖 −

∏
𝑖∈�𝑑� 𝜇𝑖,𝑎𝑖 (𝑡) approaches the sum of the regrets on each action component ∑

𝑖∈�𝑑�(𝜇∗𝑖 − 𝜇𝑖,𝑎𝑖 (𝑡)).

Artificial Intelligence 347 (2025) 104362

10

M. Mussi, S. Drago, M. Restelli et al.

Fig. 2. Ratio between the actual regret of F-UCB and the instance-dependent lower bound (left) and ratio between the regret upper bound and the instance-dependent
lower bound (Equation (18)) (right), for different values of 𝑑 (5 runs, mean ± 2std).

Algorithm 2: F-Track.

Input : Warm-up sample size 𝑁0 , Threshold 𝜖𝑇 , Action component size 𝑘𝑖, ∀𝑖 ∈ �𝑑�,

1 𝑡← 1
2 while min𝑖∈�𝑑� min𝑗∈�𝑘𝑖�

𝑁𝑖,𝑗 (𝑡) <𝑁0 do

3 Pull action vector 𝐚(𝑡) with 𝑎𝑖(𝑡) = (𝑡− 1) mod 𝑘𝑖 + 1 for all 𝑖 ∈ �𝑑�, 𝑡← 𝑡+ 1
4 end
5 𝑇warm-up ← 𝑡− 1
6 Estimate the suboptimality gaps ∀𝑖 ∈ �𝑑�, 𝑗 ∈ �𝑘𝑖�: Δ̂𝑖,𝑗 ∶= max𝑗′∈�𝑘𝑖�

𝜇𝑖,𝑗′ (𝑇warm-up) − 𝜇𝑖,𝑗 (𝑇warm-up)
7 Compute the number of pulls 𝑁̂𝑖,𝑗 = 2𝜎2𝑓𝑇 (1∕𝑇)Δ̂−2

𝑖,𝑗 for every action component 𝑖∈ �𝑑� and 𝑗 ∈ �𝑘𝑖�

8 Compute the number of pulls 𝑁̂𝐚 for every action vector 𝐚∈ by solving the LP in Theorem 3.3

9 while 𝑡 ≤ 𝑇 and max𝑖∈�𝑑�,𝑗∈�𝑘𝑖�
|𝜇𝑖,𝑗 (𝑇warm-up) − 𝜇𝑖,𝑗 (𝑡− 1)| ≤ 2𝜖𝑇 do

10 Pull action vector 𝐚(𝑡) ∈ arg min{𝑁𝐚(𝑡) ∶ 𝐚 ∈ and 𝑁𝐚(𝑡) ≤ 𝑁̂𝐚}, 𝑡← 𝑡+ 1
11 end
12 Discard all data and play F-UCB until 𝑡 = 𝑇

5. Optimal asymptotic instance-dependent regret minimization algorithm

In this section, we provide an algorithm that matches the derived instance-dependent lower bound (Theorem 3.3) in the asymptotic
regime. The algorithm, named Factored Track (F-Track), whose pseudocode is reported in Algorithm 2, is based on the idea
of tracking the lower bound [19,24]. The rationale behind the algorithm is that if we want to match the instance-dependent lower
bound, we need to properly coordinate the choice of the action vectors 𝐚 ∈, given that we have a lower bound on the minimum
number of pulls for the action components (𝑖, 𝑗) (Theorem 3.3). To impose such a structure, we must plan our sequence of action
vector choices in advance. We devise an algorithm composed of three phases: warm-up, success, and recovery. In the warm-up phase,
the algorithm pulls some action vectors in such a way that each action component is pulled at least 𝑁0 times, i.e., 𝑁𝑖,𝑗 ≥𝑁0 (line 3).
This can be achieved by round-robing the action components values 𝑗 of each component 𝑖, leading to a number of pulls in the
warm-up phase equal to 𝑇warm-up =𝑁0 max𝑖∈�𝑑� 𝑘𝑖. We use these samples to estimate the expected values 𝜇𝑖,𝑗 (𝑇warm-up) and define
the confidence interval threshold 𝜖𝑇 . Then, we use these values as if they were the true ones 𝜇𝑖,𝑗 to compute the suboptimality gaps
Δ̂𝑖,𝑗 ∶= max𝑗′∈�𝑘𝑖�

𝜇𝑖,𝑗′ (𝑇warm-up) − 𝜇𝑖,𝑗 (𝑇warm-up) (line 6) and, using them, the number of pulls (line 7):

𝑁̂𝑖,𝑗 =
2𝜎2𝑓𝑇 (1∕𝑇)

Δ̂2
𝑖,𝑗

, ∀𝑗 ∈ �𝑘𝑖�, 𝑖 ∈ �𝑑�,

where for every 𝛿 ∈ (0,1):

𝑓𝑇 (𝛿) ∶=
(
1 + 1

log𝑇

)(
𝑐 log log𝑇 + log

(1
𝛿

))
,

where 𝑐 is a universal constant. With them, we compute the number of pulls for every action vector 𝑁̂𝐚 by solving the optimization
problem in Theorem 3.3 (line 8). It is worth noting that 𝑓𝑇 (1∕𝑇) ≈ log𝑇 and this form is needed for technical reasons to guarantee
that the confidence bounds hold. In the success phase, until we run out of the rounds 𝑡≤ 𝑇 , we track the lower bound by pulling in a
round-robin fashion all arms whose number of pulls 𝑁𝐚(𝑡) < 𝑁̂𝐚 (line 10). If we realize that the estimated expected reward 𝜇𝑖,𝑗 (𝑡−1)
are too far from the ones estimated at the end of the warm-up phase 𝜇𝑖,𝑎𝑖 (𝑇warm-up) based on the threshold 𝜖𝑇 , we move to the recovery
phase (line 9). In this phase, we play F-UCB until the end of the rounds discarding all the data collected so far (line 12).

The following result shows that F-Track asymptotically matches the lower bound for a proper choice of 𝑁0 and 𝜖𝑇 .

Theorem 5.1 (Instance-Dependent Regret Upper Bound for F-Track). For any FRB 𝝂, F-Track run with 𝑁0 =
⌈√

log𝑇
⌉

and 𝜖𝑇 =√
2𝜎2𝑓𝑇 (1∕ log𝑇)∕𝑁0, suffers an expected regret of:

Artificial Intelligence 347 (2025) 104362

11

M. Mussi, S. Drago, M. Restelli et al.

lim sup
𝑇→+∞

𝔼
[
𝑅𝑇 (F-Track,𝝂)

]
log𝑇

= 𝐶(𝝂).

6. Best arm identification

In this section, we analyze the FRB setting when our goal is to find the best action vector. We start in Section 6.1, by adapting the
lower bound to the error probability for standard bandits to our setting, and then, in Section 6.2, we propose an adaptation of the
Successive Rejects [SR, 3] that nearly matches the lower bound.

6.1. Error probability lower bound

We present an error probability lower bound that is suffered by any algorithm that identifies the optimal action vector in an FRB.
To this end, we introduce the complexity indexes defined for each individual dimension 𝑖 ∈ �𝑑�:

𝐻𝑖 ∶= max
𝑗∈�2,𝑘𝑖�

𝑗Δ−2
𝑖,(𝑗), 𝐻 ′

𝑖 ∶=
∑

𝑗∈�2,𝑘𝑖�
Δ−2
𝑖,(𝑗). (19)

It is well known that these two indexes are comparable apart from logarithmic factors, i.e., 𝐻𝑖 ≤𝐻 ′
𝑖 ≤ log(2𝑘𝑖)𝐻𝑖 [3]. The construction

builds upon the state-of-the-art result of [9] and extends it to the FRB setting, leading to the following result.

Theorem 6.1. For every algorithm A, there exists a FRB 𝝂 with complexity index 𝐻 ′
𝑖 ≥ 11𝑘2𝑖 such that if 𝑇 ≥𝐻 ′

𝑖 (4 log(6𝑇𝑘𝑖))∕60
2, for

every 𝑖 ∈ �𝑑� it holds that:

𝑒𝑇 (A,𝝂) ≥ 1
6
max
𝑖∈�𝑑�

exp

(
− 400𝑇
log(𝑘𝑖)𝐻 ′

𝑖

)
. (20)

Proof. The proof immediately follows from the lower bound of [9, Theorem 1] by fixing a dimension 𝑖 and considering a class of
FRB instances in which dimensions different from 𝑖 do not change, and the only dimension that changes is 𝑖. By letting 𝑖 vary in �𝑑�,
we get the lower bound. Formally, we have:

𝑒𝑇 (A,𝝂) = ℙ(𝐚̂∗ ≠ 𝐚∗) ≥ max
𝑖∈�𝑑�

ℙ(𝑎∗𝑖 ≠ 𝑎∗𝑖). □ (21)

6.2. Factored successive rejects

To efficiently learn which is the optimal action vector 𝐚∗, we resort to Successive Rejects [SR, 3]. SR is a phase-based
rejection procedure, optimal (up to constant factors) for the fixed-budget best arm identification scenario. It works in epochs by
playing all the actions in a round-robin fashion, and, at the end of each epoch (whose length is defined using a predefined schedule,
function of the time budget and the number of actions only), discarding the action with the lowest estimated expected value, among
the ones still active. If we are running a MAB problem with 𝑘 arms, we will have 𝑘− 1 phases; at the end of each, we reject an arm.
At the end of the time budget we have just one arm left, which is the one we recommend.

To extend this solution to the FRB setting, we propose Factored Successive Rejects (F-SR), whose pseudocode is provided
in Algorithm 3. The algorithm takes as input the time budget 𝑇 and the number of actions 𝑘𝑖 for each action component 𝑖 ∈ �𝑑�. Then,
we initialize the estimated expected values 𝜇𝑖,𝑗 and counters for the number of pulls 𝑁𝑖,𝑗 for every action 𝑗 ∈ �𝑘𝑖� and every action
component 𝑖 ∈ �𝑑� (line 1), the active action sets 𝑖,0 , and the current phase counter ℎ𝑖, for every 𝑖 ∈ �𝑑� (line 2). Subsequently,
we have to compute the breakpoints for the phases 𝑀𝑖,𝑗 for every phase 𝑗 ∈ �𝑘𝑖 − 1� and component 𝑖 ∈ �𝑑� (line 3). After having
initialized the quantities we need, we start the interaction with the environment. At every time step 𝑡 ∈ �𝑇 �, we first check for every
action component 𝑖 ∈ �𝑑� if we are at the end of an epoch for the specific component and, in that case, we discard (line 7) the arm
with the lowest estimated expected value among the one still active (ties are broken arbitrarily) and we increment the counter of the
current phase for the specific component (line 8). Then, we select the action we want to play 𝑎𝑖(𝑡) in a round-robin fashion in the set
of the active arms. We repeat the operation for each component, and we get the action vector 𝐚(𝑡); we play it (line 12), and we observe
𝐱(𝑡). We use the data collected to update the estimated expected values and the counters (line 14). At the end of the time budget,
when we reach phase 𝑘𝑖 −1 for every component, we still have just one action for each action component in the corresponding active
action sets. The action vector we recommend ̂𝐚∗ is the one composed of the actions 𝑎𝑖

∗
still in the active action sets 𝑖,𝑘𝑖−1.

Error probability upper bound. F-SR enjoys the following guarantees on the maximum error probability.

Theorem 6.2 (Error Probability Upper Bound for F-SR). For any FRB 𝝂, F-SR suffers an error probability bounded by:

𝑒𝑇 (F-SR,𝝂) ≤ 1 −
∏
𝑖∈�𝑑�

(
1 −

𝑘𝑖(𝑘𝑖 − 1)
2

exp

(
−

𝑇 − 𝑘𝑖
2𝜎2 log(𝑘𝑖) 𝐻𝑖

))
,

Artificial Intelligence 347 (2025) 104362

12

M. Mussi, S. Drago, M. Restelli et al.

Algorithm 3: F-SR.

Input : Time Budget 𝑇 , Action component size 𝑘𝑖, ∀𝑖 ∈ �𝑑�

1 Initialize : 𝑁𝑖,𝑗 ← 0, 𝜇𝑖,𝑗 ← 0, ∀𝑗 ∈ �𝑘𝑖�, 𝑖 ∈ �𝑑�

2 𝑖,0 = �𝑘𝑖�, ℎ𝑖 = 1, ∀𝑖 ∈ �𝑑�

3 Compute 𝑀𝑖,𝑗 =

⌈
𝑇 − 𝑘𝑖

log(𝑘𝑖) ⋅ (𝑘𝑖 + 1 − 𝑗)

⌉
where log(𝑘𝑖) ∶= 1

2
+
∑
𝑙∈�2,𝑘𝑖�

1
𝑙
, ∀𝑗 ∈ �𝑘𝑖 − 1�, 𝑖 ∈ �𝑑�

4 for 𝑡 ∈ �𝑇 � do

5 for 𝑖 ∈ �𝑑� do

6 if min
𝑗∈𝑖,ℎ𝑖−1

𝑁𝑖,𝑗 =𝑀𝑖,ℎ𝑖
then

7 Update 𝑖,ℎ𝑖 =𝑖,ℎ𝑖−1 ⧵
{
𝑗𝑖,ℎ𝑖

}
where 𝑗𝑖,ℎ𝑖 ∈ arg min

𝑗∈𝑖,ℎ𝑖−1
𝜇𝑖,𝑗

8 ℎ𝑖 ← ℎ𝑖 + 1
9 end

10 Choose 𝑎𝑖(𝑡) ∈ arg min
𝑗∈𝑖,ℎ𝑖−1

𝑁𝑖,𝑗

11 end
12 Play 𝐚(𝑡) = (

𝑎1(𝑡), … , 𝑎𝑑 (𝑡)
)T

13 Observe 𝐱(𝑡) = (
𝑥1(𝑡), … , 𝑥𝑑 (𝑡)

)T
14 Incrementally update 𝜇𝑖,𝑎𝑖(𝑡) and 𝑁𝑖,𝑎𝑖(𝑡) for every 𝑖∈ �𝑑�

15 end
16 Recommend ̂𝐚∗ = (

𝑎∗1 , … , ̂𝑎∗𝑑
)T

where ̂𝑎∗𝑖 ∈ 𝑖,𝑘𝑖−1 (unique), for every 𝑖∈ �𝑑�

where:

𝐻𝑖 ∶= max
𝑗∈�2,𝑘𝑖�

𝑗Δ−2
𝑖,(𝑗),

and log(𝑘𝑖) ∶=
1
2 +

∑
𝑙∈�2,𝑘𝑖�

1
𝑙
.

Some comments are in order. First, we observe how this bound reduces to the one of standard MABs when 𝑑 = 1, which is known
to be tight (up to constant factors). Second, for a more convenient expression of the result, it is useful to further bound the error

probability as follows: 𝑒𝑇 (F-SR,𝝂) ≤∑
𝑖∈�𝑑�

𝑘𝑖(𝑘𝑖−1)
2 exp

(
− 𝑇−𝑘𝑖

2𝜎2 log(𝑘𝑖) 𝐻𝑖

)
. This allows comparing our result with running SR on the

bandit with all the
∏
𝑖∈�𝑑� 𝑘𝑖 action vectors treated independently under the assumption (which is not verified in our scenario) that

the reward is subgaussian, leading to the error probability bound [3, extended to handle subgaussian random variables]:

𝑒𝑇 (SR,𝝂) ≤ 1
2
∏
𝑖∈�𝑑�

𝑘𝑖

(∏
𝑖∈�𝑑�

𝑘𝑖 − 1

)
exp

⎛⎜⎜⎝−
𝑇 −

∏
𝑖∈�𝑑� 𝑘𝑖

2𝜎2
∑
𝑖∈�𝑑� log(𝑘𝑖) 𝐻

⎞⎟⎟⎠ ,
where 𝐻 ∶= max𝑗∈�2,

∏
𝑖∈�𝑑� 𝑘𝑖�

𝑗Δ−2
(𝐣) . It is easy to see that the complexity term 𝐻 is larger than any of the complexity terms 𝐻𝑖

previously defined. Indeed, for every 𝑖 ∈ �𝑑�, by considering only the action vectors that have all optimal components except for
dimension 𝑖, i.e., 𝐚 ∈◦

𝑖 , where from Equation (17) we have that Δ𝐚 ≤ Δ𝑖,𝑎𝑖 . As a consequence, we can bound the complexity term
as follows:

𝐻 ∶= max
𝑗∈�2,

∏
𝑖∈�𝑑� 𝑘𝑖�

𝑗Δ−2
(𝐣) ≥ max

𝑗∈�2,
∏
𝑖∈�𝑑� 𝑘𝑖�, (𝐣)∈◦

𝑖

𝑗Δ−2
(𝐣) ≥ max

𝑙∈�2,𝑘𝑖�
𝑙Δ−2
𝑖,(𝑙),

where we denoted with (𝐣) ∈◦
𝑖 the condition assessing whether the action vector with the 𝑗-th suboptimality gap belongs to ◦

𝑖 .
Finally, to visualize the tightness of our result, up to lower order terms, in Theorem 6.1, we proceed by observing that 𝑒𝑇 (F-SR,𝝂) ≤
max𝑖∈�𝑑� exp

(
− 𝑇−𝑘𝑖

2𝜎2 log(𝑘𝑖) 𝐻𝑖
+ log 𝑑𝑘

2

2

)
, being 𝑘 =max𝑖∈�𝑑� 𝑘𝑖. This matches the lower bound up to constant terms for a sufficiently

large budget 𝑇 ≥(max{𝑘,𝜎2 log(𝑘𝑑)max𝑖∈�𝑑� log(𝑘𝑖)𝐻𝑖}).

7. Related works

In this section, we discuss the related works from the action structure perspective and the works that present a notion of factored
structure. Then, we compare the most significant related algorithms with our work from the theoretical perspective.

Action structure. Originally, multi-armed bandit frameworks focused on independent arms with no inherent structure [23]. However,
in recent decades, various bandit models with several kinds of structure have emerged, such as linear [1,15,30], Lipschitz [2,27] and
unimodal [37] bandits. These contributions incorporate diverse forms of structure into the arms being considered. [13] introduce a
generalization of structured bandits, accommodating a wide range of structural concepts among arms. Their work offers a statistically
efficient algorithm for handling generic structures, at the expense of solving a semi-infinite linear program at each time step.

Artificial Intelligence 347 (2025) 104362

13

M. Mussi, S. Drago, M. Restelli et al.

Table 1
Comparison with the instance-dependent regret guarantees of [8] and [38]. †This result holds for 𝑇 →∞. ‡The authors consider 𝜎 = 1.

Setting Characteristics
Lower Bound Upper Bound

Match
Factored
Structure

Intermediate
Feedback

𝜎 𝑑 𝑘 𝑇

Robust-UCB [8] ✗ ✗ Ω

(
𝜎2

∑
𝐚∈⧵{𝐚∗}

log𝑇
Δ𝐚

)

(
𝜎2

∑
𝐚∈⧵{𝐚∗}

log𝑇
Δ𝐚

)
✗ ✓ ✓ ✓

TEA [38] ✓ ✗ Ω
⎛⎜⎜⎝
∑
𝑖∈�𝑑�

∑
𝑗∈�𝑘𝑖�⧵{𝑎∗𝑖 }

log𝑇
Δ𝑖,𝑗

⎞⎟⎟⎠
†


⎛⎜⎜⎝
∑
𝑖∈�𝑑�

∑
𝑗∈�𝑘𝑖�⧵{𝑎∗𝑖 }

log(𝑇 log𝑇) + log log(𝑇 log𝑇)
Δ2
𝑖,𝑗

Δ𝑖,𝑗

⎞⎟⎟⎠ ✓ ‡ ✓ ✓ ✓

This Work F-UCB
✓ ✓ Theorem 3.3† Theorem 4.2 ✓ ✗ ✓ ✓

F-Track Theorem 5.1† ✓ ✓ ✓ ✓

Table 2
Comparison with the worst-case regret guarantees of [8] ([38] do not provide worst-case bounds).

Setting Characteristics
Lower Bound Upper Bound

Match
Factored
Structure

Intermediate
Feedback

𝜎 𝑑 𝑘 𝑇

Robust-UCB [8] ✗ ✗ Ω
(
𝜎
√
𝑘𝑑𝑇

) (
𝜎
√
𝑘𝑑𝑇

)
✗ ✓ ✓ ✓

This Work (F-UCB) ✓ ✓ Theorem 3.1 Theorem 4.1 ✓ ✓ ✓ ✓

Notions of factored bandits. Among the several kinds of structure, [38] is the most similar to the work we propose from the point of
view of the action structure, although the two works differ from the feedback perspective. Both works employ an action structure in
which an action component 𝑎𝑖 is selected for each problem dimension 𝑖 ∈ �𝑑�. The action components are combined with a general
function that obeys a uniform identifiability assumption under which the performance of each action vector can only improve when
any action component is switched with the optimal one. In [38], the feedback comprises a single observation of the subgaussian
reward 𝑟(𝐚𝑡) applied to the aggregated expected reward, whereas, in our work, the feedback comprises one noisy observation for
every action component. This peculiarity of our work implies that the reward obtained as the product over all the dimensions is not
subgaussian anymore (Lemma C.1). [38] generalizes [21] to the case of more than two dimensions. Several works consider factored
action structures in the field of multi-agent learning, where we have several agents, each one acting on a specific part of the system.
In this field, [35] propose a multi-model to learn effectively in a model with neighborhood structure, and the reward is the sum of the
rewards in these neighborhood sub-graphs. Interestingly, they recognize the importance of coordination in order to obtain optimal
performances. This need for cooperation is needed also to effectively explore when we have network structures [32].

Bandits with intermediate observations. Several other works consider different notions of factorization and intermediate observations
to improve performances in different settings, such as the delayed [17,28,34] and combinatorial bandits [10--12,14,22]. In particular,
combinatorial bandits share similarities with our setting as they allow one to select a set of arms from the power set of all the possible
choices and observe intermediate realizations. In this sense, combinatorial bandits are more general; however, they do not allow us,
typically, to consider such complex reward functions that combine intermediate rewards using the product or its derivation.

Comparison of the theoretical results. In Table 1, we summarize our setting with the one of Heavy-Tails Bandits [8] and the Factored
Bandits [38]. We also analyze and compare both our solutions with Robust-UCB [8] and TEA [38] from the instance-dependent
point of view. Then, in Table 2, we compare worst-case lower and upper bounds from the worst-case perspective.

8. Discussion and conclusions

In this paper, we introduced the Factored-Reward Bandits, a novel setting to represent decision-making problems in which the
learner is required to perform a set of actions, the effect of which can be observed, and the reward is the product of those effects.
We characterized the inherent complexity through worst-case and instance-dependent regret lower bounds, and we discussed the
performances of current solutions. To address the regret minimization problem, we proposed two algorithms using the intermediate
observations to reduce the complexity of learning in this setting. The first, F-UCB, is an optimistic solution that we proved to be
minimax optimal (up to logarithmic factors). Such a solution deals with action components independently of the others and we have
illustrated how, without coordination, we cannot reach instance-dependent optimality. To overcome this issue, we propose F-Track,
an algorithm able to perform planning on the action components, and we proved its asymptotically instance-dependent optimality.
Finally, we faced the problem of finding the best action vector, given a time budget, and we designed an algorithm to exploit the
factored structure also with this goal. The proposed algorithm nearly matches a lower bound for the FRB setting we derived. As future
lines of research, from the regret minimization perspective, we plan to investigate the possibility of developing an algorithm able to
guarantee both non-asymptotic instance-dependent optimality and to consider functions for aggregating intermediate observations
different from the product, while from the best arm identification perspective, we plan to investigate the fixed-confidence setting.

Artificial Intelligence 347 (2025) 104362

14

M. Mussi, S. Drago, M. Restelli et al.

CRediT authorship contribution statement

Marco Mussi: Writing -- original draft, Software, Methodology, Formal analysis, Conceptualization. Simone Drago: Writing --
original draft, Visualization, Software, Formal analysis, Conceptualization. Marcello Restelli: Writing -- review & editing, Supervision,
Project administration, Funding acquisition. Alberto Maria Metelli: Writing -- review & editing, Supervision, Methodology, Formal
analysis, Conceptualization.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Acknowledgements

Funded by the European Union -- Next Generation EU within the project NRPP M4C2, Investment 1.3 DD. 341 -- 15 March 2022
– FAIR -- Future Artificial Intelligence Research -- Spoke 4 -- PE00000013 -- D53C22002380006.

Appendix A. Examples

In this appendix, we first formalize the example described in Section 1 using the formalism of the FRB setting (Appendix A.1).
Then, we present an additional example of a higher dimensional problem that can be generalized by the FRB setting (Appendix A.2).

A.1. Formalization of the example of Section 1

Consider the case of joint pricing and advertising described in Section 1. In this scenario, at every round 𝑡 ∈ �𝑇 �, we must select
a vector of dimension 𝑑 = 2. Suppose that the first action component is the advertising budget, and the second action component is
the selling price. We have 𝑘1 advertising budgets over which we want to choose and 𝑘2 prices at which we can sell our item.

At every round 𝑡, we select the budget 𝑎1(𝑡) and the price 𝑎2(𝑡). Then, we observe a realization of the impressions we generate
due to the budget 𝑎1(𝑡) we invested: 𝑥1(𝑡) = 𝜇1,𝑎1(𝑡) + 𝜖1(𝑡), and a realization of the conversion rate due to the price 𝑎2(𝑡) we set:
𝑥2(𝑡) = 𝜇2,𝑎2(𝑡) + 𝜖2(𝑡).

The reward is equal to 𝑟(𝑡) = 𝑎2(𝑡)𝑥1(𝑡)𝑥2(𝑡) − 𝑎1(𝑡), corresponding to the return for each sales (the price, considering the turnover
as target), multiplied by the fraction of users willing to buy and by the number of customers exposed to the price (i.e., the impressions),
minus the budget invested in advertising. Note that the operations of multiplying by the selling price and subtracting the advertising
budget do not increase the statistical complexity of the learning problem, as after we select an action, such quantities are deterministic.
However, to deal with this more elaborated formulation, we have to take care of it in the choice of the optimal action 𝐚∗ :

𝐚∗ ∈ arg max
𝐚=(𝑎1 , 𝑎2)T∈

𝑎2
∏
𝑖∈�2�

𝜇𝑖,𝑎𝑖 − 𝑎1. (22)

Run this problem on F-UCB. Moving to the F-UCB, we can easily adapt the formulation of Equation (22) to the one required by the
algorithm:

𝐚(𝑡) ∈ arg max
𝐚=(𝑎1 , 𝑎2)T∈

𝑎2
∏
𝑖∈�2�

UCB𝑖,𝑎𝑖 (𝑡) − 𝑎1.

In practice, as we have done in Section 4, we can replace the real value with our optimistic estimator. Clearly, the analysis of the
regret continues to hold with a multiplicative factor max𝑎2∈�𝑘2� |𝑎2|.
A.2. Additional example

We present an additional example of problems that can be generalized through the FRB setting related to manufacturing processes.

Consider the problem in which we run a manufacturing firm that has to set up the production line for a product. The goal in
this scenario is to optimize the following trade-off: maximize the production yield (i.e., the number of items that come out of the
production line undamaged) while minimizing the production cost.

Considering the item we want to manufacture, let us define a batch size 𝐵 and a production line consisting of 𝑑 stages. Assume
that each stage has a 1 ∶ 1 production rate (i.e., 1 input corresponds to 1 output). For each stage 𝑖 ∈ �𝑑�, we have to select a method
to fulfill the stage among a set of 𝑘𝑖 available alternatives. Each alternative will have an aleatoric impact on the percentage of faulty
outputs, and a deterministic cost of production.

As such, at every round 𝑡, we select an action vector 𝐚(𝑡) = (𝑎1(𝑡), 𝑎2(𝑡),… , 𝑎𝑑 (𝑡)), with 𝑎𝑖(𝑡) ∈ �𝑘𝑖�,∀𝑖 ∈ �𝑑�. At every stage 𝑖, we
then observe a percentage of undamaged outputs defined as:

𝑥𝑖(𝑡) = 𝜇𝑖,𝑎𝑖(𝑡) + 𝜖𝑖(𝑡),

where:

Artificial Intelligence 347 (2025) 104362

15

M. Mussi, S. Drago, M. Restelli et al.

• 𝜇𝑖,𝑎𝑖(𝑡) ∈ [0,1] is the expected percentage of faultless products due to selecting action 𝑎𝑖(𝑡),
• 𝜖𝑖(𝑡) is a 𝜎2-subgaussian random noise. In this case, we will have bounded realizations of the observations in the range [0,1]. This

case can be handled with subgaussian random noise, as every bounded variable in [𝑎, 𝑏] is 𝜎2-subgaussian with 𝜎2 = (𝑏− 𝑎)2∕4.

We can model the reward function as:

𝑟(𝑡) = 𝐵
𝑑∏
𝑖=1
𝑥𝑖(𝑡) −

𝑑∑
𝑖=1
𝑐𝑖(𝑎𝑖(𝑡)),

where 𝑐𝑖(𝑎𝑖(𝑡)) is the (deterministic and known) cost associated with the selection of action 𝑎𝑖(𝑡). Observe that 𝐵 is a known and
fixed quantity, and 𝑐𝑖(𝑎𝑖(𝑡)) are deterministic and known to the learner. As such, they do not increase the complexity of the learning
problem. For this reason, this scenario can be generalized through the FRB setting.

Appendix B. Proofs and derivations

In this section, we provide proof of the statements discussed in the main paper (Section B.1) and some technical lemmas needed
in order to prove them (Section B.2).

B.1. Proofs of the theorems

Theorem 3.1 (Worst-Case Regret Lower Bound). For every algorithm A, there exists an FRB 𝝂 such that for:

𝑇 ≥ 2
(
1 − 2−

1
𝑑−1

)−2
𝜎2 max
𝑖∈�𝑑�

𝑘𝑖 =(
𝜎2𝑑2𝑘

)
, (3)

A suffers an expected cumulative regret of at least:

𝔼
[
𝑅𝑇 (A,𝝂)

] ≥ 𝜎

4
√
2

∑
𝑖∈�𝑑�

√
𝑘𝑖𝑇 .

In particular, if 𝑘𝑖 =∶ 𝑘 for every 𝑖∈ �𝑑�, we have 𝔼
[
𝑅𝑇 (A,𝝂)

] ≥Ω(𝜎𝑑
√
𝑘𝑇).

Proof. Consider an scenario in which 𝜇𝐚∗ = 1 and Δ𝑖,𝑗 ≤ Δ = 1 − 2−1∕(𝑑−1),∀𝑖 ∈ �𝑑�, 𝑗 ∈ �𝑘𝑖�, then Lemma B.3 allows us to rewrite
the expected regret as:

𝔼
[
𝑅𝑇 (A,𝝂)

]
= 𝔼

[∑
𝑡∈�𝑇 �

(
1 −

∏
𝑖∈�𝑑�

(
1 −Δ𝑖,𝑎𝑖(𝑡)

))]

≥ 1
2
𝔼

[∑
𝑡∈�𝑇 �

∑
𝑖∈�𝑑�

Δ𝑖,𝑎𝑖(𝑡)

]

= 1
2
∑
𝑖∈�𝑑�

𝔼

[∑
𝑡∈�𝑇 �

Δ𝑖,𝑎𝑖(𝑡)

]
= 1

2
∑
𝑖∈�𝑑�

𝔼
[
𝑅(𝑖)
𝑇
(A,𝝂)

]
, (23)

where 𝑅(𝑖)
𝑇
(A,𝝂) is the expected regret generated by pulling suboptimal arms on the component 𝑖 ∈ �𝑑�. This fact implies that if we

take sufficiently small Δ𝑖,𝑗 < Δ,∀𝑖 ∈ �𝑑�, 𝑗 ∈ �𝑘𝑖�, we can analyze the expected regret 𝑅(𝑖)
𝑇
(A,𝝂) we pay for each action component

𝑖 ∈ �𝑑� independently and then summing up the regret we pay as shown above. We will see how the condition of the sufficiently
small Δ𝑖,𝑗 implies that we have to add a condition on the minimum time budget 𝑇 for which this lower bound holds.

We can define a set of
∏
𝑖∈�𝑑� 𝑘𝑖 FRB base instances as follows. Given a vector (ℎ1,… , ℎ𝑑)T ∈ �𝑘1� × ⋯ × �𝑘𝑑� identifying an

instance, we define the expected rewards of such an instance as follows, for Δ ∈ (0,1∕2):

𝜇𝑖,𝑗 =

{
1 if 𝑗 = ℎ𝑖
1 −Δ if 𝑗 ∈ �𝑘𝑖� ⧵ {ℎ𝑖}

, ∀𝑖 ∈ �𝑑�. (24)

We refer as 𝝂(ℎ1 ,…,ℎ𝑑) to the instance in which expected values are characterized by the vector (ℎ1,… , ℎ𝑑)T ∈ �𝑘1� ×⋯ × �𝑘𝑑� as in
Equation (24).

We now focus on bounding the regret of a single component 𝑖 ∈ �𝑑�. In particular, we focus on component 𝑖 = 1 for the sake of
simplicity in the presentation. Then, we can extend the same reasoning to all the others. Let us define a set of helper instances which are
needed for the analysis. For all the components different from the first, we consider as before a vector (ℎ2,… , ℎ𝑑)T ∈ �𝑘2�×⋯× �𝑘𝑑�
which characterize the instance 𝝂(0,ℎ2 ,…,ℎ𝑑) defined as follows:

Artificial Intelligence 347 (2025) 104362

16

M. Mussi, S. Drago, M. Restelli et al.

𝜇1,𝑗 = 1 −Δ, ∀𝑗 ∈ �𝑘1� 𝜇𝑖,𝑗 =

{
1 if 𝑗 = ℎ𝑖
1 −Δ if 𝑗 ∈ �𝑘𝑖� ⧵ {ℎ𝑖}

, ∀𝑖 ∈ �2, 𝑑�. (25)

We now need to introduce some additional objects. Given a vector (ℎ1, ℎ2,… , ℎ𝑑)T ∈ ({0} ∪ �𝑘1�) × �𝑘2� × ⋯ × �𝑘𝑑�, we call
ℙ(ℎ1 ,ℎ2 ,…,ℎ𝑑) the distribution induced by the history of the pulls and the related rewards for the 𝑑 components over time horizon
𝑇 in instance 𝝂(ℎ1 ,ℎ2 ,…,ℎ𝑑). We denote with ℙℎ for ℎ ∈ {0} ∪ �𝑘1� the distribution induced by the history averaged over the other
dimensions, formally: ℙℎ =

1 ∏
𝑖∈�2,𝑑� 𝑘𝑖

∑
(ℎ2 ,ℎ3 ,…,ℎ𝑑)∈�𝑘2�×⋯×�𝑘𝑑� ℙ(ℎ,ℎ2 ,…,ℎ𝑑), and with 𝔼ℎ the expectation over ℙℎ.

Coming back to the proof, given the definition of the base instances (Equation (24)), the expected regret 𝔼
[
𝑅(1)
𝑇
(A,𝝂(ℎ1 ,…,ℎ𝑑))

]
related to the first component is given by:

𝔼
[
𝑅(1)
𝑇
(A,𝝂(ℎ1 ,…,ℎ𝑑))

]
=Δ

∑
𝑗∈�𝑘1�⧵{ℎ1}

𝔼
[
𝑁1,𝑗 (𝑇)

]
=Δ

(
𝑇 − 𝔼

[
𝑁1,ℎ1 (𝑇)

])
.

We now want to use Lemma B.4 in order to obtain the following condition:

1
𝑘1

∑
ℎ∈�𝑘1�

𝔼ℎ[𝑇 −𝑁1,ℎ(𝑇)] ≥ 𝑇4 . (26)

To apply Lemma B.4, we need an upper bound on the total variation 𝑑TV that we can compute ∀ℎ ∈ �𝑘1� as follows:

𝑑TV = 1
2
‖‖ℙ0 −ℙℎ‖‖1

= 1
2

‖‖‖‖‖‖ 1 ∏
𝑖∈�2,𝑑� 𝑘𝑖

∑
(ℎ2 ,ℎ3 ,…,ℎ𝑑)∈�𝑘2�×⋯×�𝑘𝑑�

(
ℙ(0,ℎ2 ,…,ℎ𝑑) −ℙ(ℎ,ℎ2 ,…,ℎ𝑑)

)‖‖‖‖‖‖1
≤ 1 ∏

𝑖∈�2,𝑑� 𝑘𝑖

∑
(ℎ2 ,ℎ3 ,…,ℎ𝑑)∈�𝑘2�×⋯×�𝑘𝑑�

1
2
‖‖‖ℙ(0,ℎ2 ,…,ℎ𝑑) −ℙ(ℎ,ℎ2 ,…,ℎ𝑑)

‖‖‖1 (27)

≤ 1 ∏
𝑖∈�2,𝑑� 𝑘𝑖

∑
(ℎ2 ,ℎ3 ,…,ℎ𝑑)∈�𝑘2�×⋯×�𝑘𝑑�

√
1
2
𝐷KL

(
ℙ(0,ℎ2 ,…,ℎ𝑑)

||||||ℙ(ℎ,ℎ2 ,…,ℎ𝑑)

)
(28)

= 1 ∏
𝑖∈�2,𝑑� 𝑘𝑖

∑
(ℎ2 ,ℎ3 ,…,ℎ𝑑)∈�𝑘2�×⋯×�𝑘𝑑�

√
1
2
𝔼(0,ℎ2 ,…,ℎ𝑑)[𝑁1,ℎ(𝑇)]𝐷KL

(
𝑝0
‖‖‖𝑝ℎ) (29)

= 1 ∏
𝑖∈�2,𝑑� 𝑘𝑖

∑
(ℎ2 ,ℎ3 ,…,ℎ𝑑)∈�𝑘2�×⋯×�𝑘𝑑�

√
1
2
𝔼(0,ℎ2 ,…,ℎ𝑑)[𝑁1,ℎ(𝑇)]

Δ2

2𝜎2
(30)

≤
√

1 ∏
𝑖∈�2,𝑑� 𝑘𝑖

∑
(ℎ2 ,ℎ3 ,…,ℎ𝑑)∈�𝑘2�×⋯×�𝑘𝑑�

1
2
𝔼(0,ℎ2 ,…,ℎ𝑑)[𝑁1,ℎ(𝑇)]

Δ2

2𝜎2
(31)

≤ 1
4

√
Δ2

2𝜎2
𝔼0[𝑁1,ℎ(𝑇)], (32)

where line (27) is the triangle inequality for norms, line (28) is due the Pinsker’s inequality, line (29) is due to the divergence
decomposition lemma [25, Lemma 15.1] considering that all the components different from the first are equal, line (30) is derived
by the expression of 𝐷KL between Gaussian distributions, line (31) is due to the Jensen’s inequality, and line (32) is obtained by
marginalizing w.r.t. the first component.

Given this upper bound to the total variation, we can finally apply Lemma B.4 considering 𝑚 = 𝑘1 and 𝐵 = 2𝜎2𝑘1
Δ2 . What we get is:

1
𝑘1

∑
𝑖∈�𝑘1�

𝔼ℎ
[
2𝜎2𝑘1
Δ2 −𝑁1,ℎ(𝑇)

]
≥ 𝜎2𝑘1

2Δ2 . (33)

We can now select the value of Δ in order to have in Equation (33) a bound on 𝑇 :

𝑇 =
2𝜎2𝑘1
Δ2 .

This implies a choice of Δ in the form of:

Δ=

√
2𝜎2𝑘1
𝑇

.

Artificial Intelligence 347 (2025) 104362

17

M. Mussi, S. Drago, M. Restelli et al.

Given such a choice of Δ and the bound given by Equation (26), we get that the regret of the first action component can be bounded
as:

𝔼
[
𝑅(1)
𝑇
(A,𝝂)

] ≥Δ
(
𝑇 − 𝔼

[
𝑁1,ℎ1 (𝑇)

])
≥
√

2𝜎2𝑘1
𝑇

𝑇
4

=

√
𝜎2𝑘1𝑇

8

= 1
2
√
2
𝜎
√
𝑘1𝑇 .

The same reasoning can be done for all the others 𝑑 − 1 action components and the bound of Equation (23):

𝔼
[
𝑅𝑇 (A,𝝂)

] ≥ 1
2
∑
𝑖∈�𝑑�

𝔼
[
𝑅(𝑖)
𝑇
(A,𝝂)

]
≥ 1

4
√
2
𝜎
∑
𝑖∈�𝑑�

√
𝑘𝑖𝑇 .

The last point needed is to check that the condition of the choices we made on the Δ is compliant for all the dimensions 𝑖 ∈ �𝑑� with
the one of Lemma B.3, i.e., all the Δs are less than Δ defined as:

Δ=

√
2𝜎2 max𝑖∈�𝑑� 𝑘𝑖

𝑇
.

This implies a lower bound on the 𝑇 for which this bound holds:√
2𝜎2 max𝑖∈�𝑑� 𝑘𝑖

𝑇
≤ 1 − 2−1∕(𝑑−1).

Isolating 𝑇 we get:

𝑇 ≥ 2𝜎2 max𝑖∈�𝑑� 𝑘𝑖(
1 − 2−1∕(𝑑−1)

)2 .
We highlight that the lower bound on the horizon 𝑇 is quadratic in 𝑑. Indeed, for 𝑑 ≥ 2 we have:(

1 − 2−
1
𝑑−1

)−2
=
(
1 − 𝑒−

log2
𝑑−1

)−2
≤
(

1
2(𝑑 − 1)

)−2
= 4(𝑑 − 1)2 =(𝑑2),

having exploited the fact that 1− 𝑒−𝑥 log 2 ≥ 𝑥∕2 as 𝑥 ∈ [0,1], having set 𝑥 = 1
𝑑−1 ∈ [0,1] for 𝑑 ≥ 2. Thus, we require a mild (quadratic)

condition on 𝑇 ≥ (𝑑2 max𝑖∈�𝑑� 𝑘𝑖). We remark that even for standard bandits, the minimax lower bound requires the constraint
𝑇 ≥(𝑘), being 𝑘 the number of arms [25, Theorem 15.3]. This concludes the proof. □

Theorem 3.2 (Worst-Case Regret Lower Bound without Intermediate Observations). For every algorithm A† that ignores the intermediate
observations 𝐱(𝑡) and observes the reward 𝑟(𝑡) only, there exists an FRB 𝝂 such that for 𝑇 ≥ 4(min𝑖∈�𝑑� 𝑘𝑖 − 1)∕𝑑, A† suffers an expected
cumulative regret of at least:

𝔼
[
𝑅𝑇 (A†,𝝂)

] ≥max

{
𝜎𝑑

8
√
𝑑
,
𝜎
27

}√
(min
𝑖∈[𝑑]

𝑘𝑖 − 1)𝑇 .

In particular, if 𝑘𝑖 =∶ 𝑘 for every 𝑖∈ �𝑑�, we have 𝔼
[
𝑅𝑇 (A†,𝝂)

] ≥Ω
(
max

{
𝜎𝑑√
𝑑
, 𝜎

}√
𝑘𝑇

)
.

Proof. We construct two lower bounds depending on whether 𝜎 ≤ 1 or 𝜎 > 1 and, then, take the maximum between the two.

Lower Bound for 𝜎 > 1. For simplicity, we consider 𝑑 even. We consider the following base instance 𝝂, parametrized by 𝜎 > 1
and Δ∈ [0,1∕4] with Δ ≤ 𝜎𝑑 , defined for all 𝑖 ∈ �𝑑� and 𝑗 ∈ �𝑘𝑖� ⧵ {1}:

𝜈𝑖,1 =

{
𝜎 w.p. 12 +

Δ1∕𝑑

2𝜎
−𝜎 w.p. 12 −

Δ1∕𝑑

2𝜎
, 𝜈𝑖,𝑗 =

{
𝜎 w.p. 12
−𝜎 w.p. 12

. (34)

Artificial Intelligence 347 (2025) 104362

18

M. Mussi, S. Drago, M. Restelli et al.

It is clear that 𝜇𝑖,1 = Δ1∕𝑑 and 𝜇𝑖,𝑗 = 0. Consequently, the optimal arm is (1,… ,1)T with performance 𝜇∗ = Δ and all the other arms
have performance 0. Furthermore, the variance of the suboptimal arm components is given by 𝜎2 which is also the subgaussian proxy,
while for the optimal arm components, the variance is smaller. Consider now for every 𝑖 ∈ �𝑑�:

𝑗∗𝑖 ∈ arg min
𝑗∈�𝑘𝑖�⧵{1}

𝔼
𝝂
[𝑁𝑖,𝑗 (𝑇)] ⟹ 𝔼

𝝂
[𝑁𝑖,𝑗∗𝑖 (𝑇)] ≤ 𝑇

𝑘𝑖 − 1
. (35)

We construct the alternative instance 𝝂 which is equal to 𝝂′ except for the components (𝑖, 𝑗∗𝑖) for 𝑖 ∈ �𝑑�:

𝜈𝑖,𝑗∗𝑖
=

{
𝜎 w.p. 12 +

(2Δ)1∕𝑑
2𝜎

−𝜎 w.p. 12 −
(2Δ)1∕𝑑

2𝜎
, (36)

enforcing Δ ≤ 𝜎𝑑∕2. In this alternative instance, the optimal arm is (𝑗∗1 ,… 𝑗
∗
𝑑
)T, with performance (𝜇∗)′ = 2Δ.

We are considering algorithms that do not observe individual components. Therefore, the distribution of the product of the
individual components has to be computed. Since they will be used in the computation of the KL-divergence, we just consider the
two most dissimilar ones:

𝜈⊗† =

{
𝜎𝑑 w.p. 12 +

Δ
𝜎𝑑

−𝜎𝑑 w.p. 12 −
Δ
𝜎𝑑

, 𝜈⊗‡ =

{
𝜎𝑑 w.p. 12
−𝜎𝑑 w.p. 12

, (37)

where the probability of the first case in which we play, for instance, (1,… ,1)T in the base instance is obtained by the following
reasoning: we get 𝜎𝑑 if the number of 𝜎 realizations is even (being 𝑑 even). Thus, we have:

ℙ({𝜎𝑑}) =
𝑑∑
𝑙=0

1{𝑙 is even}
(
𝑑
𝑗

)(
1
2
+ (2Δ)1∕𝑑

2𝜎𝑑

)𝑗 (1
2
− (2Δ)1∕𝑑

2𝜎𝑑

)𝑑−𝑗
= 1

2
+ Δ
𝜎𝑑
. (38)

The KL divergence becomes, using reverse Pinsker inequality:

𝐷KL(𝜈
⊗
† , 𝜈

⊗
‡) ≤ 1

1
2 −

Δ
𝜎𝑑

𝐷TV(𝜈
⊗
† , 𝜈

⊗
‡) = 4

(Δ
𝜎𝑑

)2
= 4Δ2

𝜎2𝑑
. (39)

requiring Δ ≤ 𝜎𝑑∕4.

Let us now lower bound the regret with Bretagnolle-Huber’s inequality:

max{𝔼[𝑅𝑇 (A,𝝂)],𝔼[𝑅𝑇 (A,𝝂′)]} ≥ Δ𝑇
4

exp

(
−𝔼

𝝂

[
𝑇∑
𝑡=1

1{∃𝑖 ∈ �𝑑� ∶ 𝑎𝑖(𝑡) = 𝑗∗𝑖 }𝐷KL(𝜈
⊗
𝐚(𝑡)‖(𝜈′)⊗𝐚(𝑡))

])
(40)

≥ Δ𝑇
4

exp

(
−
∑
𝑖∈�𝑑�

𝔼
𝝂
[𝑁𝑖,𝑗∗𝑖 (𝑇)]

4Δ2

𝜎2𝑑

)
(41)

≥ Δ𝑇
4

exp
(
− 4𝑑𝑇Δ2

𝜎2𝑑 (𝑘∗ − 1)

)
, (42)

being 𝑘∗ = min𝑖∈�𝑑� 𝑘𝑖. We set Δ=
√
𝜎2𝑑 (𝑘∗−1)

4𝑑𝑇 with 𝑇 ≥ 4(𝑘∗ − 1)∕𝑑.

Lower Bound for 𝜎 ≤ 1. We construct FRB instances where in the dimension 𝑖min = arg min𝑖∈�𝐾� 𝑘𝑖 we replicate the construction
of Theorem 15.2 of [25] while for all the other dimensions 𝑖 ≠ 𝑖min have all the arms with deterministic distribution with value 1.
Clearly, with this construction, any algorithm that ignores the intermediate observations will experience the interaction with the
standard MABs of the construction of Theorem 15.2 of [25]. Consequently, their lower bound 𝜎∕27

√
(min𝑖∈�𝐾� 𝑘𝑖 − 1)𝑇 holds. □

Theorem 3.3 (Instance-Dependent Regret Lower Bound). For every consistent algorithm A and FRB 𝝂 with unique optimal arm 𝐚∗ ∈ it
holds that:

lim inf
𝑇→+∞

𝔼
[
𝑅𝑇 (A,𝝂)

]
log𝑇

≥ 𝐶(𝝂), (4)

where 𝐶(𝝂) is defined as the solution to the following optimization problem:

min
(𝐿𝐚)𝐚∈⧵{𝐚∗}

∑
𝐚∈⧵{𝐚∗}

𝐿𝐚Δ𝐚 (5)

s.t. 𝐿𝑖,𝑗 =
∑

𝐚∈⧵{𝐚∗}
𝑎𝑖=𝑗

𝐿𝐚, ∀𝑖 ∈ �𝑑�, 𝑗 ∈ �𝑘𝑖� ⧵ {𝑎∗𝑖 } (6)

𝐿𝑖,𝑗 ≥ 2𝜎2

Δ2
𝑖,𝑗

, ∀𝑖 ∈ �𝑑�, 𝑗 ∈ �𝑘𝑖� ⧵ {𝑎∗𝑖 } (7)

Artificial Intelligence 347 (2025) 104362

19

M. Mussi, S. Drago, M. Restelli et al.

𝐿𝐚 ≥ 0, ∀𝐚 ∈ ⧵ {𝐚∗}. (8)

Proof. The proof of this statement is divided into two parts. Part one is dedicated to finding a lower bound on the expected number
of pulls of every action component 𝑁𝑖,𝑗 (𝑇) for each action component 𝑖 ∈ �𝑑�, 𝑗 ∈ �𝑘𝑖�⧵ {𝑎∗𝑖 }. Part two is dedicated to understanding
how these pulls of the action components can be combined in action vectors in the best way possible.

Part 1: Lower bounding the expected number of pulls for each action component

The proof of the expected number of pulls of a sub-optimal action 𝑗 ∈ �𝑘𝑖� ⧵ {𝑎∗𝑖 } of action component 𝑖 ∈ �𝑑� is inspired by the
proof of the asymptotic number of pulls of sub-optimal arms presented in Theorem 16.2 of [25].

We call 𝑚𝑛 the set of distributions referring to the 𝑚th component (𝑚 ∈ �𝑑�) and the 𝑛th arm (𝑛 ∈ �𝑘𝑚�). Then, consider 𝑃𝑚𝑛 as
a specific distribution taken from 𝑚𝑛 to model the reward observations of arm 𝑛 of component 𝑚 in a given instance of the setting.

Let 𝝂 be an instance of the FRB setting with 𝑑 components and 𝑘𝑖 actions for every 𝑖 ∈ �𝑑�. We start by selecting a component 𝑖
and a sub-optimal arm 𝑗. Let 𝜀 > 0 ∈ℝ be arbitrary constant. We define a new instance of the FRB setting 𝝂′ such that 𝑃 ′

𝑖𝑗 = 𝑃𝑖𝑗 ,∀𝑖 ∈
�𝑑� ⧵ {𝑖},∀𝑗 ∈ �𝑘𝑖�, and 𝑃 ′

𝑖𝑗 = 𝑃𝑖𝑗 ,∀𝑗 ∈ �𝑘𝑖� ⧵ {𝑗}, and 𝑃 ′
𝑖,𝑗 ∈𝑖,𝑗 be such that 𝐷𝐾𝐿(𝑃𝑖,𝑗 , 𝑃 ′

𝑖,𝑗) ≤ 𝑑𝑖,𝑗 + 𝜀 and 𝜇′𝑖,𝑗 > 𝜇
∗
𝑖 . 𝑑𝑚𝑛 represents

the KL divergence between 𝑃𝑚𝑛 and 𝑃 ∗
𝑚. The newly defined instance 𝝂′ is then identical to 𝝂 for every arm of every component

different from 𝑖, and in the 𝑖th component every arm is identical except for arm 𝑗 , which is sub-optimal in 𝝂 and is optimal in 𝝂′.
Following the original proof, we can define, for any event  :

ℙ𝝂(𝑖,𝑗) +ℙ𝝂′ (∁
𝑖,𝑗) ≥ 1

2
exp

(
−𝔼𝝂

[
𝑁𝑖,𝑗 (𝑇)

](
𝑑𝑖,𝑗 + 𝜀

))
.

Now, let 𝑖,𝑗 = {𝑁𝑖,𝑗 (𝑇) > 𝑇 ∕2}, and let 𝑅𝑇 =𝑅𝑇 (A,𝝂) and 𝑅′
𝑇
=𝑅𝑇 (A,𝝂′). Then:

𝑅𝑇 +𝑅′
𝑇 ≥ 𝑇

2

(
ℙ
𝝂
(𝑖,𝑗)𝑓𝑖(𝝁)Δ𝑖,𝑗 +ℙ

𝝂′ (∁
𝑖,𝑗)𝑓𝑖(𝝁)(𝜇

′
𝑖,𝑗 − 𝜇

∗
𝑖)
)
,

where 𝑓𝑖(𝝁) is obtained by the following observation. Since at every round 𝑡 ∈ �𝑇 �, in which we pull (𝑖, 𝑗) we suffer the instantaneous
regret in the base instance:∏

𝑖∈�𝑑�

𝜇∗𝑖 − 𝜇𝑖,𝑗
∏

𝑖∈�𝑑�⧵{𝑖}
𝜇𝑖,𝑗(𝑡) ≥ (𝜇∗𝑖 − 𝜇𝑖,𝑗)

∏
𝑖∈�𝑑�⧵{𝑖}

𝜇∗𝑖 =Δ𝑖,𝑗
∏

𝑖∈�𝑑�⧵{𝑖}
𝜇∗𝑖 (43)

and in the alternative instance:

𝜇′𝑖,𝑗
∏

𝑖∈�𝑑�⧵{𝑖}
𝜇∗𝑖 −

∏
𝑖∈�𝑑�

𝜇𝑖,𝑗(𝑡) ≥ (𝜇′𝑖,𝑗 − 𝜇
∗
𝑖)

∏
𝑖∈�𝑑�⧵{𝑖}

𝜇∗𝑖 , (44)

we define:

𝑓𝑖(𝝁) ∶=
∏

𝑖∈�𝑑�≠{𝑖}
𝜇∗𝑖 . (45)

Since the term 𝑓𝑖(𝝁) multiplies both Δ𝑖,𝑗 and (𝜇′𝑖,𝑗 − 𝜇
∗
𝑖), it is straightforward to continue the original proof and write:

𝑅𝑇 +𝑅′
𝑇 ≥ 𝑇

4
𝑓𝑖(𝝁)min{Δ𝑖,𝑗 , (𝜇′𝑖,𝑗 − 𝜇

∗
𝑖)} exp

(
−𝔼𝝂

[
𝑁𝑖,𝑗 (𝑇)

](
𝑑𝑖,𝑗 + 𝜀

))
.

Rearranging and dividing by log𝑇 , we obtain:

𝔼
𝝂
[𝑁𝑖,𝑗 (𝑇)]

log(𝑇)
≥

log(𝑇) + log
(𝑓𝑖(𝝁)

4 min{Δ𝑖,𝑗 , (𝜇′𝑖,𝑗 − 𝜇
∗
𝑖)}

)
− log(𝑅𝑇 +𝑅′

𝑇
)

(𝑑𝑖,𝑗 + 𝜀) log(𝑇)
(46)

= 1
𝑑𝑖,𝑗 + 𝜀

+
log

(𝑓𝑖(𝝁)
4 min{Δ𝑖,𝑗 , (𝜇′𝑖,𝑗 − 𝜇

∗
𝑖)}

)
− log(𝑅𝑇 +𝑅′

𝑇
)

(𝑑𝑖,𝑗 + 𝜀) log(𝑇)
(47)

≥ 2𝜎2

Δ2
𝑖,𝑗

− ℎ𝑖,𝑗 (𝑇), (48)

by letting 𝜀→ 0, having exploited the expression of KL-divergence between Gaussians and having set:

ℎ𝑖,𝑗 (𝑇) ∶= max
⎧⎪⎨⎪⎩0,

log
(𝑓𝑖(𝝁)

4 min{Δ𝑖,𝑗 , (𝜇′𝑖,𝑗 − 𝜇
∗
𝑖)}

)
− log(𝑅𝑇 +𝑅′

𝑇
)

𝑑𝑖,𝑗 log𝑇

⎫⎪⎬⎪⎭ . (49)

Notice that lim sup𝑇→+∞ ℎ𝑖,𝑗 (𝑇) = 0 under consistency.

Now, iterating this reasoning over 𝑖 ∈ �𝑑� and over 𝑗 ∈ �𝑘𝑖�, we get the lower bound on the expected number of pulls for all the
arms of all the action components.

Artificial Intelligence 347 (2025) 104362

20

M. Mussi, S. Drago, M. Restelli et al.

Part 2: Understanding how the pulls we have to perform on the action components can be combined

From Part 1 of this proof, we have a result on the expectation of the minimum number of pulls. We can now define the quantity:

𝐿𝑖,𝑗 (𝑇) ∶=
𝔼[𝑁𝑖,𝑗 (𝑇)]

log𝑇
, ∀𝑖 ∈ �𝑑�, 𝑗 ∈ �𝑘𝑖�.

This quantity can be lower bounded as:

𝐿𝑖,𝑗 (𝑇) ≥ 2𝜎2

Δ2
𝑖𝑗

− ℎ𝑖,𝑗 (𝑇), ∀𝑖 ∈ �𝑑�, 𝑗 ∈ �𝑘𝑖� ⧵ {𝑎∗𝑖 }.

Now, we want to understand how these pulls of the action’s suboptimal components influence the regret. We chose to look at the
asymptotic expected regret, defined as follows:

𝔼
[
𝑅𝑇 (A,𝝂)

]
log𝑇

=
∑
𝐚∈

𝔼
[
𝑁𝐚(𝑇)

]
log𝑇

Δ𝐚,

and we denote:

𝐿𝐚(𝑇) ∶=
𝔼[𝑁𝐚(𝑇)]
log𝑇

, ∀𝐚 ∈.
The regret becomes defined as:

𝔼
[
𝑅𝑇 (A,𝝂)

]
log𝑇

=
∑
𝐚∈
𝐿𝐚(𝑇)Δ𝐚,

Now, we want to look at how the pulls of the action vectors 𝐿𝐚 and the ones of the action components are related. We can easily
observe that the following relation occurs:

𝐿𝑖,𝑗 (𝑇) =
∑

𝐚∈∶𝑎𝑖=𝑗
𝐿𝐚(𝑇), ∀𝑖 ∈ �𝑑�, 𝑗 ∈ �𝑘𝑖�.

Given that, we can write an optimization problem in which we search for the best combination of pulls of the action vector satisfying
the constraints on the minimum number of pulls of the action components.

min
𝐿𝐚(𝑇),𝐿𝑖,𝑗 (𝑇)

∑
𝐚∈⧵{𝐚∗}

𝐿𝐚(𝑇)Δ𝐚 (50)

s.t. 𝐿𝑖,𝑗 (𝑇) =
∑

𝐚∈∶𝑎𝑖=𝑗
𝐿𝐚(𝑇), ∀𝑖 ∈ �𝑑�, 𝑗 ∈ �𝑘𝑖� ⧵ {𝑎∗𝑖 } (51)

𝐿𝑖,𝑗 (𝑇) ≥ 2𝜎2

Δ2
𝑖,𝑗

− ℎ𝑖,𝑗 (𝑇), ∀𝑖 ∈ �𝑑�, 𝑗 ∈ �𝑘𝑖� ⧵ {𝑎∗𝑖 } (52)

𝐿𝐚(𝑇) ≥ 0, ∀𝐚 ∈ ⧵ {𝐚∗}. (53)

Now, to simplify notation, we define 𝑥(𝐚) =𝐿𝐚(𝑇), remove the variables 𝐿𝑖,𝑗 since Constraint (52) will be satisfied with equality, and

reformulate in the unconstrained form using the indicator function 𝐼 (𝑥) =
{

0 if 𝑥 ∈ 
+∞ otherwise

:

inf
𝑥(𝒂)
𝑓𝑇 (𝑥) ∶=

∑
𝐚∈⧵{𝐚∗}

𝑥(𝐚)Δ𝐚 +
∑
𝑖∈�𝑑�

∑
𝑗∈�𝑘𝑖�⧵{𝑎∗𝑖 }

𝐼ℝ≥0

(∑
𝐚∈ ∶ 𝑎𝑖=𝑗

𝑥(𝒂) − 2𝜎2

Δ2
𝑖,𝑗

+ ℎ𝑖,𝑗 (𝑇)

)
+
∑
𝐚∈
𝐼ℝ≥0 (𝑥(𝐚)). (54)

With this notation, we want to characterize the value of the optimization problem as the horizon 𝑇 grows to infinity, i.e.,
lim inf𝑇→+∞ inf𝑥(𝒂) 𝑓𝑇 (𝑥). Notice that this is exactly what we need to obtain a lower bound to lim inf𝑇→+∞

𝔼
[
𝑅𝑇 (A,𝝂)

]
log𝑇 .

In the following, we show that:

lim inf
𝑇→+∞ inf 𝑥(𝒂)

𝑓𝑇 (𝑥) = inf
𝑥(𝒂)
𝑓∞(𝑥), (55)

where 𝑓∞ is defined as follows:

𝑓∞(𝑥) ∶=
∑
𝐚∈
𝑥(𝐚)Δ𝐚 +

∑
𝑖∈�𝑑�

∑
𝑗∈�𝑘𝑖�⧵{𝑎∗𝑖 }

𝐼ℝ≥0

(∑
𝐚∈ ∶ 𝑎𝑖=𝑗

𝑥(𝒂) − 2𝜎2

Δ2
𝑖,𝑗

)
+
∑
𝐚∈
𝐼ℝ≥0 (𝑥(𝐚)), (56)

corresponding to the optimization problem in which we remove the ℎ𝑖,𝑗 (𝑇) function from the right-hand side of the constraint. First
of all, we observe that for every 𝑥 and 𝑇 , we have that 𝑓𝑇 (𝑥) ≤ 𝑓∞(𝑥). It follows that inf𝑥(𝐚) 𝑓𝑇 (𝑥) ≤ inf𝑥(𝐚) 𝑓∞(𝑥) and, consequently,

Artificial Intelligence 347 (2025) 104362

21

M. Mussi, S. Drago, M. Restelli et al.

lim inf𝑇→+∞ inf𝑥(𝒂) 𝑓𝑇 (𝑥) ≤ inf𝑥(𝒂) 𝑓∞(𝑥). Thus, it remains to prove that lim inf𝑇→+∞ inf𝑥(𝒂) 𝑓𝑇 (𝑥) ≥ inf𝑥(𝒂) 𝑓∞(𝑥). Since the optimiza

tion problem is linear and feasible (for sufficiently large 𝑇), there must exist 𝑥∗
𝑇

such that inf𝑥(𝒂) 𝑓𝑇 (𝑥) = 𝑓𝑇 (𝑥∗𝑇) for every finite 𝑇 ,
but also for 𝑇 =∞. Now, consider for a fixed 𝑥:

lim inf
𝑇→+∞ 𝑓𝑇 (𝑥) =

∑
𝐚∈
𝑥(𝐚)Δ𝐚 +

∑
𝐚∈
𝐼ℝ≥0 (𝑥(𝐚)) + lim inf

𝑇→+∞
∑
𝑖∈�𝑑�

∑
𝑗∈�𝑘𝑖�⧵{𝑎∗𝑖 }

𝐼ℝ≥0

(∑
𝐚∈ ∶ 𝑎𝑖=𝑗

𝑥(𝒂) − 2𝜎2

Δ2
𝑖,𝑗

+ ℎ𝑖,𝑗 (𝑇)

)
(57)

≥ ∑
𝐚∈
𝑥(𝐚)Δ𝐚 +

∑
𝐚∈
𝐼ℝ≥0 (𝑥(𝐚)) +

∑
𝑖∈�𝑑�

∑
𝑗∈�𝑘𝑖�⧵{𝑎∗𝑖 }

lim inf
𝑇→+∞ 𝐼ℝ≥0

(∑
𝐚∈ ∶ 𝑎𝑖=𝑗

𝑥(𝒂) − 2𝜎2

Δ2
𝑖,𝑗

+ ℎ𝑖,𝑗 (𝑇)

)
(58)

= 𝑓∞(𝑥), (59)

uniformly since lim sup𝑇→+∞ ℎ𝑖,𝑗 (𝑇) = 0 and 𝐼ℝ≥0 is a decreasing function in its argument, having also exploited that lim inf 𝑛(𝑎𝑛 +

𝑏𝑛) ≥ lim inf𝑛 𝑎𝑛 + lim inf𝑛 𝑏𝑛. Indeed, let 𝑐 =
∑

𝐚∈ ∶ 𝑎𝑖=𝑗 𝑥(𝒂) −
2𝜎2

Δ2
𝑖,𝑗

and 𝑦𝑇 = ℎ𝑖,𝑗 (𝑇), we have to compute lim inf𝑇→+∞ 𝐼ℝ≥0 (𝑐 + 𝑦𝑇).
Since 0 ≤ 𝑦𝑇 and lim sup𝑇→+∞ 𝑦𝑇 = 0, we have lim𝑇→+∞ 𝑦𝑇 = 0. If 𝑐 ≠ 0, there exists 𝑇 (𝑐) such that for 𝑇 ≥ 𝑇 (𝑐), we have that
𝑦𝑇 ≤ |𝑐|∕2. Consequently, lim inf𝑇→+∞ 𝐼ℝ≥0 (𝑐 + 𝑦𝑇) = 𝐼ℝ≥0 (𝑐). If, instead, 𝑐 = 0, we have to compute lim𝑇→+∞ 𝐼ℝ≥0 (𝑦𝑇); being 𝐼ℝ≥0
right continuous and 𝑦𝑇 ≥ 0 we have that lim𝑇→+∞ 𝐼ℝ≥0 (𝑦𝑇) = 0.

This, combined with the fact 𝑓𝑇 (𝑥) ≤ 𝑓∞(𝑥) leads to lim inf𝑇→+∞ 𝑓𝑇 (𝑥) = 𝑓∞(𝑥), uniformly. Thus, we have that for every 𝜀 > 0
there exists 𝑇 (𝜀) > 0 such that for every 𝑇 ≥ 𝑇0(𝜀) we have uniformly:|||| inf 𝑇 ′≥𝑇 𝑓𝑇 ′ (𝑥) − 𝑓∞(𝑥)

|||| ≤ 𝜀. (60)

Consequently, we have:

inf
𝑇 ′≥𝑇 inf 𝑥(𝐚)

𝑓𝑇 ′ (𝑥) = inf
𝑇 ′≥𝑇 𝑓𝑇 ′ (𝑥

∗
𝑇 ′) ≥ 𝑓∞(𝑥∗

𝑇 ′) − 𝜀 ≥ 𝑓∞(𝑥∗∞) − 𝜀 = inf
𝑥(𝐚)
𝑓∞(𝑥(𝐚)) − 𝜀. (61)

This concludes the proof. □

Theorem 3.4 (Instance-Dependent Regret Lower Bound �- Explicit). Let 𝐶(𝝂) be the solution of the optimization problem of Theorem 3.3.
It holds that:

𝐶(𝝂) =
𝐾−𝑑∑
𝓁=1

(
𝑀

𝝅(𝓁) −𝑀𝝅(𝓁−1)
)
Δ
𝜶𝓁
,

that can be computed in (∑𝑖∈�𝑑� 𝑘𝑖 log𝑘𝑖).

Proof. Let 𝑀 =max𝑖∈�𝑑�𝑀𝑖,𝑘𝑖−1. For every 𝑖∈ �𝑑�, let us define a non-negative function 𝑓𝑖 ∶ℝ→ {𝜇𝑖,𝑗}𝑗∈�𝑘𝑖�
∪ {0} such that:

∫
ℝ

1{𝑓𝑖(𝑥) = 𝜇𝑖,𝑗}d𝑥 =𝐿𝑖,𝑗 ∀𝑗 ∈ �𝑘𝑖� ⧵ {𝑎∗𝑖 }, (62)

∫
ℝ

1{𝑓𝑖(𝑥) = 𝜇𝑖,𝑎∗𝑖 }d𝑥 =𝑀 −𝑀𝑖,𝑘𝑖−1. (63)

Clearly, 𝑓𝑖 is not uniquely defined. Any function 𝑓𝑖 satisfying these conditions is measurable (by definition, since the pre-image of
any  ⊆ {𝜇𝑖,𝑗}𝑗∈�𝑘𝑖�

∪{0} is measurable) and correspond to a possible arrangement of a proportion of pulls of the arm components of
dimension 𝑖. Specifically, all functions satisfying these conditions are called ``equimesurable'' meaning that for every 𝑓𝑖, 𝑔𝑖 fulfilling
the conditions, we have that {𝑥 ∶ 𝑓𝑖(𝑥) ≥ 𝑦} = {𝑥 ∶ 𝑔𝑖(𝑥) ≥ 𝑦} for every 𝑦 ∈ℝ. We call this set of functions 𝑖.

A possible arrangement of the proportion of the pulls for component 𝑖 ∈ �𝑑�, corresponds to a function 𝑓𝑖 ∈ 𝑖 such that 𝑓𝑖(𝑥) = 0
for 𝑥 < 0 or 𝑥 >𝑀 . Thus, to minimize the regret as in the optimization problem of Theorem 3.3, we maximize the reward as follows:

sup
𝑓𝑖∈𝑖, 𝑓𝑖(𝑥) = 0 for 𝑥 < 0 or 𝑥 >𝑀, 𝑖∈�𝑑�∫

ℝ𝑑

∏
𝑖∈�𝑑�

𝑓𝑖(𝑥𝑖)d𝑥𝑖 ≤ sup
𝑓𝑖∈𝑖 , 𝑖∈�𝑑�∫

ℝ𝑑

∏
𝑖∈�𝑑�

𝑓𝑖(𝑥𝑖)d𝑥𝑖. (64)

Let 𝑓 ∗𝑖 be the symmetric decreasing rearrangement of 𝑓𝑖 for every 𝑖 ∈ �𝑑�, which, in our specific case, is a piecewise constant symmetric
function. Define 𝑥0 = 0, 𝑥𝑖,1 = (𝑀 −𝑀𝑖,𝑘𝑖−1)∕2, 𝑥𝑖,𝑙+1 = 𝑥𝑖,𝑙 +𝐿𝑖,𝜋𝑖(𝑘𝑖−𝑙)∕2 for 𝑙 ∈ �𝑘𝑖�, we have:

𝑓 ∗𝑖 (𝑥) =
∑
𝑙∈�𝑘𝑖�

𝜇𝑖,𝜋𝑖(𝑘𝑖−𝑙+1)1{|𝑥| ∈ [𝑥𝑖,𝑙−1, 𝑥𝑖,𝑙)}. (65)

From the rearrangement inequality for multiple integrals [26], we have:

sup
𝑓𝑖∈𝑖, 𝑖∈�𝑑�∫

ℝ𝑑

∏
𝑖∈�𝑑�

𝑓𝑖(𝑥𝑖)d𝑥𝑖 = ∫
ℝ𝑑

∏
𝑖∈�𝑑�

𝑓 ∗𝑖 (𝑥𝑖)d𝑥𝑖. (66)

Artificial Intelligence 347 (2025) 104362

22

M. Mussi, S. Drago, M. Restelli et al.

Let us observe that the product of ∫ℝ𝑑 ∏𝑖∈�𝑑� 𝑓
∗
𝑖 (𝑥𝑖)d𝑥𝑖 actually leads to the solution depicted in the statement of the theorem.

Concerning the computational complexity, we observe that it is dominated by the sorting in each dimension 𝑖 ∈ �𝑑�. □

Theorem 4.1 (Worst-Case Regret Upper Bound for F-UCB). For any FRB 𝝂, F-UCB with 𝛼 > 2 suffers an expected regret bounded as:

𝔼
[
𝑅𝑇 (F-UCB,𝝂)

] ≤ 4𝜎
∑
𝑖∈�𝑑�

√
𝛼𝑘𝑖𝑇 log𝑇 + 𝑔(𝛼)

∑
𝑖∈�𝑑�

𝑘𝑖,

where 𝑔(𝛼) = ̃(
(𝛼 − 2)−2

)
. In particular, if 𝑘𝑖 =∶ 𝑘, for every 𝑖∈ �𝑑�, we have 𝔼

[
𝑅𝑇 (F-UCB,𝝂)

] ≤ ̃(𝜎𝑑√𝑘𝑇).
Proof. The proof is composed of two parts. In the first part, we define the probability, given the chosen confidence bounds, that the
good event holds, i.e., the probability that all the confidence bounds are valid. The goal is to find an upper bound on the probability
that the good event does not hold along the whole time horizon 𝑇 . In the second part, we aim to characterize the regret under the
good event for a specific round 𝑡 ∈ �𝑇 �. Finally, we join the two parts to find an upper bound on the expected cumulative regret.

Part 1: Upper bounding the bad event over time horizon 𝑇
We start by defining our good event 𝑡 at round 𝑡 ∈ �𝑇 �, which implies that all the confidence bounds of interest hold, i.e., we are

not making a severe underestimate of the expected value of the optimal action components, and severely overestimating the expected
values of the suboptimal ones. Formally:

𝑡 ∶=
{

∀𝑖 ∈ �𝑑�,∀𝑎𝑖 ∈ �𝑘𝑖� ⧵ {𝑎∗𝑖 } ∶ 𝜇𝑖,𝑎𝑖 (𝑡) − 𝜇𝑖,𝑎𝑖 ≤ 𝜎
√
𝛼 log 𝑡
𝑁𝑖,𝑎𝑖 (𝑡)

}

∩

{
∀𝑖 ∈ �𝑑� ∶ 𝜇𝑖,𝑎∗𝑖 − 𝜇𝑖,𝑎∗𝑖 (𝑡) ≤ 𝜎

√
𝛼 log 𝑡
𝑁𝑖,𝑎∗𝑖

(𝑡)

}
.

We now want to find an upper bound of the probability of the bad event ∁
𝑡 :

ℙ
(∁
𝑡

) ≤ ℙ

(
∃𝑖 ∈ �𝑑�,∃𝑎𝑖 ∈ �𝑘𝑖� ⧵ {𝑎∗𝑖 } ∶ 𝜇𝑖,𝑎𝑖 (𝑡) − 𝜇𝑖,𝑎𝑖 > 𝜎

√
𝛼 log 𝑡
𝑁𝑖,𝑎𝑖 (𝑡)

)
+

+ℙ

(
∃𝑖 ∈ �𝑑� ∶ 𝜇𝑖,𝑎∗𝑖 − 𝜇𝑖,𝑎∗𝑖 (𝑡) > 𝜎

√
𝛼 log 𝑡
𝑁𝑖,𝑎∗𝑖

(𝑡)

)

≤ ℙ

⎛⎜⎜⎜⎜⎜⎝
∃𝑖 ∈ �𝑑�,∃𝑎𝑖 ∈ �𝑘𝑖� ⧵ {𝑎∗𝑖 },∃𝑠 ∈ �𝑡� ∶ 𝜇𝑖,𝑎𝑖 [𝑠] − 𝜇𝑖,𝑎𝑖(𝑡) > 𝜎

√
𝛼 log 𝑡
𝑠

⏟ ⏞⏞⏞⏟ ⏞⏞⏞⏟
(A)

⎞⎟⎟⎟⎟⎟⎠
+ℙ

⎛⎜⎜⎜⎜⎜⎝
∃𝑖 ∈ �𝑑�,∃𝑠 ∈ �𝑡� ∶ 𝜇𝑖,𝑎∗𝑖 − 𝜇𝑖,𝑎∗𝑖 [𝑠] > 𝜎

√
𝛼 log 𝑡
𝑠

⏟ ⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟ ⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
(B)

⎞⎟⎟⎟⎟⎟⎠
, (67)

having highlighted with the symbols 𝜇𝑖,𝑎𝑖 [𝑠] and 𝜇𝑖,𝑎∗𝑖 [𝑠] the dependence of the estimators on the number of pulls 𝑠. We now bound (A)
and (B) separately. Similar to the proof of Theorem 2.2 proposed by Bubeck [7], we use a peeling argument together with Hoeffding’s
maximal inequality. We apply the peeling argument with a geometric grid over the time interval [1, 𝑡] to bound the probability of
term (A). Given 𝛽 ∈ (0,1), we note that if 𝑠 ∈ {1,… , 𝑡}, then ∃𝑗 ∈

{
0,… , log 𝑡

log1∕𝛽

}
∶ 𝛽𝑗+1𝑡 < 𝑠 ≤ 𝛽𝑗𝑡. As such, we obtain:

ℙ ((A)) = ℙ

(
∃𝑖 ∈ �𝑑�,∃𝑎𝑖 ∈ �𝑘𝑖� ⧵ {𝑎∗𝑖 },∃𝑠 ∈ �𝑡� ∶ 𝜇𝑖,𝑎𝑖 [𝑠] − 𝜇𝑖,𝑎𝑖 > 𝜎

√
𝛼 log 𝑡
𝑠

)

= ℙ

(
∃𝑖 ∈ �𝑑�,∃𝑎𝑖 ∈ �𝑘𝑖� ⧵ {𝑎∗𝑖 },∃𝑠 ∈ �𝑡� ∶

𝑠 ∑
𝑙=1

(
𝑥𝑖,𝑎𝑖 [𝑙] − 𝜇𝑖,𝑎𝑖(𝑡)

)
> 𝜎

√
𝛼𝑠 log 𝑡

)

≤
log 𝑡

log1∕𝛽∑
𝑗=0

ℙ

(
∃𝑖 ∈ �𝑑�,∃𝑎𝑖 ∈ �𝑘𝑖� ⧵ {𝑎∗𝑖 },∃𝑠 ∶ 𝛽

𝑗+1𝑡 < 𝑠 ≤ 𝛽𝑗𝑡,
𝑠 ∑
𝑙=1

(
𝑥𝑖,𝑎𝑖 [𝑙] − 𝜇𝑖,𝑎𝑖(𝑡)

)
> 𝜎

√
𝛼𝑠 log 𝑡

)

≤
log 𝑡

log1∕𝛽∑
𝑗=0

ℙ

(
∃𝑖 ∈ �𝑑�,∃𝑎𝑖 ∈ �𝑘𝑖� ⧵ {𝑎∗𝑖 },∃𝑠 ∶ 𝛽

𝑗+1𝑡 < 𝑠 ≤ 𝛽𝑗𝑡,
𝑠 ∑
𝑙=1

(
𝑥𝑖,𝑎𝑖 [𝑙] − 𝜇𝑖,𝑎𝑖(𝑡)

)
> 𝜎

√
𝛼𝛽𝑗+1𝑡 log 𝑡

)
,

Artificial Intelligence 347 (2025) 104362

23

M. Mussi, S. Drago, M. Restelli et al.

having denoted with 𝑥𝑖,𝑎𝑖 [𝑙] the 𝑙-sample used to compute the sample mean 𝜇𝑖,𝑎𝑖 [𝑠]. Applying a union bound on the summations on
𝑖 and 𝑎𝑖, and Hoeffding’s maximal inequality, we obtain:

ℙ ((A)) ≤ ∑
𝑖∈�𝑑�

∑
𝑎𝑖∈�𝑘𝑖�⧵{𝑎∗𝑖 }

log 𝑡
log1∕𝛽∑
𝑗=0

exp
⎛⎜⎜⎜⎝−

(√
𝜎2𝛼𝛽𝑗+1𝑡 log 𝑡

)2
2𝜎2𝛽𝑗𝑡

⎞⎟⎟⎟⎠
=

∑
𝑖∈�𝑑�

∑
𝑎𝑖∈�𝑘𝑖�⧵{𝑎∗𝑖 }

log 𝑡
log1∕𝛽∑
𝑗=0

exp
(
−
𝛼𝛽 log 𝑡

2

)

=
∑
𝑖∈�𝑑�

∑
𝑎𝑖∈�𝑘𝑖�⧵{𝑎∗𝑖 }

log 𝑡
log1∕𝛽∑
𝑗=0

𝑡−
𝛼𝛽
2

≤ ∑
𝑖∈�𝑑�

∑
𝑎𝑖∈�𝑘𝑖�⧵{𝑎∗𝑖 }

⎛⎜⎜⎝
log 𝑡
log 1

𝛽

+ 1
⎞⎟⎟⎠ 𝑡−

𝛼𝛽
2 .

Applying the same procedure, we can bound the probability of term (B) in Equation (67) to obtain:

ℙ ((B)) ≤ ∑
𝑖∈�𝑑�

⎛⎜⎜⎝
log 𝑡
log 1

𝛽

+ 1
⎞⎟⎟⎠ 𝑡−

𝛼𝛽
2 .

As such, we can write the upper bound of the probability of the bad event as:

ℙ
(∁
𝑡

)
= ℙ ((A)) +ℙ ((B)) ≤ ∑

𝑖∈�𝑑�

𝑘𝑖

⎛⎜⎜⎝
log 𝑡
log 1

𝛽

+ 1
⎞⎟⎟⎠ 𝑡−

𝛼𝛽
2 .

Let us now bound the sum of the probabilities of the bad event over the horizon 𝑇 :

∑
𝑡∈�𝑇 �

ℙ
(∁
𝑡

) ≤ ∑
𝑖∈�𝑑�

𝑘𝑖
∑
𝑡∈�𝑇 �

⎛⎜⎜⎝
log 𝑡
log 1

𝛽

+ 1
⎞⎟⎟⎠ 𝑡−

𝛼𝛽
2

≤ ∑
𝑖∈�𝑑�

𝑘𝑖

𝑇

∫
1

⎛⎜⎜⎝
log 𝑡
log 1

𝛽

+ 1
⎞⎟⎟⎠ 𝑡−

𝛼𝛽
2 d𝑡 (68)

=
∑
𝑖∈�𝑑�

𝑘𝑖

⎛⎜⎜⎝
[(

log 𝑡
log1∕𝛽

+ 1
)(

2
2 − 𝛼𝛽

𝑡1−
𝛼𝛽
2
)]+∞

1
− 4

(2 − 𝛼𝛽) log1∕𝛽

+∞

∫
1
𝑡−
𝛼𝛽
2 d𝑡

⎞⎟⎟⎠ (69)

=
∑
𝑖∈�𝑑�

𝑘𝑖

(
− 2
2 − 𝛼𝛽

− 4
(2 − 𝛼𝛽)2 log(1∕𝛽)

[
𝑡1−

𝛼𝛽
2
]+∞
1

)
(70)

=
∑
𝑖∈�𝑑�

𝑘𝑖

(
− 2
2 − 𝛼𝛽

+ 4
(2 − 𝛼𝛽)2 log(1∕𝛽)

)
, (71)

where line (68) is obtained by bounding the summation with the integral, line (69) is obtained via integration by parts, and the first
term of line (70) is obtained by imposing 𝛼𝛽 > 2. Substituting now 𝛽 = 4

𝛼+2 , which verifies 𝛽 ∈ (0,1) if 𝛼 > 2, we obtain:

∑
𝑡∈�𝑇 �

ℙ
(∁
𝑡

) ≤
⎛⎜⎜⎜⎝
𝛼 + 2
𝛼 − 2

+ (𝛼 + 2)2

(𝛼 − 2)2
1

log
(
𝛼+2
4
)⎞⎟⎟⎟⎠

∑
𝑖∈�𝑑�

𝑘𝑖 = ̃ (
(𝛼 − 2)2

) ∑
𝑖∈�𝑑�

𝑘𝑖.

Part 2: Upper bounding the instantaneous regret at time 𝑡 under the good event

We can now bound the instantaneous regret at time 𝑡 supposing the good event holds. We define the regret 𝑅𝑡 at time 𝑡 as the
difference in expectation between the optimal action and the one performed by F-UCB, formally:

𝑅𝑡 =
∏
𝑖∈�𝑑�

𝜇∗𝑖 −
∏
𝑖∈�𝑑�

𝜇𝑖,𝑎𝑖(𝑡) (72)

Artificial Intelligence 347 (2025) 104362

24

M. Mussi, S. Drago, M. Restelli et al.

=
∑
𝑙∈�𝑑�

∏
𝑖∈�𝑙−1�

𝜇∗𝑙

⏟ ⏞⏞⏟ ⏞⏞⏟
∈[0,1]

(
𝜇∗𝑙 − 𝜇𝑙,𝑎𝑙(𝑡)

) ∏
𝑖∈�𝑙+1,𝑑�

𝜇𝑖,𝑎𝑖(𝑡)

⏟ ⏞⏞⏞⏞⏞⏞⏟ ⏞⏞⏞⏞⏞⏞⏟
∈[0,1]

(73)

≤ ∑
𝑙∈�𝑑�

(
𝜇∗𝑙 − 𝜇𝑙,𝑎𝑙(𝑡)

)
(74)

=
∑
𝑙∈�𝑑�

(
𝜇∗𝑙 − 𝜇𝑙,𝑎𝑙(𝑡) ± UCB𝑙,𝑎𝑙(𝑡)(𝑡)

)
(75)

≤ ∑
𝑙∈�𝑑�

(
UCB𝑙,𝑎𝑙(𝑡)(𝑡) − 𝜇𝑙,𝑎𝑙(𝑡)

)
(76)

≤ 2
∑
𝑙∈�𝑑�

𝛽𝑙,𝑎𝑙(𝑡)(𝑡), (77)

where line (73) is obtained by summing and subtracting all mixed terms, line (74) follows from bounding the left and right products
with 1 being all factors (including the middle one) made of non-negative terms, line (76) comes from the optimism under the good
event, having denoted with 𝛽𝑙,𝑎𝑙 (𝑡) the exploration bonus.

Upper bound of the expected cumulative regret of F-UCB
Recalling that we call 𝑅𝑡 the instantaneous regret under the good event, can now compute an upper bound on the expected

cumulative regret as:

𝔼
[
𝑅𝑇 (F-UCB,𝝂)

] ≤ ∑
𝑡∈�𝑇 �

(
1 ⋅ℙ

(∁
𝑡

)
+𝑅𝑡 ⋅ℙ

(̃𝑡))
≤ ∑
𝑡∈�𝑇 �

ℙ
(∁
𝑡

)
+

∑
𝑡∈�𝑇 �

𝑅𝑡

≤ ∑
𝑡∈�𝑇 �

ℙ
(∁
𝑡

)
+

∑
𝑡∈�𝑇 �

2
∑
𝑖∈�𝑑�

𝛽𝑖,𝑎𝑖(𝑡)(𝑡)

=
∑
𝑡∈�𝑇 �

ℙ
(∁
𝑡

)
+ 2

∑
𝑡∈�𝑇 �

∑
𝑖∈�𝑑�

𝜎

√
𝛼 log 𝑡
𝑁𝑖,𝑎𝑖(𝑡)

≤ ∑
𝑡∈�𝑇 �

ℙ
(∁
𝑡

)
+ 2𝜎

√
𝛼 log𝑇

∑
𝑖∈�𝑑�

∑
𝑎𝑖∈�𝑘𝑖�

∑
𝑗∈�𝑁𝑖,𝑎𝑖 (𝑇)�

√
1
𝑗

(78)

≤ ∑
𝑡∈�𝑇 �

ℙ
(∁
𝑡

)
+ 2𝜎

√
𝛼 log𝑇

∑
𝑖∈�𝑑�

∑
𝑎𝑖∈�𝑘𝑖�

∑
𝑗∈�𝑇 ∕𝑘𝑖�

√
1
𝑗

(79)

≤ ∑
𝑡∈�𝑇 �

ℙ
(∁
𝑡

)
+ 2𝜎

√
𝛼 log𝑇

∑
𝑖∈�𝑑�

∑
𝑎𝑖∈�𝑘𝑖�

𝑇 ∕𝑘𝑖

∫
1

√
1
𝑗

dj (80)

≤ ∑
𝑡∈�𝑇 �

ℙ
(∁
𝑡

)
+ 2𝜎

√
𝛼 log𝑇

∑
𝑖∈�𝑑�

∑
𝑎𝑖∈�𝑘𝑖�

2
√
𝑇
𝑘𝑖

=
∑
𝑡∈�𝑇 �

ℙ
(∁
𝑡

)
+ 4𝜎

√
𝛼 log𝑇

∑
𝑖∈�𝑑�

√
𝑘𝑖𝑇

≤
⎛⎜⎜⎜⎝
𝛼 + 2
𝛼 − 2

+ (𝛼 + 2)2

(𝛼 − 2)2
1

log
(
𝛼+2
4
)⎞⎟⎟⎟⎠

∑
𝑖∈�𝑑�

𝑘𝑖 + 4𝜎
√
𝛼𝑇 log𝑇

∑
𝑖∈�𝑑�

√
𝑘𝑖.

where line (78) is obtained by rewriting the series over the arms and the number of pulls for each arm, line (79) is derived by
considering the worst case, i.e., when all the arms are pulled equally (this is the worst case because we are looking at a concave
function), and line (80) is obtained by bounding the summation with the corresponding integral. This concludes the proof. □

Theorem 4.2 (Instance-Dependent Regret Upper Bound for F-UCB). For a given FRB 𝝂, F-UCB with 𝛼 > 2 suffers an expected regret bounded
as:

𝔼
[
𝑅𝑇 (F-UCB,𝝂)

] ≤ 𝐶(F-UCB,𝝂),
where 𝐶(F-UCB,𝝂) is defined as the solution to the following optimization problem (where 𝑔(𝛼) = ̃((𝛼 − 2)−2)):

Artificial Intelligence 347 (2025) 104362

25

M. Mussi, S. Drago, M. Restelli et al.

max
(𝑁𝐚)𝐚∈

∑
𝐚∈⧵{𝐚∗}

𝑁𝐚Δ𝐚 (10)

s.t. 𝑁𝑖,𝑗 =
∑

𝐚∈⧵{𝐚∗}
𝑎𝑖=𝑗

𝑁𝐚, ∀𝑖 ∈ �𝑑�, 𝑗 ∈ �𝑘𝑖� ⧵ {𝑎∗𝑖 } (11)

𝑁𝑖,𝑗 ≤ 4𝛼𝜎2 log𝑇
Δ2
𝑖,𝑗

+ 𝑔(𝛼), ∀𝑖 ∈ �𝑑�, 𝑗 ∈ �𝑘𝑖� ⧵ {𝑎∗𝑖 } (12)

∑
𝐚∈
𝑁𝐚 = 𝑇 (13)

𝑁𝐚 ≥ 0, ∀𝐚 ∈ (14)

Proof. The proof of this statement is divided into two parts. The first part is dedicated to finding an upper bound on the expected
number of pulls for each action component 𝑁𝑖𝑗 . The second part is dedicated to understanding how these pulls can be combined to
find an upper bound on the regret.

Part 1: Upper bounding the expected number of pulls for each action component

The proof of the expected number of pulls for 𝜎2-subgaussian variables comprises three parts, extending and following the proof
of Theorem 2.2 proposed by Bubeck [7].

Given an instance 𝝂 of FRB, consider a component 𝑖 ∈ �𝑑�, and a suboptimal action 𝑎𝑖 ∈ �𝑘𝑖�⧵ {𝑎∗𝑖 }, which suffers a suboptimality
gap of Δ𝑖,𝑎𝑖 . In this part, we show that if 𝐼𝑖,𝑡 = 𝑎𝑖 (i.e., the action selected for component 𝑖 at time 𝑡 is 𝑎𝑖), then one of the three
following equations is true:

UCB𝑖,𝑎∗𝑖
(𝑡) ≤ 𝜇∗𝑖 , (81)

or:

𝜇̂𝑖,𝑎𝑖 (𝑡− 1) > 𝜇𝑖,𝑎𝑖 + 𝜎

√
𝛼 log 𝑡

𝑁𝑖,𝑎𝑖 (𝑡− 1)
, (82)

or:

𝑁𝑖,𝑎𝑖 (𝑡− 1) <
4𝜎2𝛼 log𝑇

Δ2
𝑖,𝑎𝑖

, (83)

where: UCB𝑖,𝑎∗𝑖
(𝑡) is the confidence bound of the optimal arm for component 𝑖 at time 𝑡, having pulled such an arm for 𝑁𝑖,𝑎∗𝑖 (𝑡 − 1)

times in the previous rounds, and 𝜇̂𝑖,𝑎𝑖,𝑁𝑖,𝑎𝑖 (𝑡−1) is the estimated value of the mean of arm 𝑎𝑖 of component 𝑖 after 𝑁𝑖,𝑎𝑖 (𝑡 − 1) pulls.
For absurd, if we assume that the three equations are false, then we have:

UCB𝑖,𝑎∗𝑖
(𝑡) > 𝜇∗𝑖

= 𝜇𝑖,𝑎𝑖 +Δ𝑖,𝑎𝑖

≥ 𝜇𝑖,𝑎𝑖 + 2

√
𝜎2𝛼 log 𝑡
𝑁𝑖,𝑎𝑖 (𝑡− 1)

≥ 𝜇̂𝑖,𝑎𝑖,𝑁𝑖,𝑎𝑖 (𝑡−1) +
√

𝜎2𝛼 log 𝑡
𝑁𝑖,𝑎𝑖 (𝑡− 1)

= UCB𝑖,𝑎𝑖 (𝑡− 1),

which implies that 𝑎𝑖(𝑡) ≠ 𝑎𝑖. Now, we bound the probability that Equation (81) or Equation (82) holds true. Similar to the orig

inal proof, we use a peeling argument together with Hoeffding’s maximal inequality, which is a consequence of Azuma-Hoeffding
inequality. Note that:

ℙ(Eq. (81) is true) ≤ ℙ

(
∃𝑠 ∈ {1,… , 𝑡} ∶ 𝜇̂𝑖,𝑎∗𝑖 [𝑠] +

√
𝜎2𝛼 log 𝑡
𝑠

≤ 𝜇∗𝑖
)

= ℙ

(
∃𝑠 ∈ {1,… , 𝑡} ∶

𝑠 ∑
𝑙=1

(𝑥𝑖,𝑎∗𝑖 [𝑙] − 𝜇
∗
𝑖) ≤ −

√
𝜎2𝛼𝑠 log 𝑡

)
We now apply the peeling argument with a geometric grid over the time interval [1, 𝑡]. More precisely, given 𝛽 ∈ (0,1), we note

that if 𝑠 ∈ {1,… , 𝑡}, then ∃𝑗 ∈
{
0,… , log 𝑡

log1∕𝛽

}
∶ 𝛽𝑗+1𝑡 < 𝑠 ≤ 𝛽𝑗𝑡.

Artificial Intelligence 347 (2025) 104362

26

M. Mussi, S. Drago, M. Restelli et al.

As such, we get:

ℙ(Eq. (81) is true) ≤
log 𝑡

log1∕𝛽∑
𝑗=0

ℙ

(
∃𝑠 ∶ 𝛽𝑗+1𝑡 < 𝑠 ≤ 𝛽𝑗𝑡,

𝑠 ∑
𝑙=1

(𝑥𝑖,𝑎∗𝑖 [𝑙] − 𝜇
∗
𝑖) ≤ −

√
𝜎2𝛼𝑠 log 𝑡

)

≤
log 𝑡

log1∕𝛽∑
𝑗=0

ℙ

(
∃𝑠 ∶ 𝛽𝑗+1𝑡 < 𝑠 ≤ 𝛽𝑗𝑡,

𝑠 ∑
𝑙=1

(𝑥𝑖,𝑎∗𝑖 [𝑙] − 𝜇
∗
𝑖) ≤ −

√
𝜎2𝛼𝛽𝑗+1𝑡 log 𝑡

)
We now bound this last term using Hoeffding’s maximal inequality, which gives:

ℙ(Eq. (81) is true) ≤
log 𝑡

log1∕𝛽∑
𝑗=0

exp
⎛⎜⎜⎜⎝−

(√
𝜎2𝛼𝛽𝑗+1𝑡 log 𝑡

)2
2𝜎2𝛽𝑗𝑡

⎞⎟⎟⎟⎠
≤

log 𝑡
log1∕𝛽∑
𝑗=0

exp
(
−
𝛼𝛽 log 𝑡

2

)

≤
(

log 𝑡
log1∕𝛽

+ 1
)

1

𝑡
𝛽𝛼
2
.

Using the same arguments, it can be proven that:

ℙ(Eq. (82) is true) ≤
(

log 𝑡
log1∕𝛽

+ 1
)

1

𝑡
𝛽𝛼
2
.

We can now write:

𝔼
[
𝑁𝑖,𝑎𝑖 (𝑇)

]
= 𝔼

[
𝑇∑
𝑡=1

1{𝐼𝑖,𝑡=𝑎𝑖}

]
≤ 𝑢+ 𝔼

[
𝑇∑

𝑡=𝑢+1
1{𝐼𝑖,𝑡=𝑎𝑖 and Eq. (83) is false}

]

= 𝑢+ 𝔼

[
𝑇∑

𝑡=𝑢+1
1{Eq. (81) or Eq. (82) is true}

]

≤ 𝑢+
𝑇∑

𝑡=𝑢+1
(ℙ(Eq. (81) is true) +ℙ(Eq. (82) is true)) ,

where 𝑢 = ⌈ 4𝜎2𝛼 log𝑇
Δ2
𝑖,𝑎𝑖

⌉.
We can now upper bound the probability of Equations (81) and (82) holds:

𝑇∑
𝑡=𝑢+1

(ℙ(Eq. (81) is true)+ℙ(Eq. (82) is true))

≤ 2
𝑇∑

𝑡=𝑢+1

(
log 𝑡

log1∕𝛽
+ 1

)
1

𝑡
𝛽𝛼
2

≤ 2

+∞

∫
1

(
log 𝑡

log1∕𝛽
+ 1

)
1

𝑡
𝛽𝛼
2
𝑑𝑡

= 2
[(

log 𝑡
log1∕𝛽

+ 1
)(

2
2 − 𝛼𝛽

𝑡1−
𝛼𝛽
2
)]+∞

1
− 4

(2 − 𝛼𝛽) log1∕𝛽

+∞

∫
1
𝑡−
𝛼𝛽
2 d𝑡 (84)

= − 4
2 − 𝛼𝛽

− 8
(2 − 𝛼𝛽)2 log1∕𝛽

[
𝑡1−

𝛼𝛽
2
]+∞
1

(85)

= − 4
2 − 𝛼𝛽

+ 8
(2 − 𝛼𝛽)2 log1∕𝛽

,

where line (84) is obtained via integration by parts and the first term of line (85) is obtained imposing 𝛼𝛽 > 2. Substituting now
𝛽 = 4

𝛼+2 , which verifies 𝛽 ∈ (0,1) if 𝛼 > 2, we obtain:

Artificial Intelligence 347 (2025) 104362

27

M. Mussi, S. Drago, M. Restelli et al.
𝑇∑

𝑡=𝑢+1
(ℙ(Eq. (81) is true) +ℙ(Eq. (82) is true)) ≤ − 4

2 − 4𝛼
𝛼+2

+ 8 (
2 − 4𝛼

𝛼+2

)2 1

log
(
𝛼+2
4
)

= −2(𝛼 + 2)
2 − 𝛼

+ 2(𝛼 + 2)2

(2 − 𝛼)2
1

log
(
𝛼+2
4
)

= 2(𝛼 + 2)
𝛼 − 2

+ 2

log
(
𝛼+2
4
) (
𝛼 + 2
𝛼 − 2

)2
.

Rearranging the upper bound on the expected number of pulls given the three cases presented above, we get:

𝔼[𝑁𝑖,𝑗 (𝑇)] ≤ 4𝛼𝜎2 log𝑇
Δ2
𝑖,𝑗

+ 2(𝛼 + 2)
𝛼 − 2

+ 2

log
(
𝛼+2
4
) (
𝛼 + 2
𝛼 − 2

)2
.

We set 𝑔(𝛼) = 2(𝛼+2)
𝛼−2 + 2

log
(
𝛼+2
4
) (𝛼+2

𝛼−2

)2
= ̃ (

(𝛼 − 2)−2
)
.

Part 2: Upper bounding the expected cumulative regret

We now have to understand how the pulls defined in part 1 can be combined. We want to look at the worst combination in which
we can pull the suboptimal action components.

We recall that regret can be defined by highlighting the dependence on the pulls of the action vectors:

𝔼[𝑅𝑇 (F-UCB,𝝂)] =
∑
𝐚∈
𝑁𝐚Δ𝐚.

As before, we can bind the pulls of the action components 𝑁𝑖𝑗 and the action vectors 𝑁𝐚 as follows:

𝔼[𝑁𝑖,𝑗 (𝑇)] =
∑

𝐚∈∶𝑎𝑖=𝑗
𝑁𝐚, ∀𝑖 ∈ �𝑑�, 𝑗 ∈ �𝑘𝑖�.

We know that the pulls cannot be negative, and that the total number of pulls of the action vectors sums to 𝑇 , so we impose these
additional constraints. Now, acting on the number of pulls 𝑁𝐚, ∀𝐚 ∈ we want to find the worst-case in which we can combine action
components in action vectors. So, we solve a maximization problem on the regret defined as a function of the number of pulls, given the
constraints defined above, and the upper bound on the expected number of pulls of the action components 𝑁𝑖𝑗 , ∀𝑖 ∈ �𝑑�, 𝑗 ∈ �𝑘𝑖�⧵{𝑎∗𝑖 }
defined in Part 1 of this proof. □

Corollary 4.3 (Instance-Dependent Regret Upper Bound for F-UCB �- Explicit). For a given FRB 𝝂, F-UCB with 𝛼 > 2 suffers an expected
regret bounded by:

𝔼
[
𝑅𝑇 (F-UCB,𝝂)

] ≤ 𝐶(F-UCB,𝝂)
≤ 4𝛼𝜎2 log𝑇

∑
𝑖∈�𝑑�

𝜇∗−𝑖
∑

𝑗∈�𝑘𝑖�⧵{𝑎∗𝑖 }
Δ−1
𝑖,𝑗 + 𝑔(𝛼)

∑
𝑖∈�𝑑�

𝑘𝑖,

where 𝜇∗−𝑖 =
∏
𝑙∈�𝑑�⧵{𝑖} 𝜇

∗
𝑙
≤ 1 for every 𝑖 ∈ �𝑑�.

Proof. In order to obtain a relaxed solution of the optimization problem in Theorem 4.2, we first derive the following upper bound
to the suboptimality gaps of the action vector 𝐚 = (𝑎1,… , 𝑎𝑑)T:

Δ𝐚 =
∏
𝑖∈�𝑑�

𝜇∗𝑖 −
∏
𝑖∈�𝑑�

𝜇𝑖,𝑎𝑖 =
∏
𝑖∈�𝑑�

𝜇∗𝑖

(
1 −

∏
𝑖∈�𝑑�

𝜇𝑖,𝑎𝑖
𝜇∗𝑖

)
(86)

≤ ∏
𝑖∈�𝑑�

𝜇∗𝑖

(
1 − min

𝑖∈�𝑑�

𝜇𝑖,𝑎𝑖
𝜇∗𝑖

)
(87)

=
∏
𝑖∈�𝑑�

𝜇∗𝑖 max
𝑖∈�𝑑�

(
1 −

𝜇𝑖,𝑎𝑖
𝜇∗𝑖

)
(88)

≤ ∏
𝑖∈�𝑑�

𝜇∗𝑖
∑
𝑖∈�𝑑�

(
1 −

𝜇𝑖,𝑎𝑖
𝜇∗𝑖

)
(89)

=
∑
𝑖∈�𝑑�

(𝜇∗𝑖 − 𝜇𝑖,𝑎𝑖)
∏

𝑗∈�𝑑�⧵{𝑗}
𝜇∗𝑗 (90)

=
∑
𝑖∈�𝑑�

Δ𝑖,𝑎𝑖𝜇
∗
−𝑖, (91)

Artificial Intelligence 347 (2025) 104362

28

M. Mussi, S. Drago, M. Restelli et al.

where line (87) follows from observing that
∏
𝑖∈�𝑑�

𝜇𝑖,𝑎𝑖
𝜇∗𝑖

≤ min𝑖∈�𝑑�
𝜇𝑖,𝑎𝑖
𝜇∗𝑖

since
𝜇𝑖,𝑎𝑖
𝜇∗𝑖

∈ [0,1), line (90) comes from defining 𝜇∗−𝑖 ∶=∏
𝑗∈�𝑑�⧵{𝑗} 𝜇

∗
𝑗 ≤ 1. Thus, by considering the objective function in the optimization problem of Theorem 4.2, we have:∑

𝐚∈⧵{𝐚∗}
𝑁𝐚Δ𝐚 ≤

∑
𝐚∈⧵{𝐚∗}

𝑁𝐚
∑
𝑖∈�𝑑�

Δ𝑖,𝑎𝑖𝜇
∗
−𝑖 (92)

=
∑
𝑖∈�𝑑�

𝜇∗−𝑖
∑
𝑗∈�𝑘𝑖�

∑
𝐚∈ ∶ 𝑎𝑖=𝑗

𝑁𝐚Δ𝑖,𝑎𝑖 (93)

=
∑
𝑖∈�𝑑�

𝜇∗−𝑖
∑

𝑎𝑖∈�𝑘𝑖�⧵{𝑎∗𝑖 }
𝑁𝑖,𝑎𝑖Δ𝑖,𝑎𝑖 . (94)

By using the Constraint (12) to upper bound 𝑁𝑖,𝑎𝑖 and recalling that Δ𝑖,𝑗 ≤ 1, we get the result. □

Theorem 5.1 (Instance-Dependent Regret Upper Bound for F-Track). For any FRB 𝝂, F-Track run with 𝑁0 =
⌈√

log𝑇
⌉

and 𝜖𝑇 =√
2𝜎2𝑓𝑇 (1∕ log𝑇)∕𝑁0, suffers an expected regret of:

lim sup
𝑇→+∞

𝔼
[
𝑅𝑇 (F-Track,𝝂)

]
log𝑇

= 𝐶(𝝂).

Proof. Preliminary Results

Let us introduce the symbol:

𝜖𝑖,𝑗 (𝑡, 𝛿) ∶=

√
2𝜎2𝑓𝑇 (𝛿)
𝑁𝑖,𝑗 (𝑡)

. (95)

Consider the event (𝛿) ∶= {∃𝑖 ∈ �𝑑�, ∃𝑗 ∈ �𝑘𝑖�, ∃𝑡 ∈ �𝑇warm-up, 𝑇 � ≥ 1 ∶ |𝜇𝑖,𝑗 (𝑡) − 𝜇𝑖,𝑗 | > 𝜖𝑖,𝑗 (𝑡, 𝛿)} and let us bound its probability:

ℙ((𝛿)) ≤ ∑
𝑖∈�𝑑�

∑
𝑗∈�𝑘𝑖�

ℙ
(
∃𝑡 ∈ �𝑇warm-up, 𝑇 � ∶ |𝜇𝑖,𝑗 (𝑡) − 𝜇𝑖,𝑗 | > 𝜖𝑖,𝑗 (𝑡, 𝛿)) (96)

=
∑
𝑖∈�𝑑�

∑
𝑗∈�𝑘𝑖�

ℙ
⎛⎜⎜⎝∃𝑠 ∈ �𝑇 � ∶ |𝜇𝑖,𝑗 [𝑠] − 𝜇𝑖,𝑗 | >

√
2𝜎2𝑓𝑇 (𝛿)
𝑠

⎞⎟⎟⎠ (97)

≤ ∑
𝑖∈�𝑑�

∑
𝑗∈�𝑘𝑖�

𝛿 = 𝑘𝛿, (98)

where line (96) follows from a union bound over the values of 𝑖 and 𝑗, line (97) follows by rewriting the probability by highlighting
the dependence of the estimator on the number of samples 𝑠, and line (98) follows from Lemma B.1, recalling that 𝑠(𝜇𝑖,𝑗 [𝑠] − 𝜇𝑖,𝑗) is
a martingale difference sequence and it is 𝜎2-subgaussian.

We will make use of the following two instantiations of event (𝛿):
1 ∶= (1∕ log𝑇) and 2 ∶= (1∕𝑇). (99)

Clearly, from the previous result, we have that ℙ(1) ≤ 𝑘∕ log𝑇 and ℙ(2) ≤ 𝑘∕𝑇 .

We start decomposing the regret over the phases of the algorithm:

𝔼
[
𝑅𝑇 (F-Track,𝝂)

]
= 𝔼

𝝂

[∑
𝑡∈warm-up

Δ𝐚(𝑡)

]
⏟ ⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟ ⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
=∶𝔼𝝂 [𝑅warm-up(𝑇)]

+𝔼
𝝂

[∑
𝑡∈success

Δ𝐚(𝑡)

]
⏟ ⏞⏞⏞⏞⏞⏞⏞⏞⏟ ⏞⏞⏞⏞⏞⏞⏞⏞⏟
=∶𝔼𝝂 [𝑅success(𝑇)]

+𝔼
𝝂

[∑
𝑡∈recovery

Δ𝐚(𝑡)

]
⏟ ⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟ ⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
=∶𝔼𝝂 [𝑅recovery(𝑇)]

, (100)

where, with little abuse of notation, we denoted with 𝑡 ∈ phase denotes the rounds in which phase phase is active. We proceed to
analyze the three components separately.

Part 1: Regret in Warm-Up Phase 𝔼𝝂[𝑅warm-up(𝑇)]
We start by analyzing the regret in the warm-up phase, whose duration is given by 𝑇warm-up =𝑁0 max𝑖∈�𝑑� 𝑘𝑖 = ⌈√log𝑇 ⌉max𝑖∈�𝑑� 𝑘𝑖.

Thus, the corresponding expected cumulative regret can be bounded as follows:

𝔼
𝝂
[𝑅warm-up(𝑇)] ≤Δ𝐦𝐚𝐱

⌈√
log𝑇

⌉
max
𝑖∈�𝑑�

𝑘𝑖 =(√
log𝑇

)
, (101)

where Δ𝐦𝐚𝐱 =max𝐚∈Δ𝐚 and the Big-O notation retains the dependence on 𝑇 only. Thus, its contribution to the regret is asymptot

ically negligible:

Artificial Intelligence 347 (2025) 104362

29

M. Mussi, S. Drago, M. Restelli et al.

lim sup
𝑇→+∞

𝔼𝝂[𝑅warm-up(𝑇)]

log𝑇
= 0. (102)

Part 2: Regret in the Recovery Phase 𝔼𝝂[𝑅recovery(𝑇)]
We move to the analysis of the regret in the recovery phase. We start by showing that if event 1 does not hold, then, the recovery

phase never activates. Indeed, under ∁
1 simultaneously for all 𝑖 ∈ �𝑑�, 𝑗 ∈ �𝑘𝑖�, and 𝑡∈ �𝑇warm-up, 𝑇 � we have that:

|𝜇𝑖,𝑗 (𝑡) − 𝜇𝑖,𝑗 | ≤ 𝜖𝑖,𝑗 (𝑡,1∕ log𝑇), (103)

which implies simultaneously for all 𝑖 ∈ �𝑑�, 𝑗 ∈ �𝑘𝑖�, and 𝑡 ∈ �𝑇warm-up, 𝑇 � that:

|𝜇𝑖,𝑗 (𝑇warm-up) − 𝜇𝑖,𝑗 (𝑡− 1)| ≤ |𝜇𝑖,𝑗 (𝑇warm-up) − 𝜇𝑖,𝑗 |+ |𝜇𝑖,𝑗 (𝑡− 1) − 𝜇𝑖,𝑗 | (104)

≤ 𝜖𝑖,𝑗 (𝑇warm-up,1∕ log𝑇) + 𝜖𝑖,𝑗 (𝑡− 1,1∕ log𝑇) (105)

≤ 2𝜖𝑖,𝑗 (𝑇warm-up,1∕ log𝑇), (106)

being 𝜖𝑖,𝑗 (𝑡,1∕ log𝑇) a decreasing in 𝑡. Recalling that 𝑁𝑖,𝑗 (𝑇warm-up) ≥𝑁0, we have:

2𝜖𝑖,𝑗 (𝑇warm-up,1∕ log𝑇) = 2

√
2𝜎2𝑓𝑇 (1∕ log𝑇)
𝑁𝑖,𝑗 (𝑇warm-up)

≤ 2

√
2𝜎2𝑓𝑇 (1∕ log𝑇)

𝑁0
= 2𝜖𝑇 . (107)

Thus, we conclude that the termination condition of the while loop never activates and, consequently, the recovery phase activates
only when 1 holds, i.e., with probability at most 1∕ log𝑇 .

In the recovery phase, our F-Track algorithm plays F-UCB that, from Corollary 4.3, is proved to suffer logarithmic regret of the
form:

𝜌(𝑇) ∶= 4𝛼𝜎2 log𝑇
∑
𝑖∈�𝑑�

𝜇∗−𝑖
∑

𝑗∈�𝑘𝑖�⧵{𝑎∗𝑖 }
Δ−1
𝑖,𝑗 + 𝑔(𝛼)

∑
𝑖∈�𝑑�

𝑘𝑖 =(log𝑇). (108)

Thus, we have that the cumulative regret of the recovery phase is bounded by:

𝔼
𝝂
[𝑅recovery(𝑇)] = 𝔼

𝝂
[𝑅recovery(𝑇)|∁

1]ℙ(∁
1) + 𝔼

𝝂
[𝑅recovery(𝑇)|1]ℙ(1) ≤ 0 + 𝜌(𝑇)

log𝑇
=(1). (109)

Consequently, its contribution to the expected cumulative regret is asymptotically negligible. Indeed:

lim sup
𝑇→+∞

𝔼𝝂[𝑅recovery(𝑇)]

log𝑇
= 0. (110)

Part 3: Regret in the Success Phase 𝔼𝝂[𝑅success(𝑇)]
We conclude with the most challenging part consisting of bounding the regret in the success phase. The cumulative regret in the

success phase needs to be further decomposed as follows:

𝔼
𝝂
[𝑅success(𝑇)] = 𝔼

𝝂

[
𝟏{∁

1}
∑

𝑡∈success

Δ𝐚(𝑡)

]
+ 𝔼

𝝂

[
𝟏{1 ∧ ∁

2}
∑

𝑡∈success

Δ𝐚(𝑡)

]
+ 𝔼

𝝂

[
𝟏{2}

∑
𝑡∈success

Δ𝐚(𝑡)

]
(111)

We analyze each term separately.

Part 3.1: Regret under ∁
1 In what follows, all estimated quantities are estimated with the samples available at the end of the

warm-up phase and, thus, we will omit the dependence on 𝑇warm-up. We show that asymptotically, during the success phase and
under event ∁

1 , the algorithm suffers the optimal regret. To this end, we need to introduce some auxiliary tools. For every 𝑖 ∈ �𝑑�,
let us define a sorting function as any bijective function 𝜋𝑖 ∶ �𝑘𝑖� → �𝑘𝑖� such that:

𝜇𝑖,𝜋𝑖(1) ≤⋯ ≤ 𝜇𝑖,𝜋𝑖(𝑘𝑖). (112)

If all 𝜇𝑖,𝑗 are different, the sorting function is unique. Furthermore, for every 𝑖 ∈ �𝑑� and 𝑗 ∈ �𝑘𝑖� ⧵ {𝜋𝑖(𝑘𝑖)} (i.e., excluding the action
component with maximum expected reward), let us denote:

𝑁𝑖,𝑗 =
2𝜎2𝑓𝑇 (1∕𝑇)

Δ2
𝑖,𝑗

, (113)

where Δ𝑖,𝑗 = 𝜇𝑖,𝜋𝑖(𝑘𝑖) − 𝜇𝑖,𝑗 . Let us notice that 𝑁𝑖,𝑗 corresponds approximately to the minimum number of pulls of component (𝑖, 𝑗)

prescribed by the lower bound in Theorem 3.3 and denoted with 𝐿𝑖,𝑗 =
2𝜎2 log𝑇

Δ2
𝑖,𝑗

. Given the definition of 𝑓𝑇 (1∕𝑇), we have that

𝐿𝑖,𝑗∕𝑁𝑖,𝑗 → 1 as 𝑇 → +∞. Given the sorting function, it is clear that also:

𝑁𝑖,𝜋𝑖(1) ≤⋯ ≤𝑁𝑖,𝜋𝑖(𝑘𝑖). (114)

Let us define:

Artificial Intelligence 347 (2025) 104362

30

M. Mussi, S. Drago, M. Restelli et al.

𝛽𝑖 ∶= 𝑓𝑇 (1∕𝑇)−1 min
𝑙,𝑙′∈�𝑘𝑖� ∶ 𝑁𝑖,𝜋𝑖(𝑙)≠𝑁𝑖,𝜋𝑖(𝑙′)

|||𝑁𝑖,𝜋𝑖(𝑙) −𝑁𝑖,𝜋𝑖(𝑙′)||| . (115)

It is clear that if for every 𝑖 ∈ �𝑏� and 𝑗 ∈ �𝑘𝑖� we have |𝑁̂𝑖,𝑗 −𝑁𝑖,𝑗 | ≤ 𝛽𝑖𝑓𝑇 (1∕𝑇)∕4, then, for any sorting function 𝜋𝑖 of the estimated
quantities 𝑁𝑖,𝑗 , there exists a sorting function 𝜋𝑖 of the true quantities 𝑁𝑖,𝑗 such that 𝜋𝑖 = 𝜋𝑖.

Let us define for every 𝑖 ∈ �𝑑� and 𝑗 ∈ �𝑘𝑖�:

𝑀𝑖,𝑗 ∶=
𝑗∑
𝑙=1
𝑁𝑖,𝜋𝑖(𝑙). (116)

We define now a sorting function 𝜋 ∶ �𝑘� →
⋃
𝑖∈�𝑑�({𝑖} × �𝑘𝑖�) as any bijection such that:

𝑀𝜋(1) ≤⋯ ≤𝑀𝜋(𝑘), (117)

and convene (with a little abuse of notation) that 𝑀𝜋(0) = 0. It is clear that 𝑀𝜋(𝑘) =𝑀𝜋(𝑘−1) =⋯ =𝑀𝜋(𝑘−𝑑+1) = 𝑇 . Let 𝑙 ∈ �𝑘�, we
define the active action as:

𝜶(𝑙) ∶= (𝑗1,… , 𝑗𝑑) where 𝑗𝑖 s.t. 𝜋(𝑙′) = (𝑖, 𝑗𝑖) and 𝑙′ = min{𝑙′′ ≥ 𝑙 and 𝜋(𝑙′′) = (𝑖, ⋅)} with 𝑖 ∈ �𝑑�. (118)

We can now rewrite the regret with this notation:

∑
𝐚≠𝐚∗

𝑁𝐚Δ𝐚 =
𝑘−𝑑∑
𝑙=1

(
𝑀𝜋(𝑙) −𝑀𝜋(𝑙−1)

)
Δ
𝜶(𝑙), (119)

having observed that for the 𝑘 − 𝑑 + 1 terms we play the optimal action and the successive ones are zero. Furthermore, given the
relation between 𝐿𝑖,𝑗 and 𝑁𝑖,𝑗 , we have that:∑

𝐚≠𝐚∗ 𝑁𝐚

𝑓𝑇 (1∕𝑇)
= 𝐶 and lim sup

𝑇→+∞

∑
𝐚≠𝐚∗ 𝑁𝐚

log𝑇
= 𝐶. (120)

Let us now define:

𝛽 ∶= 𝑓𝑇 (1∕𝑇)−1 min
𝑙,𝑙′∈�𝑘� ∶ 𝑀𝜋(𝑙)≠𝑀𝜋(𝑙′)

|||𝑀𝜋(𝑙) −𝑀𝜋(𝑙′)||| . (121)

It is clear that if for every 𝑖 ∈ �𝑏� and 𝑗 ∈ �𝑘𝑖� we have |𝑀𝑖,𝑗 −𝑀𝑖,𝑗 | ≤ 𝛽𝑓𝑇 (1∕𝑇)∕4, for every sorting function 𝜋 of the estimated
quantities 𝑀𝑖,𝑗 , there exists a sorting function 𝜋 of the true quantities 𝑀𝑖,𝑗 such that 𝜋 = 𝜋. If this is the case, then, the active action
𝜶̂(𝑙) induced by 𝜋 must be the same as 𝜶(𝑙) since the active action depends on the sorting function only.

We now show that we can always guarantee |𝑁̂𝑖,𝑗 −𝑁𝑖,𝑗 | ≤ (𝛽𝑖𝑓𝑇 (1∕𝑇))∕4 and |𝑀𝑖,𝑗 −𝑀𝑖,𝑗 | ≤ (𝛽𝑓𝑇 (1∕𝑇))∕4 for sufficiently large
𝑇 . First of all, let us ensure that we identify the optimal component for every 𝑖 ∈ �𝑑�. This is guaranteed whenever for every 𝑗 ∈ �𝑘𝑖�
we have:|||𝜇𝑖,𝑗 − 𝜇𝑖,𝑗 ||| ≤ 𝜖𝑖,𝑗 (𝑇warm-up,1∕ log𝑇) ≤ 𝜖𝑇 ≤Δmin∕4, (122)

where Δmin = min𝑖∈�𝑑� min𝑗∈�𝑘𝑖�⧵{𝜋𝑖(𝑘𝑖)} 𝜇𝑖,𝜋𝑖(𝑘𝑖) − 𝜇𝑖,𝑗 . The inequality is satisfied for sufficiently large 𝑇 since:

𝜖𝑇 =

√√√√√2𝜎2𝑓𝑇 (1∕ log𝑇)⌈√
log𝑇

⌉ =
(√

𝜎2 log log𝑇√
log𝑇

)
→ 0 as 𝑇 → +∞. (123)

Under this condition, we have that 𝜋𝑖(𝑘𝑖) = 𝜋𝑖(𝑘𝑖) and, consequently:

Δ̂𝑖,𝑗 = 𝜇𝑖,𝜋(𝑘𝑖) − 𝜇𝑖,𝑗 and Δ𝑖,𝑗 = 𝜇𝑖,𝜋(𝑘𝑖) − 𝜇𝑖,𝑗 . (124)

Thus, under event ∁
1 , we have |Δ̂𝑖,𝑗 −Δ𝑖,𝑗 | ≤ 2𝜖𝑇 . Let us now consider 𝑖∈ �𝑘� and 𝑗 ∈ �𝑘𝑖� ⧵ {𝜋𝑖(𝑘𝑖)}, we have:

|||𝑁̂𝑖,𝑗 −𝑁𝑖,𝑗 ||| = ||||||
2𝜎2𝑓𝑇 (1∕𝑇)

Δ̂2
𝑖,𝑗

−
2𝜎2𝑓𝑇 (1∕𝑇)

Δ2
𝑖,𝑗

|||||| (125)

= 2𝜎2𝑓𝑇 (1∕𝑇)
(Δ𝑖,𝑗 + Δ̂𝑖,𝑗)|Δ𝑖,𝑗 − Δ̂𝑖,𝑗 |

Δ2
𝑖,𝑗Δ̂

2
𝑖,𝑗

(126)

≤ 8𝜎2𝑓𝑇 (1∕𝑇)
(2Δmax + Δmin∕2)

Δ4
min

𝜖𝑇 , (127)

Artificial Intelligence 347 (2025) 104362

31

M. Mussi, S. Drago, M. Restelli et al.

where Δmax = max𝑖∈�𝑑� max𝑗,𝑗′∈�𝑘𝑖�
|𝜇𝑖,𝑗 − 𝜇𝑖,𝑗′ | and having observed that Δ̂𝑖,𝑗 ≥ Δ𝑖,𝑗 − 2𝜖𝑇 ≥ Δmin − Δmin∕2 = Δmin∕2 and Δ̂𝑖,𝑗 ≤

Δ𝑖,𝑗 + 2𝜖𝑇 ≤ Δmax + Δmin∕2 = Δmin∕2. Thus, the difference can go below 𝛽𝑖𝑓𝑇 (1∕𝑇) for sufficiently large 𝑇 . Let us now move to the
𝑀𝑖,𝑗 variables. For sufficiently large 𝑇 such that the sorting function 𝜋𝑖 coincides with their estimated counterparts 𝜋𝑖, we have that
for 𝑖 ∈ �𝑑� and 𝑗 ∈ �𝑘𝑖�:

|||𝑀𝑖,𝑗 −𝑀𝑖,𝑗 ||| = ||||||
𝑗∑
𝑙=1
𝑁𝑖,𝜋𝑖(𝑙) −

𝑗∑
𝑙=1
𝑁̂𝑖,𝜋𝑖(𝑙)

|||||| (128)

≤
𝑗∑
𝑙=1

|||𝑁𝑖,𝜋𝑖(𝑙) − 𝑁̂𝑖,𝜋𝑖(𝑙)||| (129)

≤ 8𝜎2𝑗𝑓𝑇 (1∕𝑇)
(2Δmax + Δmin∕2)

Δ4
min

𝜖𝑇 . (130)

Similarly, as before, we can conclude that this difference can be made smaller than 𝛽 for sufficiently large 𝑇 , and, consequently,
make the estimated sorting function 𝜋 equal the true counterpart 𝜋.

Under these conditions, we can bound the cumulative regret under ∁
1 :∑

𝑡∈success

Δ𝐚(𝑡) =
∑
𝐚≠𝐚∗

𝑁̂𝐚Δ𝐚 (131)

=
𝑘−𝑑∑
𝑙=1

(
𝑀𝜋(𝑙) −𝑀𝜋(𝑙−1)

)
Δ𝜶̂(𝑙) (132)

=
𝑘−𝑑∑
𝑙=1

(
𝑀𝜋(𝑙) −𝑀𝜋(𝑙−1)

)
Δ𝜶(𝑙) (133)

=
𝑘−𝑑∑
𝑙=1

(
𝑀𝜋(𝑙) −𝑀𝜋(𝑙) +𝑀𝜋(𝑙−1) −𝑀𝜋(𝑙−1)

)
Δ𝜶(𝑙) +

𝑘−𝑑∑
𝑙=1

(
𝑀𝜋(𝑙) −𝑀𝜋(𝑙−1)

)
Δ𝜶(𝑙) (134)

≤ 2Δ𝐦𝐚𝐱

𝑘−𝑑∑
𝑙=1

|||𝑀𝜋(𝑙) −𝑀𝜋(𝑙)|||+𝐶𝑓𝑇 (1∕𝑇) (135)

≤ 8𝜎2(𝑘− 𝑑) max
𝑖∈�𝑑�

𝑘𝑖𝑓𝑇 (1∕𝑇)
(2Δmax + Δmin∕2)

Δ4
min

𝜖𝑇 +𝐶𝑓𝑇 (1∕𝑇) (136)

=(𝜖𝑇 𝑓𝑇 (1∕𝑇)) +𝐶𝑓𝑇 (1∕𝑇), (137)

where we used Equation (130). Thus, recalling that 𝜖𝑇 → 0 for 𝑇 → +∞, we have:

lim sup
𝑇→+∞

𝔼
[
𝟏{∁

1}
∑
𝑡∈success Δ𝐚(𝑡)

]
log𝑇

= 𝐶. (138)

Consequently, its contribution to the asymptotic regret is exactly 𝐶 .

Part 3.2: Regret under 1 ∧ ∁
2 In this case, we have to prove that the regret remains logarithmic. We consider two cases:

Case 1. We perform the analysis in the first case under the following conditions:

∀𝑖 ∈ �𝑑� ∶ 𝜋𝑖(𝑘𝑖) = 𝜋𝑖(𝑘𝑖) and ∀𝑗 ∈ �𝑘𝑖� ⧵ {𝜋𝑖(𝑘𝑖)} ∶ Δ̂𝑖,𝑗 ≥Δmin∕4. (139)

In such a case, it is simple to show that the regret is at most logarithmic. Indeed, being the optimal arm correctly identified (𝜋𝑖(𝑘𝑖) =
𝜋𝑖(𝑘𝑖)) we have:

∑
𝐚≠𝐚∗

𝑁̂𝐚Δ𝐚 ≤ 2Δ𝐦𝐚𝐱

𝑘−𝑑∑
𝑙=1
𝑀𝜋(𝑙) (140)

≤ 2Δ𝐦𝐚𝐱
∑
𝑖∈�𝑑�

∑
𝑗∈�𝑘𝑖�⧵{𝜋𝑖(𝑘𝑖)}

𝑁̂𝑖,𝜋𝑖(𝑗) (141)

≤ 4𝜎2𝑓𝑇 (1∕𝑇)Δ𝐦𝐚𝐱
∑
𝑖∈�𝑑�

∑
𝑗∈�𝑘𝑖�⧵{𝜋𝑖(𝑘𝑖)}

Δ̂−2
𝑖,𝜋𝑖(𝑗)

(142)

≤ 64𝑘𝜎2𝑓𝑇 (1∕𝑇)Δ𝐦𝐚𝐱Δ−2
min =(log𝑇), (143)

where we observed that since the optimal arm is correctly identified, the following inequality holds:
∑𝑘−𝑑
𝑙=1 𝑀𝜋(𝑙) ≤ ∑

𝑖∈�𝑑�∑
𝑗∈�𝑘𝑖�⧵{𝜋𝑖(𝑘𝑖)} 𝑁̂𝑖,𝜋𝑖(𝑗).

Artificial Intelligence 347 (2025) 104362

32

M. Mussi, S. Drago, M. Restelli et al.

Case 2. If the condition in Equation (139) is violated, we show that the success phase stops after a logarithmic number of rounds.
Consider the smallest round 𝑡𝑖,𝑗 in which for a given 𝑖 ∈ �𝑘� and 𝑗 ∈ �𝑘𝑖� ⧵ {𝜋𝑖(𝑘𝑖)}, it holds that:

𝑁𝑖,𝑗 (𝑡𝑖,𝑗) ≥min
⎧⎪⎨⎪⎩
2𝜎2𝑓𝑇 (1∕𝑇)

Δ̂2
𝑖,𝑗

,
128𝜎2𝑓𝑇 (1∕𝑇)

Δ2
min

⎫⎪⎬⎪⎭ . (144)

Since the F-Track algorithm in the success phase proceeds with the round robin of at most 𝑘 arms, we have that:

𝑡𝑖,𝑗 ≤ 𝑘min
⎧⎪⎨⎪⎩
2𝜎2𝑓𝑇 (1∕𝑇)

Δ̂2
𝑖,𝑗

,
128𝜎2𝑓𝑇 (1∕𝑇)

Δ2
min

⎫⎪⎬⎪⎭ ≤ 128𝑘𝜎2𝑓𝑇 (1∕𝑇)
Δ2
min

=∶ 𝑡∗ =(log𝑇). (145)

Now, we consider two sub-cases.

Case 2.1. In the first sub-case, we deal with the case in which some optimal components are not correctly identified:

∃𝑖 ∈ �𝑑� ∶ 𝜋𝑖(𝑘𝑖) ≠ 𝜋𝑖(𝑘𝑖) (146)

In such a case, at most at round 𝑡∗, we have that:

𝜇𝑖,𝜋𝑖(𝑘𝑖)(𝑡) ≥ 𝜇𝑖,𝜋𝑖(𝑘𝑖)(𝑡) −
√

2𝜎2𝑓𝑇 (1∕𝑇)
𝑁𝑖,𝜋𝑖(𝑘𝑖)(𝑡)

(147)

≥ 𝜇𝑖,𝜋𝑖(𝑘𝑖)(𝑡) − max
{
Δ̂𝑖,𝜋𝑖(𝑘𝑖),Δmin∕8

}
(148)

≥ 𝜇𝑖,𝜋𝑖(𝑘𝑖)(𝑡) − Δ̂𝑖,𝜋𝑖(𝑘𝑖) − Δmin∕8 (149)

≥ 𝜇𝑖,𝜋𝑖(𝑘𝑖)(𝑡) + Δ𝑖,𝜋𝑖(𝑘𝑖) − Δmin∕8 − Δ̂𝑖,𝜋𝑖(𝑘𝑖) (150)

≥ 𝜇𝑖,𝜋𝑖(𝑘𝑖)(𝑡) −
√

2𝜎2𝑓𝑇 (1∕𝑇)
𝑁𝑖,𝜋𝑖(𝑘𝑖)(𝑡)

+Δ𝑖,𝜋𝑖(𝑘𝑖) − Δmin∕8 − Δ̂𝑖,𝜋𝑖(𝑘𝑖) (151)

≥ 𝜇𝑖,𝜋𝑖(𝑘𝑖)(𝑡) − max{0,Δmin∕8} +Δ𝑖,𝜋𝑖(𝑘𝑖) − Δmin∕8 − Δ̂𝑖,𝜋𝑖(𝑘𝑖) (152)

≥ 𝜇𝑖,𝜋𝑖(𝑘𝑖)(𝑡) − 3∕4Δmin + 𝜇𝑖,𝜋𝑖(𝑘𝑖)(𝑇warm-up) − 𝜇𝑖,𝜋𝑖(𝑘𝑖)(𝑇warm-up). (153)

where line (147) follows from the fact that event 2 does not hold, line (148) follows from Equation (144) with 𝑗 = 𝜋𝑖(𝑘𝑖), line (149)

is obtained with max𝑎, 𝑏 ≤ 𝑎 + 𝑏 for 𝑎, 𝑏 ≥ 0, line (150) is obtained from the definition of Δ𝑖,𝜋𝑖(𝑘𝑖), line (151) follows from the fact
that event 2 does not hold, line (152) follows from Equation (144) with 𝑗 = 𝜋𝑖(𝑘𝑖) (whose estimated Δ̂𝑖,𝜋𝑖(𝑘𝑖) = 0, and line (153) is
obtained from the definition of Δ̂𝑖,𝜋𝑖(𝑘𝑖) and from Δ𝑖,𝜋𝑖(𝑘𝑖) ≥Δmin.

This implies that at this round:

𝜇𝑖,𝜋𝑖(𝑘𝑖)(𝑡) − 𝜇𝑖,𝜋𝑖(𝑘𝑖)(𝑇warm-up) + 𝜇𝑖,𝜋𝑖(𝑘𝑖)(𝑇warm-up) − 𝜇𝑖,𝜋𝑖(𝑘𝑖)(𝑡) ≥ 3∕4Δmin ≥ 4𝜖𝑇 , (154)

where the latter holds for sufficiently large 𝑇 . Thus, we have that the success phase stops after at most 𝑡∗ rounds, leading to a regret
of: ∑

𝑡∈success

Δ𝐚(𝑡) ≤Δ𝐦𝐚𝐱
32𝑘𝜎2𝑓𝑇 (1∕𝑇)

Δ2
min

=(log𝑇). (155)

Case 2.2. In the first sub-case, we deal with the case holding under the condition:

∀𝑖 ∈ �𝑑� ∶ 𝜋𝑖(𝑘𝑖) = 𝜋𝑖(𝑘𝑖) and ∃𝑖 ∈ �𝑑� ∶ ∃𝑗 ∈ �𝑘𝑖� ⧵ {𝜋𝑖(𝑘𝑖)} ∶ Δ̂𝑖,𝑗 <Δmin∕4. (156)

At round 𝑡∗, for the (𝑖, 𝑗) fulfilling the second part of the condition:

𝜇𝑖,𝜋𝑖(𝑘𝑖)(𝑡)−𝜇𝑖,𝜋𝑖(𝑘𝑖)(𝑇warm-up) + 𝜇𝑖,𝑗 (𝑇warm-up) − 𝜇𝑖,𝑗 (𝑡) (157)

≥ 𝜇𝑖,𝜋𝑖(𝑘𝑖)(𝑡) − 𝜇𝑖,𝑗 (𝑡) − Δ̂𝑖,𝑗 (158)

≥ 𝜇𝑖,𝜋𝑖(𝑘𝑖)(𝑡) −
√

2𝜎2𝑓𝑇 (1∕𝑇)
𝑁𝑖,𝜋𝑖(𝑘𝑖)(𝑡)

− 𝜇𝑖,𝑗 (𝑡) −

√
2𝜎2𝑓𝑇 (1∕𝑇)
𝑁𝑖,𝑗 (𝑡)

− Δ̂𝑖,𝑗 (159)

≥ −max{0,Δmin∕8} −max{Δ̂𝑖,𝑗 ,Δmin∕8} +Δ𝑖,𝑗 − Δ̂𝑖,𝑗 (160)

≥Δmin∕4, (161)

Artificial Intelligence 347 (2025) 104362

33

M. Mussi, S. Drago, M. Restelli et al.

having exploited Δ̂𝑖,𝑗 ≤ Δmin∕4 and Δ𝑖,𝑗 ≥ Δmin. Thus, for sufficiently large 𝑇 , we have that 4𝜖𝑇 ≤ Δmin∕4 and, consequently, the
success phase ends.

Part 3.3: Regret under 2 We conclude by bounding the regret under event 2, In this case, we proceed with the following trivial
bound, recalling that Pr(2) ≤ 1∕𝑇 .

𝔼

[
𝟏{2}

∑
𝑡∈success

Δ𝐚(𝑡)

]
≤Δ𝐦𝐚𝐱𝑇 ℙ(2) ≤Δ𝐦𝐚𝐱 =(1). (162)

Consequently, its contribution to the asymptotic regret is negligible. □

Theorem 6.2 (Error Probability Upper Bound for F-SR). For any FRB 𝝂, F-SR suffers an error probability bounded by:

𝑒𝑇 (F-SR,𝝂) ≤ 1 −
∏
𝑖∈�𝑑�

(
1 −

𝑘𝑖(𝑘𝑖 − 1)
2

exp

(
−

𝑇 − 𝑘𝑖
2𝜎2 log(𝑘𝑖) 𝐻𝑖

))
,

where:

𝐻𝑖 ∶= max
𝑗∈�2,𝑘𝑖�

𝑗Δ−2
𝑖,(𝑗),

and log(𝑘𝑖) ∶=
1
2 +

∑
𝑙∈�2,𝑘𝑖�

1
𝑙
.

Proof. We start the proof by observing that, in this algorithm, we are running a predefined schedule and that all the data related to
every component ℎ ∈ �𝑑� ⧵ {𝑖} do not influence our choices on 𝑖 and so we can analyze every component independently.

For a given component 𝑖 ∈ �𝑑�, we can define the error probability as follows:

𝑒𝑖,𝑇 (F-SR,𝝂) = ℙ
(
∃𝑗 ∈ �𝑘𝑖 − 1�,∃ℎ ∈ �𝑘𝑖 + 1 − 𝑗, 𝑘𝑖� ∶ 𝜇𝑖,(1)(𝑀𝑖,𝑗) ≤ 𝜇𝑖,(ℎ)(𝑀𝑖,𝑗))

≤ ∑
𝑗∈�𝑘𝑖−1�

∑
ℎ∈�𝑘𝑖+1−𝑗�

ℙ
(
𝜇𝑖,(1)(𝑀𝑖,𝑗) ≤ 𝜇𝑖,(ℎ)(𝑀𝑖,𝑗))

≤ ∑
𝑗∈�𝑘𝑖−1�

∑
ℎ∈�𝑘𝑖+1−𝑗�

ℙ
(
−𝜇𝑖,(1)(𝑀𝑖,𝑗) + 𝜇𝑖,(ℎ)(𝑀𝑖,𝑗) + 𝜇𝑖,(1) − 𝜇𝑖,(ℎ) ≥Δ𝑖,(ℎ)

)
≤ ∑
𝑗∈�𝑘𝑖−1�

∑
ℎ∈�𝑘𝑖+1−𝑗�

exp

(
−
𝑀𝑖,𝑗Δ2

𝑖,(ℎ)

2𝜎2

)

≤ ∑
𝑗∈�𝑘𝑖−1�

𝑗 exp
⎛⎜⎜⎝−
𝑀𝑖,𝑗Δ2

𝑖,(𝑘𝑖+1−𝑗)

2𝜎2

⎞⎟⎟⎠
≤ 𝑘𝑖(𝑘𝑖 − 1)

2
exp

(
−

𝑇 − 𝑘𝑖
2𝜎2 log(𝑘𝑖) 𝐻𝑖

)
,

where the last inequality is obtained by replacing the definition of 𝑀𝑖,𝑗 into the formulation.

At this point, we can join all the error probability 𝑒𝑖,𝑇 (F-SR,𝝂), for every 𝑖 ∈ �𝑑� and, given that the random variables 𝑥𝑖(𝑡) are
independent each other get the global error probability as:

𝑒𝑇 (F-SR,𝝂) = 1 −
∏
𝑖∈�𝑑�

(1 − 𝑒𝑖,𝑇 (F-SR,𝝂)).

Given that, and given that we have upper bounds on the error probabilities for each component, we get:

𝑒𝑇 (F-SR,𝝂) ≤ 1 −
∏
𝑖∈�𝑑�

(
1 −

𝑘𝑖(𝑘𝑖 − 1)
2

exp

(
−

𝑇 − 𝑘𝑖
2𝜎2 log(𝑘𝑖) 𝐻𝑖

))
.

This concludes the proof. □

B.2. Technical lemmas

Lemma B.1. Let 𝑇 ∈ ℕ, 𝜖 > 0. Let 𝑋1,… ,𝑋𝑇 be a martingale difference sequence adapted to the filtration 0,1,… , such that for every
𝑡 ∈ �𝑇 �, it holds that 𝔼[𝑒𝜆𝑋𝑡] ≤ 𝑒(𝜎2𝜆2)∕2 a.s. for every 𝜆∈ℝ. Then, for every 𝛿 ∈ (0,1) it holds that:

ℙ
⎛⎜⎜⎝∃𝑡 ∈ �𝑇 � ∶

𝑡 ∑
𝑠=1
𝑋𝑠 ≥

√
2
(
1 + (log𝑇)−1

)
max

{
𝜖, 𝑡𝜎2

}(
log

(
1 +

⌈
log(𝑇𝜎2∕𝜖)

log(1 + (log𝑇)−1)

⌉)
+ log

(1
𝛿

))⎞⎟⎟⎠ ≤ 𝛿. (163)

Artificial Intelligence 347 (2025) 104362

34

M. Mussi, S. Drago, M. Restelli et al.

Furthermore, for sufficiently large 𝑇 , it holds that:

ℙ

(
∃𝑡 ∈ �𝑇 � ∶

𝑡 ∑
𝑠=1
𝑋𝑠 ≥

√
2𝜎2𝑡𝑓𝑇 (𝛿)

)
≤ 𝛿, (164)

where:

𝑓𝑇 (𝛿) ∶=
(
1 + 1

log𝑇

)(
𝑐 log log𝑇 + log

(1
𝛿

))
, (165)

and 𝑐 > 0 is a universal constant.

Proof. The first statement is obtained from Lemma 14 of [24] considering that the inequality employed in Equation (19) of that
proof applies for 𝜎2-subgaussian random variables and not for Gaussian variables only. The second statement is obtained by setting
𝜖 = 𝜎2 and bounding 1

log
(
1+(log𝑇)−1

) ≤ log𝑇 and log(1 + ⌈(log𝑇)2⌉) ≤ 𝑐 log log𝑇 for some universal constant 𝑐 (≈ 2). □

Lemma B.2. Let 𝑥∈ [0,1), 𝑑 ∈ ℕ, then if 𝑥𝑖 ∈
[
0, 𝑥

)
,∀𝑖 ∈ �𝑑�, it holds:

1 −
∏
𝑖∈�𝑑�

(1 − 𝑥𝑖) ≥ (1 − 𝑥)𝑑−1
∑
𝑖∈�𝑑�

𝑥𝑖.

Proof. We prove this statement by induction. First, we can observe how for 𝑑 = 1 this result trivially holds:

1 − (1 − 𝑥1) = 𝑥1.

We can now make the inductive step on 𝑑:

1 −
∏
𝑖∈�𝑑�

(1 − 𝑥𝑖) = 1 − (1 − 𝑥𝑑)
∏

𝑖∈�𝑑−1�
(1 − 𝑥𝑖)

= 1 − (1 − 𝑥𝑑)
∏

𝑖∈�𝑑−1�
(1 − 𝑥𝑖) ± 𝑥𝑑

= (1 − 𝑥𝑑)

(
1 −

∏
𝑖∈�𝑑−1�

(1 − 𝑥𝑖)

)
+ 𝑥𝑑 (166)

≥ (1 − 𝑥𝑑)

(
(1 − 𝑥)𝑑−2

∑
𝑖∈�𝑑−1�

𝑥𝑖

)
+ 𝑥𝑑

≥ (1 − 𝑥)𝑑−1
∑
𝑖∈�𝑑�

𝑥𝑖,

where line (166) is the inductive step on 𝑑. □

Lemma B.3. In a FRB, considering 𝜇𝐚∗ = 1, if Δ𝑖,𝑗 ≤Δ= 1 − 1
21∕(𝑑−1) ,∀𝑖 ∈ �𝑑�, 𝑗 ∈ �𝑘𝑖�, the regret can be bounded as:

𝑅𝑇 (A,𝝂) =
∑
𝑡∈�𝑇 �

(
1 −

∏
𝑖∈�𝑑�

(
1 −Δ𝑖,𝑎𝑖(𝑡)

)) ≥ 1
2
∑
𝑡∈�𝑇 �

∑
𝑖∈�𝑑�

Δ𝑖,𝑎𝑖(𝑡).

Proof. We prove this statement by looking at a single time 𝑡. We can rewrite Lemma B.2 as:

1 −
∏
𝑖∈�𝑑�

(1 − Δ𝑖,𝑎𝑖(𝑡)) ≥ (1 − Δ)𝑑−1
∑
𝑖∈�𝑑�

Δ𝑖,𝑎𝑖(𝑡),

if Δ𝑖,𝑗 ≤Δ∈ [0,1), ∀𝑖 ∈ �𝑑�, 𝑗 ∈ �𝑘𝑖�.
We make a choice we want to transform this result in order to have:

1 −
∏
𝑖∈�𝑑�

(1 − Δ𝑖,𝑎𝑖(𝑡)) ≥ 1
2
∑
𝑖∈�𝑑�

Δ𝑖,𝑎𝑖(𝑡).

This can be done by imposing:

1
2
≤ (1 − Δ)𝑑−1

1
21∕(𝑑−1)

≤ (1 − Δ)

Artificial Intelligence 347 (2025) 104362

35

M. Mussi, S. Drago, M. Restelli et al.

Δ ≤ 1 − 1
21∕(𝑑−1)

. □

Lemma B.4 (Wang et al. 36). Suppose 𝑚, 𝐵 are positive integers and 𝑚≥ 2; there are 𝑚+ 1 probability distributions ℙ0,ℙ1,…ℙ𝑚, and 𝑚
random variables 𝑁1,… ,𝑁𝑚, such that: (𝑖) Under any of the 𝑃𝑖’s, 𝑁1,… ,𝑁𝑚 are non-negative and

∑
𝑖∈�𝑚�𝑁𝑖 ≤𝐵 with probability 1; (𝑖𝑖)

∀𝑖 ∈ �𝑚�, 𝑑TV ≤ 1
4

√
𝑚
𝐵
𝔼0[𝑁𝑖]. Then:

1
𝑚

∑
𝑖∈�𝑚�

𝔼𝑖[𝐵 −𝑁𝑖] ≥ 𝐵4 .

Proof. For the proof of this Lemma, we refer the reader to Lemma 24 of [36]. □

Appendix C. Additional theorems and lemmas

In this appendix, we provide additional Theorems and Lemmas useful in the discussion of the work.

Lemma C.1. The product 𝑋1𝑋2⋯𝑋𝑛 of 𝑛 ≥ 3 independent 𝜎2-subgaussian random variables is not subgaussian.

Proof. The proof follows the one proposed by [31].

The proof of this statement can be done by verifying that the moment-generating function of the product of 𝑛 independent Gaussian
distributions with unit variance (𝑋𝑖 ∼ (0,1), ∀𝑖 ∈ �𝑛�) is unbounded:

𝔼

[
exp

(
𝑐
∏
𝑖∈�𝑛�

𝑋𝑖

)]
=∞, ∀𝑐 > 0.

Let us call 𝑋 the vector composed of our random variables 𝑋 ∶= (𝑋1,𝑋2,… ,𝑋𝑛) and let (𝑈1,𝑈2,…𝑈𝑛) be a uniformly distributed
unit random vector. For some real 𝐶𝑛 > 0:

𝔼

[
exp

(
𝑐
∏
𝑖∈�𝑛�

𝑋𝑖

)]
(167)

≥ 𝔼

[
exp

(
𝑐
∏
𝑖∈�𝑛�

𝑋𝑖

)
1

{
𝑋𝑖 >

‖𝑋‖2
2
√
𝑛
,∀𝑖 ∈ �𝑛�

}]
(168)

= 𝐶𝑛

∞

∫
0

exp

⎛⎜⎜⎜⎜⎜⎜⎝
𝑐

1
(2
√
𝑛)𝑛
𝑟𝑛

⏟ ⏞⏞⏟ ⏞⏞⏟
(A)

⎞⎟⎟⎟⎟⎟⎟⎠
𝑟𝑛−1 exp

(
− 𝑟

2

2

)
⏟ ⏞⏞⏞⏞⏞⏞⏞⏞⏟ ⏞⏞⏞⏞⏞⏞⏞⏞⏟

(B)

d𝑟 ⋅ℙ

(
𝑈𝑖 >

1
2
√
𝑛
,∀𝑖 ∈ �𝑛�

)
⏟ ⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟ ⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

(C)

(169)

= 𝐶𝑛
(2
√
𝑛)𝑛

𝑐𝑛

∞

∫
0

exp

(
𝑐

1
(2
√
𝑛)𝑛
𝑟𝑛

)
𝑐𝑛

(2
√
𝑛)𝑛
𝑟𝑛−1

⏟ ⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟ ⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝑔′(𝑟)

exp
(
− 𝑟

2

2

)
⏟ ⏞⏞⏞⏞⏟ ⏞⏞⏞⏞⏟

𝑓 (𝑟)

d𝑟 ⋅ℙ

(
𝑈𝑖 >

1
2
√
𝑛
,∀𝑖 ∈ �𝑛�

)

= 𝐶𝑛
(2
√
𝑛)𝑛

𝑐𝑛

⎛⎜⎜⎜⎜⎜⎜⎝
[
exp

(
𝑐

1
(2
√
𝑛)𝑛
𝑟𝑛

)
exp

(
− 𝑟

2

2

)]∞

0

+

∞

∫
0

exp

⎛⎜⎜⎜⎜⎜⎜⎝
𝑐

1
(2
√
𝑛)𝑛
𝑟𝑛

⏟ ⏞⏞⏞⏟ ⏞⏞⏞⏟
(𝐷)

− 𝑟
2

2

⎞⎟⎟⎟⎟⎟⎟⎠
𝑟 d𝑟

⎞⎟⎟⎟⎟⎟⎟⎠
⋅ℙ

(
𝑈𝑖 >

1
2
√
𝑛
,∀𝑖 ∈ �𝑛�

)
(170)

≥ 𝐶𝑛 (2
√
𝑛)𝑛

𝑐𝑛

⎛⎜⎜⎝[∞− 0] +

∞

∫
0

exp
(
− 𝑟

2

2

)
𝑟 d𝑟

⎞⎟⎟⎠ ⋅ℙ
(
𝑈𝑖 >

1
2
√
𝑛
,∀𝑖 ∈ �𝑛�

)
(171)

= 𝐶𝑛
(2
√
𝑛)𝑛

𝑐𝑛

(
[∞− 0] −

[
exp

(
− 𝑟

2

2

)]∞
0

)
⋅ℙ

(
𝑈𝑖 >

1
2
√
𝑛
,∀𝑖 ∈ �𝑛�

)
𝐶𝑛>0
𝑛≥3
𝑐>0
= ∞.

Artificial Intelligence 347 (2025) 104362

36

M. Mussi, S. Drago, M. Restelli et al.

The inequality in Equation (168) follows from the fact that the event inside the indicator function happens with a probability ≤ 1.
Equation (169) is a rewriting of the previous line under the assumption that the indicator function evaluates to 1. We can rewrite
the expected value as an integral over the positive real numbers since, according to the indicator function, every random variable 𝑋𝑖
must be greater than ‖𝑋‖2

2
√
𝑛

, which is a positive quantity.

Term (A) is a substitution of
∏
𝑖∈�𝑛�𝑋𝑖 with 𝑟

2
√
𝑛

repeated 𝑛 times, which comes from the indicator function. 𝑟 is the integration
variable and represents the Euclidean norm of vector 𝑋.

Term (B) represents the probability density of the Euclidean norm of a Gaussian vector 𝑋 ∼ (0, 𝐈𝑛).
Finally, term (C) represents the probability of the indicator function evaluating to 1. Considering the vector 𝑌 whose elements

are 𝑌𝑖 =𝑋𝑖∕‖𝑋‖2, then ‖𝑌 ‖2 = 1. The probability that 𝑌𝑖 >
1

2
√
𝑛
,∀𝑖 ∈ �𝑛� can be thought of as the probability that the point defined

by 𝑌 in the 𝑛-dimensional space is located on the surface of the 𝑛-dimensional hyper-sphere of radius 1 in the region induced by the
condition 𝑌𝑖 >

1
2
√
𝑛
.

Equation (170) is an integration by parts of the two functions 𝑓 (𝑟) and 𝑔′(𝑟) identified in the line above.

Equation (171) holds under the assumption that 𝑛 ≥ 3 and 𝑐 > 0. First, the term:[
exp

(
𝑐

1
(2
√
𝑛)𝑛
𝑟𝑛

)
exp

(
− 𝑟

2

2

)]∞

0

𝑛≥3
𝑐>0
= ∞−0,

under such an assumption. Second, we can write:

exp

(
𝑐

1
(2
√
𝑛)𝑛
𝑟𝑛 − 𝑟

2

2

)
≥ exp

(
− 𝑟

2

2

)
⇒

∞

∫
0

exp

(
𝑐

1
(2
√
𝑛)𝑛
𝑟𝑛 − 𝑟

2

2

)
d𝑟 ≥

∞

∫
0

exp
(
− 𝑟

2

2

)
d𝑟.

The final result then holds under the further assumption that 𝐶𝑛 > 0. □

Lemma C.2 (Variance of the product of independent random variables). Let 𝑋1, 𝑋2, …𝑋𝑛 independent random variables. The variance of
their product is:

𝕍ar[𝑋1𝑋2⋯𝑋𝑛] =
∏
𝑖∈�𝑛�

(
𝕍ar[𝑋𝑖] + (𝔼[𝑋𝑖])2

)
−
∏
𝑖∈�𝑛�

(𝔼[𝑋𝑖])2.

Proof.

𝕍ar[𝑋1𝑋2⋯𝑋𝑛] = 𝔼[(𝑋1𝑋2⋯𝑋𝑛)2] − (𝔼[𝑋1𝑋2⋯𝑋𝑛])2

= 𝔼[𝑋2
1𝑋

2
2 ⋯𝑋

2
𝑛] − (𝔼[𝑋1])2(𝔼[𝑋2])2⋯ (𝔼[𝑋𝑛])2

= 𝔼[𝑋2
1]𝔼[𝑋

2
2]⋯𝔼[𝑋2

𝑛] − (𝔼[𝑋1])2(𝔼[𝑋2])2⋯ (𝔼[𝑋𝑛])2

=
∏
𝑖∈�𝑛�

(
𝕍ar[𝑋𝑖] + (𝔼[𝑋𝑖])2

)
−
∏
𝑖∈�𝑛�

(𝔼[𝑋𝑖])2. □

Lemma C.3. Let 𝑋1, 𝑋2, … ,𝑋𝑛 independent subgaussian random variables with expected value 𝜇𝑖 ∈ [0,1] and subgaussianity parameter
𝜎𝑖 ∈ [0,+∞). The variance of the product 𝑋1𝑋2⋯𝑋𝑛 is bounded by:∏

𝑖∈�𝑑�

𝜎2𝑖 ≤ 𝕍ar[𝑋1𝑋2⋯𝑋𝑛] ≤
∏
𝑖∈�𝑛�

(
1 + 𝜎2𝑖

)
− 1.

Proof. We want to find the worst combination of 𝜇𝑖, 𝑖 ∈ �𝑛�, i.e., the combination of expected values which maximizes the variance
of the product of such random variables. To do so, we can consider a single 𝑖 ∈ �𝑛�, and look at the behavior of the first derivative
when we change 𝜇𝑖 ∈ [0,1]. We recall from Lemma C.2 that:

𝕍ar[𝑋1𝑋2⋯𝑋𝑛] =
∏
𝑖∈�𝑛�

(
𝕍ar[𝑋𝑖] + (𝔼[𝑋𝑖])2

)
−
∏
𝑖∈�𝑛�

(𝔼[𝑋𝑖])2

=
∏
𝑖∈�𝑛�

(
𝜎2𝑖 + 𝜇

2
𝑖

)
−
∏
𝑖∈�𝑛�

𝜇2𝑖

=
(
𝜎2
𝑖
+ 𝜇2

𝑖

) ∏
𝑖∈�𝑛�⧵{𝑖}

(
𝜎2𝑖 + 𝜇

2
𝑖

)
− 𝜇2

𝑖

∏
𝑖∈�𝑛�⧵{𝑖}

𝜇2𝑖 , (172)

= 𝜇2
𝑖

∏
𝑖∈�𝑛�⧵{𝑖}

(
𝜎2𝑖 + 𝜇

2
𝑖

)
− 𝜇2

𝑖

∏
𝑖∈�𝑛�⧵{𝑖}

𝜇2𝑖 + 𝜎
2
𝑖

∏
𝑖∈�𝑛�⧵{𝑖}

(
𝜎2𝑖 + 𝜇

2
𝑖

)
(173)

Artificial Intelligence 347 (2025) 104362

37

M. Mussi, S. Drago, M. Restelli et al.

= 𝜇2
𝑖

⎛⎜⎜⎜⎜⎜⎜⎝
∏

𝑖∈�𝑛�⧵{𝑖}

(
𝜎2𝑖 + 𝜇

2
𝑖

)
⏟ ⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟ ⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

A

−
∏

𝑖∈�𝑛�⧵{𝑖}

𝜇2𝑖

⏟ ⏞⏞⏞⏟ ⏞⏞⏞⏟
B

⎞⎟⎟⎟⎟⎟⎟⎠
+ 𝜎2

𝑖

∏
𝑖∈�𝑛�⧵{𝑖}

(
𝜎2𝑖 + 𝜇

2
𝑖

)
⏟ ⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟ ⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

C

, (174)

where lines (172), (173) and (174) are no other than an algebraic step to make explicit in the product the dependence on 𝜇𝑖. Now
we want to look at the worst-case scenario for the variance, i.e., the value of 𝜇𝑖 that maximize it.

Recalling the constraints on 𝜇𝑖 which is assumed to be bounded in [0,1] and 𝜎2𝑖 that is defined over [0,+∞], it is trivial to see
that term A is predominant over term B and so the worst case for element 𝑖 is to consider 𝜇𝑖 = 1, no matter the other values of
𝜇𝑖, 𝑖 ∈ �𝑛� ⧵ {𝑖}. The term C is not relevant as 𝜇𝑖 does not appear. This reasoning applies for all the possible values of 𝑖 ∈ �𝑛�, and so
the worst case variance is when all the 𝜇𝑖 are equal to 1, for all the components 𝑖 ∈ �𝑛�. Given that, the variance of the product of
independent random variables with expected values in 𝜇𝑖 ∈ [0,1] and variance 𝜎2𝑖 can be bounded as:

𝕍ar[𝑋1𝑋2⋯𝑋𝑛] ≤
∏
𝑖∈�𝑛�

(
1 + 𝜎2𝑖

)
− 1.

A symmetric reasoning leads to the lower bound. This concludes the proof. □

Appendix D. Numerical validation

In this appendix, we provide numerical simulations to validate the proposed solutions. This validation has two main scopes. First,
in Appendix D.1, we aim to compare the two algorithms we propose for the regret minimization setting (i.e., F-UCB and F-Track)
to assert if our theoretical findings are coherent with what we observe in practice. Then, in Appendix D.2, we evaluate the same two
algorithms’ behavior in the case in which the noise affecting intermediate observations is partially correlated.

D.1. Comparison of F-UCB and F-Track

In this part, we compare F-UCB and F-Track in different scenarios. As discussed in Remark 4.1 and shown Fig. 2, the performances
of F-UCB decrease when the number 𝑑 of dimensions increases and when the suboptimality gaps are large. The goal of this part is
to (𝑖) verify once again this fact and (𝑖𝑖) observe if F-Track is able to mitigate such a phenomenon.

Setting. We consider the scenario in which the number of arms is constant across all dimensions, i.e., 𝑘𝑖 = 𝑘,∀𝑖 ∈ �𝑑�. Given our
goal to verify the algorithms’ behavior over the action vector dimensionality 𝑑 and the suboptimality gaps dimension, we fixed the
other parameters. We consider a scenario in which we have 𝑘 = 2 and observations affected Gaussian i.i.d. noise with 𝜎 = 0.5. We
evaluate the two algorithms for 𝑑 ∈ {2,5,10,20,30}. For what concerns the expected values, for all the dimensions, we enforce the
first arm to be the best one, with expected value 𝜇𝑖,1 = 𝜇∗𝑖 = 1,∀𝑖 ∈ �𝑑�. The suboptimal arms have all the same expected values
𝜇𝑖,2 = 1 − Δ𝑖,2,∀𝑖 ∈ �𝑑�. Such a value Δ𝑖,2 has been tested in the set Δ𝑖,2 ∈ {0.5,0.7,0.9}. We evaluate the performances in terms of
regret, averaged over 10 runs with horizons 𝑇 ∈ [104,105]. We remark that F-UCB is an anytime algorithm and can be run once to
obtain the entire regret curve. Instead, F-Track requires the knowledge of the horizon to compute the correct values of 𝑁0 and 𝜖𝑇 .
As such, we repeated the experiment for F-Track several times, each with a different time horizon up to the maximum 𝑇 .

Results. In Fig. 3, we present the cumulative regret for F-UCB and F-Track in the above-mentioned setting. First, we observe that
for small values of 𝑑 (i.e., 𝑑 ∈ {2,5}), F-UCB outperforms F-Track for all the values of Δ𝑖,2. This behavior is less evident when we
move to 𝑑 = 10, where the performances become comparable, with an advantage for F-UCB for smaller values of Δ𝑖,2, while for larger
value of the suboptimality gap, F-Track is better. The results turn in favor of F-Track when 𝑑 becomes larger (i.e., 𝑑 ∈ {20,30}),
and such an advantage further increases when Δ𝑖,2 is large. These findings are in line with the theoretical analysis we conducted,
which shows that (𝑖) for larger 𝑑 synchronization becomes fundamental, and (𝑖𝑖) for larger values of Δ𝑖,2 , F-UCB suffers higher regret.

D.2. Robustness to correlated noise

In this part, we compare F-UCB and F-Track when there is a correlation between the noises affecting the different dimensions.
As discussed in Remark 3.1, in our setting, we require that the observations must be non-correlated. Otherwise, the problem cannot
be factored properly given that, in general, if there is a correlation between the noises, we have that:

𝔼

[∏
𝑖∈�𝑑�

𝑥𝑖(𝑡)

]
≠ ∏
𝑖∈�𝑑�

𝔼
[
𝑥𝑖(𝑡)

]
. (175)

Setting. We consider the scenario in which the number of arms is constant across all dimensions, i.e., 𝑘𝑖 = 𝑘,∀𝑖 ∈ �𝑑�. We consider
𝑘 = 2 and 𝑑 = 10. For what concerns the expected values, for all the dimensions, we enforce the first arm to be the best one,
with expected value 𝜇𝑖,1 = 𝜇∗𝑖 = 1,∀𝑖 ∈ �𝑑�. The suboptimal arms have all the same expected values 𝜇𝑖,2 = 0.5,∀𝑖 ∈ �𝑑�. In order

Artificial Intelligence 347 (2025) 104362

38

M. Mussi, S. Drago, M. Restelli et al.

Fig. 3. Cumulative regret of F-UCB and F-Track considering 𝑘= 2, 𝜎 = 0.5, 𝑑 ∈ {2,5,10,20,30}, and Δ𝑖,2 ∈ {0.5,0.7,0.9}, ∀𝑖∈ �𝑑� (10 runs, mean ± 2std).

Artificial Intelligence 347 (2025) 104362

39

M. Mussi, S. Drago, M. Restelli et al.

Fig. 4. Monte Carlo estimates of the expected values for the tested values of the correlation parameter 𝛼 ∈ {0,0.2,0.4,0.6,0.8,1} (106 Monte Carlo simulations).

Fig. 5. Cumulative regret of F-UCB and F-Track for 𝑘= 2, 𝜎 = 0.5, 𝑑 = 5, Δ𝑖,2 = 0.5,∀𝑖 ∈ �𝑑�, and correlation 𝛼 ∈ {0,0.2,0.4,0.6,0.8,1} (10 runs, mean ± 2std).

to evaluate the behavior of the algorithms in the presence of correlation in the noise of intermediate observations, we introduce a
term 𝛼 ∈ [0,1] to control the interdependence of the intermediate observations. The additive noise applied to the observations 𝑥𝑖(𝑡)
is defined as 𝛼 𝜂(𝑡) + (1 − 𝛼)𝜖𝑖(𝑡), where 𝜂(𝑡), 𝜖𝑖(𝑡) ∼ (0, 𝜎2). The noise term 𝜂(𝑡) is applied to all the dimensions, whereas the 𝜖𝑖(𝑡)
terms are individual and applied to the single dimensions 𝑖 ∈ �𝑑�. Given this formulation, if 𝛼 = 0 the intermediate observations
are independent, while if 𝛼 = 1, the intermediate observations are fully correlated. For values of 𝛼 ∈ (0,1), the noise term in the
intermediate observations will comprise a correlated term and an independent term. We consider the case in which the Gaussian
noise with 𝜎 = 0.5 (for both the independent and correlated components) affects only action components 𝑎𝑖 = 2 (i.e., those with
expected value 𝜇𝑖,2 = 0.5) for 𝑖 ∈ �𝑑�. We consider values of 𝛼 ∈ {0,0.2,0.4,0.6,0.8,1}. We evaluate the performances in terms of
cumulative regret averaged over 10 runs with target time horizons 𝑇 ∈ [104,105].

Results. Before commenting on the results, we observe that the presence of correlated noise over action components 𝑎𝑖 = 2 has the
effect of changing the optimal vector action depending on the value of 𝛼. In Fig. 4, we show the value of the expected reward of the
action vectors (1,… ,1) and (2,… ,2) estimated using 106 Monte Carlo simulations for the values of 𝛼 under analysis. We consider
just the two action vectors (1,… ,1) and (2,… ,2), given that all the other combinations of action components will give intermediate
results (and are suboptimal). We first observe that, given that all the observations of the action vector (1,… ,1) are not influenced by
any noise, its expected reward is stable over 𝛼. On the other hand, for action vector (2,… ,2), affected by noise, we see how as the
correlation increases, the expected reward increases itself and overtakes the one of action vector (1,… ,1). Moving to the simulations,
Fig. 5 shows a comparison of the performances of F-UCB and F-Track when we vary correlation parameter 𝛼. First, we observe how
the two algorithms present a consistent behavior over the different values of 𝛼. They are able to achieve satisfactory performances

Artificial Intelligence 347 (2025) 104362

40

M. Mussi, S. Drago, M. Restelli et al.

(i.e., sublinear regret) up to 𝛼 = 0.6. Then, the regret degenerates to linear. This is consistent with what we observed in Fig. 4, as these
algorithms look at the expected values of the single action components, but in this case, the noise correlation altered the optimal
arm, which is no longer the one with the highest product of the expected observations.

Data availability

The code is available at: https://github.com/marcomussi/FRB.

References

[1] Y. Abbasi-Yadkori, D. Pál, C. Szepesvári, Improved algorithms for linear stochastic bandits, in: Advances in Neural Information Processing Systems (NeurIPS),
2011, pp. 2312--2320.

[2] R. Agrawal, The continuum-armed bandit problem, SIAM J. Control Optim. 33 (1995) 1926--1951.

[3] J. Audibert, S. Bubeck, R. Munos, Best arm identification in multi-armed bandits, in: Proceedings of the Conference on Learning Theory (COLT), Omnipress,
2010, pp. 41--53.

[4] P. Auer, N. Cesa-Bianchi, P. Fischer, Finite-time analysis of the multiarmed bandit problem, Mach. Learn. 47 (2002) 235--256.

[5] S. Boucheron, G. Lugosi, P. Massart, Concentration Inequalities - a Nonasymptotic Theory of Independence, Oxford University Press, 2013.

[6] J. Broder, P. Rusmevichientong, Dynamic pricing under a general parametric choice model, Oper. Res. 60 (2012) 965--980.

[7] S. Bubeck, Bandits games and clustering foundations, Ph.D. thesis, Université des Sciences et Technologie de Lille, 2010.

[8] S. Bubeck, N. Cesa-Bianchi, G. Lugosi, Bandits with heavy tail, IEEE Trans. Inf. Theory 59 (2013) 7711--7717.

[9] A. Carpentier, A. Locatelli, Tight (lower) bounds for the fixed budget best arm identification bandit problem, in: Proceedings of the Conference on Learning
Theory (COLT), 2016, pp. 590--604.

[10] N. Cesa-Bianchi, G. Lugosi, Combinatorial bandits, J. Comput. Syst. Sci. 78 (2012) 1404--1422.

[11] W. Chen, W. Hu, F. Li, J. Li, Y. Liu, P. Lu, Combinatorial multi-armed bandit with general reward functions, in: Advances in Neural Information Processing
Systems (NeurIPS), 2016, pp. 1651--1659.

[12] W. Chen, Y. Wang, Y. Yuan, Combinatorial multi-armed bandit: general framework and applications, in: Proceedings of the International Conference on Machine
Learning (ICML), JMLR.org, 2013, pp. 151--159.

[13] R. Combes, S. Magureanu, A. Proutière, Minimal exploration in structured stochastic bandits, in: Advances in Neural Information Processing Systems (NeurIPS),
2017, pp. 1763--1771.

[14] R. Combes, M.S. Talebi, A. Proutière, M. Lelarge, Combinatorial bandits revisited, in: Advances in Neural Information Processing Systems (NeurIPS), 2015,
pp. 2116--2124.

[15] V. Dani, T.P. Hayes, S.M. Kakade, Stochastic linear optimization under bandit feedback, in: Proceedings of the Conference on Learning Theory (COLT), 2008,
pp. 355--366.

[16] A.V. Den Boer, Dynamic pricing and learning: historical origins, current research, and new directions, Surv. Oper. Res. Manag. Sci. 20 (2015) 1--18.

[17] E. Esposito, S. Masoudian, H. Qiu, D. van der Hoeven, N. Cesa-Bianchi, Y. Seldin, Delayed bandits: when do intermediate observations help?, in: Proceedings of
the International Conference on Machine Learning (ICML), PMLR, 2023, pp. 9374--9395.

[18] J. Feldman, S. Muthukrishnan, M. Pal, C. Stein, Budget optimization in search-based advertising auctions, in: Proceedings of the ACM Conference on Electronic
Commerce (EC), 2007, pp. 40--49.

[19] A. Garivier, E. Kaufmann, Optimal best arm identification with fixed confidence, in: Proceedings of the Conference on Learning Theory (COLT), JMLR.org, 2016,
pp. 998--1027.

[20] G.H. Hardy, J.E. Littlewood, G. Pólya, Inequalities, Cambridge University Press, 1952.

[21] S. Katariya, B. Kveton, C. Szepesvári, C. Vernade, Z. Wen, Stochastic rank-1 bandits, in: Proceedings of the International Conference on Artificial Intelligence and
Statistics (AISTATS), PMLR, 2017, pp. 392--401.

[22] B. Kveton, Z. Wen, A. Ashkan, C. Szepesvari, Tight regret bounds for stochastic combinatorial semi-bandits, in: Proceedings of the International Conference on
Artificial Intelligence and Statistics (AISTATS), PMLR, 2015, pp. 535--543.

[23] T.L. Lai, H. Robbins, Asymptotically efficient adaptive allocation rules, Adv. Appl. Math. 6 (1985) 4--22.

[24] T. Lattimore, C. Szepesvari, The end of optimism? An asymptotic analysis of finite-armed linear bandits, in: Proceedings of the International Conference on
Artificial Intelligence and Statistics (AISTATS), PMLR, 2017, pp. 728--737.

[25] T. Lattimore, C. Szepesvári, Bandit Algorithms, Cambridge University Press, 2020.

[26] J. Luttinger, R. Friedberg, A new rearrangement inequality for multiple integrals, Arch. Ration. Mech. Anal. 61 (1976) 45--64.

[27] S. Magureanu, R. Combes, A. Proutière, Lipschitz bandits: regret lower bound and optimal algorithms, in: Proceedings of the Conference on Learning Theory
(COLT), JMLR, 2014, pp. 975--999.

[28] T.A. Mann, S. Gowal, A. György, H. Hu, R. Jiang, B. Lakshminarayanan, P. Srinivasan, Learning from delayed outcomes via proxies with applications to recom

mender systems, in: Proceedings of the International Conference on Machine Learning (ICML), PMLR, 2019, pp. 4324--4332.

[29] M. Mussi, S. Drago, M. Restelli, A.M. Metelli, Factored-reward bandits with intermediate observations, in: Proceedings of the International Conference on Machine
Learning (ICML), PMLR, 2024, pp. 36911--36952.

[30] M. Mussi, A.M. Metelli, M. Restelli, Dynamical linear bandits, in: Proceedings of the International Conference on Machine Learning (ICML), PMLR, 2023,
pp. 25563--25587.

[31] I. Pinelis, Product of three or more independent sub-gaussian variables, MathOverflow, 2021.

[32] S. Shahrampour, A. Rakhlin, A. Jadbabaie, Multi-armed bandits in multi-agent networks, in: International Conference on Acoustics, Speech and Signal Processing
(ICASSP), IEEE, 2017, pp. 2786--2790.

[33] P.M. Vaidya, Speeding-up linear programming using fast matrix multiplication, in: Annual Symposium on Foundations of Computer Science, IEEE Computer
Society, 1989, pp. 332--337.

[34] C. Vernade, A. György, T.A. Mann, Non-stationary delayed bandits with intermediate observations, in: Proceedings of the International Conference on Machine
Learning (ICML), PMLR, 2020, pp. 9722--9732.

[35] T. Verstraeten, E. Bargiacchi, P.J. Libin, J. Helsen, D.M. Roijers, A. Nowé, Multi-agent Thompson sampling for bandit applications with sparse neighbourhood
structures, Sci. Rep. 10 (2020) 6728.

[36] Z. Wang, C. Zhang, M.K. Singh, L.D. Riek, K. Chaudhuri, Multitask bandit learning through heterogeneous feedback aggregation, in: Proceedings of the Interna

tional Conference on Artificial Intelligence and Statistics (AISTATS), PMLR, 2021, pp. 1531--1539.

[37] J.Y. Yu, S. Mannor, Unimodal bandits, in: Proceedings of the International Conference on Machine Learning (ICML), Omnipress, 2011, pp. 41--48.

[38] J. Zimmert, Y. Seldin, Factored bandits, in: Advances in Neural Information Processing Systems (NeurIPS), 2018, pp. 2840--2849.

https://github.com/marcomussi/FRB
http://refhub.elsevier.com/S0004-3702(25)00081-5/bib42A0233BFE2725B7C0BE13EE9D46FE3As1
http://refhub.elsevier.com/S0004-3702(25)00081-5/bib42A0233BFE2725B7C0BE13EE9D46FE3As1
http://refhub.elsevier.com/S0004-3702(25)00081-5/bib7AF1F2ADFC8C1412BB18BBEF607C650Bs1
http://refhub.elsevier.com/S0004-3702(25)00081-5/bib1450117D7DAE358FBAF186F8F4410692s1
http://refhub.elsevier.com/S0004-3702(25)00081-5/bib1450117D7DAE358FBAF186F8F4410692s1
http://refhub.elsevier.com/S0004-3702(25)00081-5/bib06B1F380840C35B44B568031B9559063s1
http://refhub.elsevier.com/S0004-3702(25)00081-5/bib8AE8F1232E836A60318E51D0C3EEFF69s1
http://refhub.elsevier.com/S0004-3702(25)00081-5/bibF8D63CE980BCAC49715C2F1331A53314s1
http://refhub.elsevier.com/S0004-3702(25)00081-5/bibDFE4785DF12E50E5B3AB3717D4F91E35s1
http://refhub.elsevier.com/S0004-3702(25)00081-5/bib969A0C049FD52942404E159CEA56D9D7s1
http://refhub.elsevier.com/S0004-3702(25)00081-5/bib5ADEBD815EDAAB6E637C2CB474BED35Fs1
http://refhub.elsevier.com/S0004-3702(25)00081-5/bib5ADEBD815EDAAB6E637C2CB474BED35Fs1
http://refhub.elsevier.com/S0004-3702(25)00081-5/bib54BEF9E41C94A3659512420DE9DB5FE0s1
http://refhub.elsevier.com/S0004-3702(25)00081-5/bib58068D848C49817E1230FA61A7359B83s1
http://refhub.elsevier.com/S0004-3702(25)00081-5/bib58068D848C49817E1230FA61A7359B83s1
http://refhub.elsevier.com/S0004-3702(25)00081-5/bibED0E51448BE94BDB2B693424B329BD2Ds1
http://refhub.elsevier.com/S0004-3702(25)00081-5/bibED0E51448BE94BDB2B693424B329BD2Ds1
http://refhub.elsevier.com/S0004-3702(25)00081-5/bib1C4BC2F32B550F29DA70A65DA876F68As1
http://refhub.elsevier.com/S0004-3702(25)00081-5/bib1C4BC2F32B550F29DA70A65DA876F68As1
http://refhub.elsevier.com/S0004-3702(25)00081-5/bib5BA8057FED2A2466CB9378F64E1C6F3Cs1
http://refhub.elsevier.com/S0004-3702(25)00081-5/bib5BA8057FED2A2466CB9378F64E1C6F3Cs1
http://refhub.elsevier.com/S0004-3702(25)00081-5/bibB5149AF42C102980F7802C300D777272s1
http://refhub.elsevier.com/S0004-3702(25)00081-5/bibB5149AF42C102980F7802C300D777272s1
http://refhub.elsevier.com/S0004-3702(25)00081-5/bib59130B574A9310569B5B3B062914BFCCs1
http://refhub.elsevier.com/S0004-3702(25)00081-5/bib2CD680D938E588820850A50398C4677As1
http://refhub.elsevier.com/S0004-3702(25)00081-5/bib2CD680D938E588820850A50398C4677As1
http://refhub.elsevier.com/S0004-3702(25)00081-5/bibB5AFA0ED494F759FF18CD6888977B93Fs1
http://refhub.elsevier.com/S0004-3702(25)00081-5/bibB5AFA0ED494F759FF18CD6888977B93Fs1
http://refhub.elsevier.com/S0004-3702(25)00081-5/bib357B1A5B5F463671902A33001015BA12s1
http://refhub.elsevier.com/S0004-3702(25)00081-5/bib357B1A5B5F463671902A33001015BA12s1
http://refhub.elsevier.com/S0004-3702(25)00081-5/bibDA76C23940D4D5B1A7C67698610305B1s1
http://refhub.elsevier.com/S0004-3702(25)00081-5/bibB19A42BBD8D95342BC8BA66135C63711s1
http://refhub.elsevier.com/S0004-3702(25)00081-5/bibB19A42BBD8D95342BC8BA66135C63711s1
http://refhub.elsevier.com/S0004-3702(25)00081-5/bib2B902EA19AB3CDC9866EE002CE7E828Ds1
http://refhub.elsevier.com/S0004-3702(25)00081-5/bib2B902EA19AB3CDC9866EE002CE7E828Ds1
http://refhub.elsevier.com/S0004-3702(25)00081-5/bib5A3DBC96D8989E16C7BC0C14D347288Cs1
http://refhub.elsevier.com/S0004-3702(25)00081-5/bibA059E29763CBE6DD0EDA405C95AB020Es1
http://refhub.elsevier.com/S0004-3702(25)00081-5/bibA059E29763CBE6DD0EDA405C95AB020Es1
http://refhub.elsevier.com/S0004-3702(25)00081-5/bib0AFADF20E6D1125BA3B50B7DE3384940s1
http://refhub.elsevier.com/S0004-3702(25)00081-5/bib08485052B796D4B7AA2B1172878A5794s1
http://refhub.elsevier.com/S0004-3702(25)00081-5/bibC300C3E5E5FF80D36BF3F4BCEC0FC0E6s1
http://refhub.elsevier.com/S0004-3702(25)00081-5/bibC300C3E5E5FF80D36BF3F4BCEC0FC0E6s1
http://refhub.elsevier.com/S0004-3702(25)00081-5/bibD840508351D04F413849F2E23DB2257Ds1
http://refhub.elsevier.com/S0004-3702(25)00081-5/bibD840508351D04F413849F2E23DB2257Ds1
http://refhub.elsevier.com/S0004-3702(25)00081-5/bib9D14C55FAD7F7BF22EE85E262D255A15s1
http://refhub.elsevier.com/S0004-3702(25)00081-5/bib9D14C55FAD7F7BF22EE85E262D255A15s1
http://refhub.elsevier.com/S0004-3702(25)00081-5/bib745596F81A0CEAAA4013A57A9DE3EEF7s1
http://refhub.elsevier.com/S0004-3702(25)00081-5/bib745596F81A0CEAAA4013A57A9DE3EEF7s1
http://refhub.elsevier.com/S0004-3702(25)00081-5/bibC9B28FD4F4A87017074DB946FAD7A4D7s1
http://refhub.elsevier.com/S0004-3702(25)00081-5/bib9A4850E40725CA0268663D1744F408D3s1
http://refhub.elsevier.com/S0004-3702(25)00081-5/bib9A4850E40725CA0268663D1744F408D3s1
http://refhub.elsevier.com/S0004-3702(25)00081-5/bibD57BC0FC204F0B3D120726D51C5DA1CEs1
http://refhub.elsevier.com/S0004-3702(25)00081-5/bibD57BC0FC204F0B3D120726D51C5DA1CEs1
http://refhub.elsevier.com/S0004-3702(25)00081-5/bib99E44FEE46532529665044568D47C705s1
http://refhub.elsevier.com/S0004-3702(25)00081-5/bib99E44FEE46532529665044568D47C705s1
http://refhub.elsevier.com/S0004-3702(25)00081-5/bib177A505F0A67AA05FA7D4BB23EC6D10Es1
http://refhub.elsevier.com/S0004-3702(25)00081-5/bib177A505F0A67AA05FA7D4BB23EC6D10Es1
http://refhub.elsevier.com/S0004-3702(25)00081-5/bib8CAABB9E072F0F1E3DC66887F2F9A76Cs1
http://refhub.elsevier.com/S0004-3702(25)00081-5/bib8CAABB9E072F0F1E3DC66887F2F9A76Cs1
http://refhub.elsevier.com/S0004-3702(25)00081-5/bib10AD05B063FF9462D2930FAD1B2800C5s1
http://refhub.elsevier.com/S0004-3702(25)00081-5/bib4C9434A8E4A93B7AC3C3EA7CFCF61116s1

	Factored-reward bandits with intermediate observations: Regret minimization and best arm identification
	1 Introduction
	2 Factored reward bandits
	2.1 Learning problem

	3 Regret lower bounds
	3.1 Worst-case regret lower bound
	3.2 Instance-dependent regret lower bound

	4 A worst-case optimal regret minimization algorithm
	4.1 Worst-case regret analysis
	4.2 Instance-dependent regret analysis

	5 Optimal asymptotic instance-dependent regret minimization algorithm
	6 Best arm identification
	6.1 Error probability lower bound
	6.2 Factored successive rejects

	7 Related works
	8 Discussion and conclusions
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgements
	Appendix A Examples
	A.1 Formalization of the example of Section 1
	A.2 Additional example

	Appendix B Proofs and derivations
	B.1 Proofs of the theorems
	B.2 Technical lemmas

	Appendix C Additional theorems and lemmas
	Appendix D Numerical validation
	D.1 Comparison of F-UCB and F-Track
	D.2 Robustness to correlated noise

	Data availability
	References

