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Abstract
Autoregressive processes naturally arise in a
large variety of real-world scenarios, including
e.g., stock markets, sell forecasting, weather
prediction, advertising, and pricing. When
addressing a sequential decision-making problem
in such a context, the temporal dependence
between consecutive observations should be
properly accounted for converge to the optimal
decision policy. In this work, we propose a novel
online learning setting, named Autoregressive
Bandits (ARBs), in which the observed reward
follows an autoregressive process of order k,
whose parameters depend on the action the
agent chooses, within a finite set of n actions.
Then, we devise an optimistic regret minimiza-
tion algorithm AutoRegressive Upper
Confidence Bounds (AR-UCB) that suffers
regret of order Õ

(
(k+1)3/2

√
nT

(1−Γ)2

)
, being T the

optimization horizon and Γ < 1 an index of the
stability of the system. Finally, we present a
numerical validation in several synthetic and one
real-world setting, in comparison with general
and specific purpose bandit baselines showing the
advantages of the proposed approach.

1. Introduction
In a large variety of sequential decision-making problems, a
learner is required to choose an action that, when executed,
determines: (i) the immediate reward and (ii) the behavior of
an underlying process that will influence, in some unknown
manner, the next reward. This process, of arbitrary nature
in general, is influenced by the actions the agent performs
and generates a temporal dependence between the sequence
of observed rewards. A class of stochastic processes widely
employed to model the temporal dependencies in real-world
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phenomena is that of the autoregressive (AR, Hamilton,
2020) processes. In this paper, we model the reward of
a sequential decision-making problem as an AR process
where its parameters depend on the action selected by the
agent at every round. This scenario can be regarded as an
extension of the multi-armed bandit (MAB, Lattimore &
Szepesvári, 2020) problem, in which an AR process gov-
erns the temporal structure of the observed rewards that
is, through the action-dependent AR parameters, that are
unknown to the agent. It is worth mentioning that such
a scenario displays notable differences compared to more
traditional non-stationary MABs (Gur et al., 2014). Indeed,
in the presented scenario, we can exploit the knowledge that
the underlying process is AR and, more importantly, that
such a dynamic depends on the agent’s action.

Motivation Numerous real-world phenomena can be effec-
tively represented as a sequential decision-making process
under an AR model of the reward. Let us consider, for in-
stance, the optimal pricing problem. Our task consists in
deciding at which price to sell a given so as to maximize
the seller’s overall revenue. The pricing policy generates
two effects. The first one is immediate and driven by the
demand curve, which determines the probability of a sale
given a price and is represented by a non-increasing func-
tion of the price (Mussi et al., 2022b). The second effect,
instead, becomes apparent in the long term and consists
of customer loyalty, which is highly influenced by the se-
quence of prices the customer observes in the recent past.
As intuition suggests, customer loyalty is a desired achieve-
ment since a customer which buys a good at a convenient
price will be more prone to come back in the future, with a
possible increase in future revenue. An effective trade-off
between immediate sales and customer loyalty can dramati-
cally increase the overall revenue (Bowen & Chen, 2001).
In this scenario, the current revenue (our reward) displays
an unknown temporal structure, governed by both the imme-
diate price (our action) and the previous sales and revenues.
Thus, it can be effectively represented as an AR process
influenced by the sequence of prices. To the best of our
knowledge, no work in the dynamic pricing literature faces
in an online fashion the degree of loyalty of the customers.

Original Contribution In this work, we propose a novel
setting, named AutoRegressive Bandit (ARB), in which
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the reward follows an AR process, whose parameters de-
pending on the agent’s actions. In Section 2, we intro-
duce the setting and the assumptions. Then, we derive
the notion of optimal policy, showing that the best ac-
tion varies based on model parameters and previously ob-
served rewards. Then, in Section 3, we propose an op-
timistic algorithm, named AutoRegressive Upper
Confidence Bounds (AR-UCB), to learn an optimal
policy online, and, in Section 4, we present and discuss
its regret guarantees. In Section 6, we test our solution in
various synthetic environments to validate it in comparison
with several bandit baselines, and we analyze the robustness
of AR-UCB w.r.t. the misspecification of key parameters.

Notation Let a, b ∈ N with a ≤ b, we denote with Ja, bK :=
{a, . . . , b}, and with JbK := {1, . . . , b}. Let x,y ∈ Rn
be real-valued vectors, we denote with 〈x,y〉 = xTy =∑n
i=1 xiyi the inner product. For a positive semidefinite

matrix A ∈ Rn×n, we denote with ‖x‖2A = xTAx the
weighted 2-norm. A zero-mean random variable ξ is σ2-
subgaussian if E[eλξ] ≤ eλ

2σ2

2 , for every λ ∈ R.

2. Problem Formulation
In this section, we introduce the AutoRegressive Bandit
(ARB) setting, formalize the learning problem, the learner
environment interaction, assumptions, policies and defini-
tion of regret (Section 2.1). Then, we derive a closed-form
solution for the optimal policy of an ARB (Section 2.2).

2.1. Setting

We consider the sequential interaction between a learner and
an environment. At each round t ∈ N, the learner chooses
an action at ∈ A := JnK, among the n ∈ N available ones.
In the ARB setting, the reward evolves according to an
autoregressive process of order k (AR(k), Hamilton, 2020).
Thus, the learner observes a noisy reward xt of the form:

xt = γ0(at) +

k∑
i=1

γi(at)xt−i + ξt, (1)

where xt ∈ X ⊆ R is the reward space, γ0(at) ∈ R and
(γi(at))i∈JkK ∈ Rk are the unknown parameters depending
on chosen action at, and ξt is a zero-mean σ2-subgaussian
random noise, conditioned to the past. The reward evolution
can be expressed in an alternative form:

xt =〈γ(at), zt−1〉+ ξt, (2)

where zt−1 := (1, xt−1, . . . , xt−k)T ∈ Z := {1} × X k
is the context vector expressing past history, and γ(a) :=
(γ0(a), . . . , γk(a))T ∈ Rk+1 is the parameter vector, de-
fined for all the actions a ∈ A. It is worth noting that when
γi(a) = 0 for all i ∈ JkK and a ∈ A, the presented setting
reduces to a standard MAB (Auer et al., 2002a).

Assumptions We introduce the assumption that we employ
in the remainder of the paper and comment on its role.

Assumption 1. For every action a ∈ A, the parameters
(γi(a))i∈J0,kK fulfill the following conditions:

a. (Monotonicity) γi(a) ≥ 0 for every i ∈ J0, kK;
b. (Stability)

∑k
i=1 γi(a) ≤ Γ for some Γ < 1;

c. (Boundedness) γ0(a) ≤ m for some m < +∞.

Assumption 1.a enforces a monotonic evolution of the AR
process when a constant action is played. This condition
is typical of “accumulation” processes (Hamilton, 2020)
and will play a relevant role in the derivation of the opti-
mal policy (Section 2.2). Assumptions 1.b requires that
the sum of (γi(a))i∈JkK is bounded to a value Γ ∈ [0, 1)
and 1.c enforces the boundedness of γ0(a). These latter
assumptions guarantee that the AR process does not diverge
in expectation regardless of the sequence of actions played.

Policies and Regret The learner’s behavior is modeled by
a deterministic policy π = (πt)t∈N defined, for every round
t ∈ N as πt : Ht−1 → A, mapping the history of obser-
vations Ht−1 = (x0, a1, x1, . . . , at−1, xt−1) ∈ Ht−1 to an
action at = πt(Ht−1) ∈ AwhereHt−1 = X×(A×X )t−1

is the set of histories of length t − 1. The performance of
a policy π is evaluated in terms of the expected cumulative
reward over the horizon T ∈ N, defined as:

JT (π):=E

[
T∑
t=1

xt

]
with

{
xt=〈γ(at),zt−1〉+ξt
at=πt(Ht−1)

, (3)

where the expectation is taken w.r.t. the randomness of
the reward noise ξt. A policy π∗ is optimal if it maximizes
the expected average reward, i.e., π∗ ∈ arg maxπ JT (π),
whose performance is denoted as J∗T := JT (π∗). The goal
of the learner is to minimize the expected cumulative (policy)
regret by playing a policy π, competing against the optimal
policy π∗ over a learning horizon T ∈ N+:

R(π, T ) = J∗T − JT (π) = E

[
T∑
t=1

rt

]
, (4)

where rt := x∗t − xt is the instantaneous policy regret and
(x∗t )t∈JT K is the sequence of rewards observed by playing
the optimal policy π∗.

2.2. Optimal Policy

In this section, we derive a closed-form expression for the
optimal policy π∗ for the expected cumulative reward of
Equation (3), under Assumption 1.

Theorem 1 (Optimal Policy). Under Assumption 1.a, for
every round t ∈ N, the optimal policy π∗t (Ht−1) satisfies:

π∗t (Ht−1) ∈ arg max
a∈A

〈γ(a), zt−1〉. (5)

The result deserves some comments. First, we observe that
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the optimal action depends on the context vector zt−1 and,
thus, on the most recent k observed rewards xt−1, . . . , xt−k
only. Therefore, the optimal policy π∗ is a non-Markovian
policy with memory k or, in a different view, a Markovian
policy w.r.t. the state representation zt−1.1 Second, the opti-
mal action maximizes, at every round t ∈ N, the expected
instantaneous reward E[xt|Ht−1] = 〈γ(a), zt−1〉. This is
a consequence of the non-negativity of the parameters γi(a)
(Assumption 1.a), which enforces a monotonic evolution
of the AR process. This way, the action maximizing the
expected immediate reward (i.e., a myopic policy) is optimal
for the expected cumulative reward too. This would not hold
in the presence of negative parameters γi(a) that would re-
quire planning in the future (i.e., a far-sighted policy). The
proof can be found in Appendix A.

3. AutoRegressive Upper Confidence Bounds
In this section, we present AutoRegressive Upper
Confidence Bounds (AR-UCB), an optimistic regret
minimization algorithm for the AutoRegressive Bandit
setting whose pseudo-code is reported in Algorithm 1.
AR-UCB leverages the myopic optimal policy for ARBs
(Theorem 1) and implements an incremental regularized
least squares procedure to estimate the unknown parameters
γ(a), for every action a ∈ A independently. The algorithm
requires the knowledge of the order k of the reward AR
model, although this condition can be easily replaced with
the knowledge of an upper bound k > k on the true AR
order.2 An empirical validation of the misspecification of
such a parameter is postponed to Section 6.4.

AR-UCB starts by initializing for all the actions a ∈ A the
Gram matrix V0(a) = λIk+1, where λ > 0 is the Ridge
regularization parameter, the vectors b0(a) = γ̂0(a) =
0k+1, and the context vector z0 = (1, 0, . . . , 0)T (line 1).3

Then, for each round t ∈ JT K, AR-UCB computes the Upper
Confidence Bound (UCB) index (line 3) for every a ∈ A
and the optimistic action at:

at ∈ arg max
a∈A

UCBt(a) := 〈γ̂t−1(a), zt−1〉

+ βt−1(a) ‖zt−1(a)‖Vt−1(a)−1 ,
(6)

where γ̂t−1(a) is the most recent estimate of the parameter
vector γ(a), zt−1 = (1, xt−1, . . . , xt−k)T is the context
vector, and βt−1(a) ≥ 0 is an exploration coefficient that
will be defined later (Section 4). The index UCBt(a) is

1We can look at the ARB as a particular Markov decision
processes (Puterman, 2014) with zt−1 ∈ Z as state representation.

2Indeed, any AR process of order k can be regarded as an AR
process of order k > k setting to zero the additional parameters,
i.e., γi(a) = 0 for i ∈ Jk + 1, kK.

3We assume to know the initial context vector z0. If this is not
the case, we can play an arbitrary action for the first k rounds to
observe (xt)t∈JkK with just an additional constant loss term.

Algorithm 1: AR-UCB.
Input :Regularization parameter λ > 0, autoregressive

order k ∈ N, exploration coefficients (βt−1)t∈JT K
1 Initialize t← 1, V0(a) = λIk+1, b0(a) = 0k+1,

γ̂0(a) = 0k+1 for all a ∈ A, z0 = (1, 0, . . . , 0)T

2 for t ∈ JT K do
3 Compute at ∈ argmaxa∈A UCBt(a) :=

〈γ̂t−1(a), zt−1〉+ βt−1(a) ‖zt−1(a)‖Vt−1(a)−1

4 Play action at and observe xt = 〈γ(at), zt−1〉+ ξt
5 Update for all a ∈ A:

6
Vt(a) = Vt−1(a) + zt−1z

T
t−11{a=at}

bt(a) = bt−1(a) + zt−1xt1{a=at}

7 Compute γ̂t(a) = Vt(a)
−1bt(a)

8 Update zt = (1, xt, . . . , xt−k+1)
T

9 t← t+ 1
10 end

designed to be optimistic, i.e., 〈γt−1(a), zt−1〉 ≤ UCBt(a)
with high probability for all a ∈ A. Then, action at is
executed (line 4) and the new reward xt is observed. This
sample is employed to update the Gram matrix estimate
Vt(at), the vector bt(at), and the estimate γ̂t(at) of the
played action only (lines 6-7).

4. Regret Analysis
In this section, we present the analysis of the regret of
AR-UCB. We start providing a self-normalized concen-
tration inequality for estimating the AR parameters γ(a)
(Section 4.1). Then, we derive a decomposition of the regret
(Section 4.2) that is useful to complete the analysis and,
finally, we present the bound on the expected cumulative
(policy) regret (Section 4.3). The complete proofs of the
theorems stated in this section can be found in Appendix A.

4.1. Concentration Inequality for the Parameter
Vectors

We start by providing a concentration result for the estimates
γ̂t(a) of the true parameter vector γ(a), for every action
a ∈ A, as performed in Algorithm 1. At the end of each
round t ∈ N, where the chosen action is at ∈ A, we solve
the Ridge-regularized linear regression problem and update
the coefficient vector estimate γ̂t(at) associated to at:

γ̂t(at) = arg min
γ̃∈Rk+1

∑
l∈Ot(at)

(xl − 〈γ̃, zl−1〉)2 + λ ‖γ̃‖22

= Vt(at)
−1bt(at),

where Ot(a) is the set of rounds where action a has been
chosen, i.e., Ot(a) := {τ ∈ JtK : aτ = a}. The following
result shows how the estimate γ̂(a) concentrates around the
true parameters γ(a) over the rounds.
Lemma 2 (Self-Normalized Concentration). Let a ∈ A be
an action, let (γ̂t(a))t∈O∞(a) be the sequence of solutions
to the Ridge regression problems computed by Algorithm 1.
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Then, for every regularization parameter λ > 0, confidence
δ ∈ (0, 1), simultaneously for every round t ∈ N and action
a ∈ A, with probability at least 1− δ it holds that:

‖γ̂t(a)− γ(a)‖Vt(a) ≤
√
λ‖γ(a)‖2+

+ σ

√
2 log

(n
δ

)
+ log

(
detVt(a)

λk+1

)
.

From a technical perspective, Lemma 2 is obtained by an
adaptation of the self-normalized concentration inequality
of (Abbasi-Yadkori et al., 2011, Theorem 1). However,
contrary to LIN-UCB (Abbasi-Yadkori et al., 2011), the
exploration coefficients βt(a) are different for every action
a ∈ A. Lemma 2 allows properly defining the exploration
coefficients βt(a) employed in Algorithm 1, defined for
every action a ∈ A and round t ∈ J0, T − 1K:

βt(a) :=
√
λ(m2 + 1)

+ σ

√
2 log

(n
δ

)
+ log

(
detVt(a)

λk+1

)
.

This formula contains two terms. The first one is a bias term
that increases with m (Assumption 1.c) and with λ > 0,
the regularization parameter of the Ridge regression. The
second one is the concentration term and increases with the
subgaussian parameter σ of the noise, the number of actions
n, and the determinant of the design matrix Vt(a), but
decreases in λ. It is worth noting that βt(a) is obtained from
Lemma 2, by observing that, under Assumptions 1.b and 1.c,
we have ‖γ(a)‖2 ≤

√
m2 + Γ2 ≤

√
m2 + 1. Thus, the

exploration coefficient βt(a) ensures that, with probability
1 − δ, simultaneously for all actions a ∈ A and rounds
t ∈ J0, T − 1K, it holds that:

‖γ̂t(a)− γ(a)‖Vt(a) ≤ βt(a). (7)

We observe that thanks to the form of βt(a), AR-UCB, re-
markably, does not require the knowledge of the upper
bound Γ on the sum of the parameters (as in Assump-
tion 1.b), although Γ will appear in the analysis (Section 4.2).
Indeed, Γ is often unknown in practice and cannot be easily
estimated from the data. Furthermore, AR-UCB requires, in
order to compute the optimistic coefficient βt(a) the value
of m, i.e., an upper-bound to the value of the largest γ0(a)
over the actions a ∈ A (as in Assumption 1.c). An empiri-
cal analysis of the effect of the misspecification of such a
parameter is provided in Section 6.3.

4.2. Regret Decomposition

In this section, we present a decomposition of the regret
that will be employed in the final bound of Section 4.3.
The contents of this section are of independent interest
and applicable to any learner’s policy π, beyond AR-UCB.
From a technical perspective, the analysis is composed of
two steps: (i) we decompose the instantaneous (policy)

regret rt in terms of the instantaneous external regret ρt
(Lemma 3); (ii) we bound the cumulative expected (policy)
regret R(π, T ) = E[

∑T
t=1 rt] in terms of the expected cu-

mulative external regret %(π, T ) = E[
∑T
t=1 ρt] (Lemma 4).

For the sake of the analysis and w.l.o.g., we compare the
execution of the optimal policy π∗ and the execution of
the learner’s policy π over the same sequence of noise re-
alizations (ξt)t∈JT K. The definition of cumulative expected
(policy) regret R(π, T ) in Equation (4) compares the se-
quence of rewards (x∗t )t∈JT K when executing the optimal
policy π∗ and the sequence of rewards (xt)t∈JT K when exe-
cuting the learner’s policy π. However, in our ARB setting,
the observed reward xt depends on the past history Ht−1.
Thus, the instantaneous (policy) regret rt := x∗t − xt can be
decomposed in two terms: (i) the dissimilarity between the
past historyH∗t−1 when executing the optimal policy and the
learner’s observed history Ht−1; (ii) the instantaneous exter-
nal regret (Dekel et al., 2012) ρt := 〈γ(a∗t )− γ(at), zt−1〉
representing the loss of executing the learner action at in-
stead of the optimal one a∗t = π∗t (H∗t−1) assuming that such
actions are applied to the context vector zt−1 generated by
the execution of the learner’s policy. The following result
formalizes the regret decomposition.
Lemma 3 (Policy Regret Decomposition). Let (x∗t )t∈JT K be
the sequence of rewards by executing the optimal policy π∗

and let (xt)t∈JT K be the sequence of rewards by executing
the learner’s policy π. Then, for every t ∈ JT K it holds that:

rt = x∗t − xt

=

k∑
i=1

γi(a
∗
t )(x

∗
t−i − xt−i) + 〈γ(a∗t )− γ(at), zt−1〉

=

k∑
i=1

γi(a
∗
t )rt−i + ρt, (8)

where rt := x∗t − xt is the instantaneous policy regret,
ρt := 〈γ(a∗t )− γ(ât), zt−1〉 is the instantaneous external
regret, a∗t = π∗t (H∗t−1), and rt−i = 0 if i ≥ t.

The decomposition in Equation (8) is made of two terms.
The second one ρt is the instantaneous external regret whose
meaning is discussed above. The first one, instead, defines
a recurrence relation of order k on the instantaneous policy
regret rt. The following result shows that the contribution
of this term can be reduced to a constant term (depending
on Γ and k) that multiplies the cumulative external regret.
Lemma 4 (External-to-Policy Regret Bound). Let π be
the learner’s policy and T ∈ N be the horizon. Under
Assumptions 1.a and 1.b, it holds that:

R(π, T ) ≤
(

1 +
Γk

1− Γ

)
%(π, T ), (9)

where %(π, T ) := E
[∑T

t=1 ρt

]
is the cumulative expected

external regret.
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Thanks to Lemma 4, we are able to provide a bound on the
cumulative expected (policy) regret R(π, T ) achieved by
AR-UCB (or any algorithm playing in an ARB) by bounding
the cumulative expected external regret %(π, T ) only. The
order of the regret bound w.r.t. T is governed by the external
regret, while the effect of a “weaker” history (i.e., the sub-
optimal actions of the past) emerges as an instance-specific
constant. As expected, such a constant is 1 whenever k = 0
or Γ = 0, i.e., when the ARB reduces to a standard MAB.
In all other cases, the bigger the value of k or Γ, the more
visible the autoregressive effects are, and, consequently, the
more the sub-optimal choices of the past get amplified.

4.3. Regret Bound

This section is devoted to the derivation of the final regret
bound for AR-UCB. Before providing the bound, we intro-
duce a lemma ensuring that the norm of the context vectors
zt−1 is bound in high probability over the whole horizon T .
Lemma 5. Let (zt)t∈JT K be the sequence of context vec-
tors observed by executing the learner’s policy. If z0 =
(1, 0, . . . , 0)T , then, for every δ ∈ (0, 1), with probability at
least 1− δ, simultaneously for all t ∈ JT K, it holds that:

‖zt−1‖2 ≤

√
1 + k

(
m+ η

1− Γ

)2

,

where η =
√

2σ2 log(T/δ).

Finally, thanks to Lemma 4 and 5 we can prove that the
following theorem holds.
Theorem 6. Let δ = (2T )−1. Under Assumptions 1.a, 1.b,
and 1.c, AR-UCB suffers a cumulative expected (policy)
regret bounded by (highlighting the dependence on m, σ, k,
Γ, n, and T only):

R(AR-UCB, T ) ≤ Õ
(

(m2 + σ)(k + 1)3/2
√
nT

(1− Γ)2

)
.

Some observations are in order. First, when we set k = 0
and Γ = 0, i.e., we reduce the ARB to a standard MAB,
we obtain the tight regret rate Õ(

√
nT ) (in that case m, the

maximum expected reward, is usually set to 1). As intuition
suggests, the ARB learning problem becomes more chal-
lenging as the AR order k increases and when the bound
on the sum of the parameters Γ approaches one. This is
witnessed in Theorem 6 with the dependence on (k + 1)3/2

and (1− Γ)−1. The interplay between k and (1− Γ)−1 is
interesting showing that even if two instances have the same
sum of parameters (i.e., Γ), the one with less coefficients
is more easily learnable. Finally, suppose we run AR-UCB
with a larger AR order k > k. In such a case, the depen-
dence on (k + 1)3/2 will be replaced by (k + 1)(k + 1)1/2,
since the factor due to passing from external to policy regret
(Lemma 4) will always contain the true order k, while k
appears because of the estimation processes.

5. Related Works
In this section, we discuss and compare the works that share
similarities with the ARBs, focusing on MABs and online
learning in non-linear systems.

Multi-Armed Bandits In the more classical Multi-Armed
Bandit (MAB) setting, the learning problem does not in-
volve temporal dependencies between successive rewards.
The MAB setting has been studied under the assumptions of
both stochastic and adversarial noise models. In the former
case, UCB1 (Lai et al., 1985; Auer et al., 2002a) represents
the parent algorithm. Instead, when adversarial noise is in-
volved EXP3 (Auer et al., 1995; 2002b) is usually employed.
This algorithm has been extended by REXP3 (Besbes et al.,
2014) to handle with the non-stationary setting. Differently
from both the adversarial and non-stochastic setting, we
assume that the rewards are not preselected by an adversary
or nature but, instead, they change as an effect of the actions
played. Indeed, the underlying autoregressive process (af-
fected by a stochastic noise) is such that the current action
impacts the future rewards. Therefore, importing the adver-
sarial MAB terminology, the ARBs can be reduced to an
adversary setting with an adaptive (or non-oblivious) adver-
sary (Dekel et al., 2012). In particular, the O(

√
nT ) regret

guarantees of EXP3 are not achievable in the ARB setting
as EXP3 competes against the best constant policy while the
optimal policy for ARBs is not constant (Theorem 1). As we
shall see empirically in Section 6, a constant policy suffers
a linear regret. Nevertheless, by observing that the memory
of the system is k, one can import the approach of (Dekel
et al., 2012) for dealing with a finite-memory adaptive ad-
versary, leading to Õ((p + 1)(CT )1/(2−q)) policy regret,
where Õ(CT q) is the external regret of the original adver-
sarial algorithm and p is the memory of the adversary. This
implies that by employing EXP3, we can ensure a regret of
Õ
(
(k + 1)n1/3T 2/3

)
.

Moreover, our setting presents similarities with MABs with
delayed feedback (e.g., Pike-Burke et al., 2018). However,
in ARB the effect of the actions is propagated (not exactly
delayed). Markov (Ortner et al., 2012) and restless (Tekin
& Liu, 2012) bandits, instead, consider an underlying pro-
cesses that influence the rewards. However, these processes
are not supposed to be controlled by the action history. In
Chen et al. (2021), the authors study the problem of learning
and control in a setting that considers temporal structure
in the feedback, modeled as an AR(1) autoregressive pro-
cess. However, the model poses significant constraints (e.g.,
reflective boundaries), that our method does not require.

Online Learning in Non-Linear Systems The ARB set-
ting is a specific case of a non-linear dynamical system.
Although the literature related to this setting is wide, no
work faces all problems that the ARB setting presents, in-
cluding learning to control with regret guarantees. Mania
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et al. (2022) focus on learning the parameters of a particu-
lar class of non-linear systems. However, the approach is
limited to estimation and no control algorithm is proposed.
Similarly, Umlauft & Hirche (2017) deal with learning the
system parameters with stability guarantees without the
chance to control it. Several recent works (Kakade et al.,
2020; Lale et al., 2021) focus on the learning and control of
non-linear systems with regret guarantees. However, these
works make use of an oracle to solve a complex optimiza-
tion problem to perform optimistic planning (i.e., optimal
policy given an optimistic estimate of the system). This
problem in a non-linear setting, however, is proven to be
NP-hard (Sahni, 1974; Dani et al., 2008). Furthermore, the
class of non-linear systems considered in these works does
not include the ARB setting. Other works (e.g., Albalawi
et al., 2021) overcome the request for the oracle by search-
ing in the restricted space of constant policies, leading to the
best equilibrium. However, this solution can be suboptimal
in several cases, including ARBs (e.g., Section 6.2).

6. Experimental Validation
In this section, we first provide (Section 6.1) a numeri-
cal validation of AR-UCB in comparison with other bandit
baselines in synthetically-generated and real-world domains.
Then, we discuss (Section 6.2) the importance of exploit-
ing the noise in this setting, and, subsequently, we ana-
lyze the sensitivity of AR-UCB to the misspecification of
the two most important parameters, i.e., m (Section 6.3)
and k (Section 6.4). Finally, in Section 6.5, we conduct
validation in a setting generalized from real-world data.
The code to reproduce the experiments can be found at
github.com/gianmarcogenalti/autoregressive-bandits.

6.1. AR-UCB vs Bandit Baselines

Setting We evaluate AR-UCB in three scenarios that differ
in the properties of the autoregressive processes that gov-
ern the rewards. The competing algorithms are evaluated
in terms of cumulative regret w.r.t. to the setting-specific
clairvoyant. The three settings have their AR(k) process
order k ∈ {2, 4}, respectively, and m ∈ {1, 20, 920}. The
values of γ(a) have been sampled from uniform probabil-
ity distributions for each action a ∈ A and for each set-
ting. The environments are noisy with a standard deviation
σ ∈ {0.75, 1.5, 10}. We chose to set the hyper-parameters
of AR-UCB as follows: λ = 1, while m ∈ {10, 100, 1000},
that is equivalent to chose m of the same magnitude of the
true valuem, in a pessimistic fashion. Figure 1a summarizes
the details of the three environments (A, B, and C).

Baselines AR-UCB will compete with several bandit base-
lines. First, it is compared with UCB1 (Lai et al., 1985;
Auer et al., 2002a), a widely adopted solution for stochastic
MABs. Second, we consider EXP3, designed for adversar-

ial MABs (Auer et al., 1995; 2002b) and its extension to
finite-memory adaptive adversaries B-EXP3 (Dekel et al.,
2012). Lastly, we compare AR-UCB with AR2 (Chen et al.,
2021), an algorithm for managing AR(1) processes. The
hyper-parameters chosen for the baselines are the ones pro-
posed in the original papers.

Results Figure 1 shows the average cumulative regrets for
AR-UCB and the other bandit baselines. We immediately
observe that AR-UCB suffers the smallest cumulative regret
in the presented scenarios, always displaying a sublinear
behavior. Both EXP3 and B-EXP3 in two scenarios out
of three (B and C) achieve sublinear regret. On the other
hand, both UCB1 and AR2 are not able to achieve sublinear
regret in the scenarios presented in this experiment. This is
not surprising since we require them to learn more complex
processes than those they are designed for (i.e., models with
k = 0 and k = 1 for UCB1 and AR2, respectively).

6.2. On the Effect of Stochasticity

The optimal policy (Theorem 1) for the ARB setting, ex-
ploits the contribution of the noise to increase the collected
reward. In this section, we provide experimental evidence
of this phenomenon. We first introduce a notion of optimal
policy without noise, i.e., when ξt = 0 for every t ∈ JT K.
Then, we conduct an experiment to highlight the variations
in terms of the average reward for the two policies in envi-
ronments presenting different magnitudes of noise.

Optimal Policy without Noise The optimal policy, when
no noise is involved, is constant and corresponds, for suffi-
ciently large T , to playing the action a+ ∈ A that brings the
system to the most profitable steady state.4 Such an action
a+ is the one maximizing the steady-state reward, namely:

a+ ∈ arg max
a∈A

γ0(a)

1−
∑k
i=1 γi(a)

. (10)

It is worth noting the role of Assumption 1.b which guar-
antees the existence of the inverse (1−

∑k
i=1 γi(a))−1 ≥

(1− Γ)−1 for each action a ∈ A. The proof of the optimal
policy without noise can be found in Appendix B.

Setting To demonstrate the importance of noise in this set-
ting, we consider the two clairvoyant policies defined above.
We compare the optimal Stochastic policy (Equation 5)
and the optimal policy for the Deterministic setting
(Equation 10). The setting selected with k = 2 is deliber-
ately challenging and made of just two actions, a1 and a2,
that are very close in terms of expected steady-state reward:

γ(a1) = (1, ρ, 0)T γ(a2) = (1, 0, ρ− ε)T ,
where ρ = 0.5 and ε = 0.02 and several values
of zero-mean Gaussian noise are considered with σ ∈
{0, 0.1, 0.5, 1.0, 2.0}. The simulations last for T = 10000

4The request for large T is to make transient effects neglectable.

https://github.com/gianmarcogenalti/autoregressive-bandits
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Parameters
Setting k m σ

A 2 1 0.75
B 4 20 1.5
C 4 920 10

(a) Setting descriptions.
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(d) Setting C.

Figure 1: Settings description and cumulative regret of AR-UCB and multiple baselines (100 runs, mean ± std).

in order to make the transient effects neglectable.

Results Table 1 shows the performance of the two policies
in terms of average reward. First, with no noise (i.e., σ = 0),
the performances of the two policies are equivalent. How-
ever, when we consider a stochastic setting (i.e., σ > 0),
the Stochastic policy is able to exploit the beneficial
effect of the noise in order to increase the average reward.
Indeed, the optimal Deterministic policy retrieves al-
most the same reward for all the tested values of σ, while
Stochastic policy increases its average reward as much
as the system is noisy (since it is able to exploit it).

6.3. On the Knowledge of Parameter m

A fundamental parameter of AR-UCB is the value m =
maxa∈A γ0(a). In this experiment, we empirically show
that any choice in the same order of magnitude as the actual
value will let the algorithm achieve a small cumulative re-
gret, while severe underestimation prevents the algorithm
from achieving a sublinear cumulative regret.

Setting We run multiple simulations varying the value of
parameter m. We chose |A| = 7, k = 4 and γ0(a) = 500
for every action a ∈ A (i.e., m = 500). The autoregressive
parameters γi(a) have been sampled from a uniform proba-
bility distribution with support in [0, 1/4− ε], where ε > 0
is an arbitrarily small value. For this experiment, we test
values m ∈ {1, 10, 100, 500, 1000, 2500}.

Results In Figure 2, we report the cumulative regrets of
AR-UCB under different choices of m. First, it is worth
noting how choosing values of m ≥ m always results in
a sublinear cumulative regret, with a progressive increase
as m gets larger. This is highlighted when comparing, for
instance, the scenario where m = 2500 to the one where
m ∈ {500, 1000}. When m is underestimated, we empir-
ically observe two facts. When m is in the same order of
magnitude as the true value m (e.g., m = 100), we em-
pirically get a smaller sublinear cumulative regret (even
if no theoretical guarantees are present). Finally, a severe
underestimation of the parameter leads to a linear cumula-

tive regret, as clearly visible for m ∈ {1, 10}, although in
these settings the cumulative regret is lower w.r.t. the other
settings in the very first stages of the simulations (due to a
more limited exploration).

6.4. On the Knowledge of the Autoregressive order k

While the order k of the AR process is assumed to be known
to AR-UCB, the algorithm can also run under a misspecified
parameter k 6= k. In this section, we provide an empirical
analysis of the effect of misspecifying such a value.

Setting We consider a configuration with n = 7, k = 10,
γ0(a) = 1 and γi(a) for i ≥ 1 sampled from a uni-
form distribution having support in [0, 10−2 · 2i) for ev-
ery action a ∈ A. AR-UCB is run varying the parameter
k ∈ {1, 2, 4, 8, 10, 16}.

Results Figure 3 reports the average cumulative regret
for the considered values of k. On the one hand, an un-
derestimation of parameter k (i.e., k ∈ {1, 2, 4}) results in
an asymptotically linear cumulative regret. This effect is
justified since AR-UCB is not able to learn the actual AR
dynamics due to underfitting, i.e., the considered models are
too simple. On the other hand, AR-UCB achieves sublinear
cumulative regret when k ≥ k (i.e., k ∈ {10, 16}). In par-
ticular, when k > k, the linear models use more parameters
than required, resulting in slower learning. However, as the
samples increase, the algorithm learns that the exceeding co-
efficients are not significant, setting them to 0. A particular
case is when k is close to k but strictly lower(i.e., k = 8). In
this scenario, the cumulative regret degenerates to linear, but
if the coefficients γj(a) for j ∈ Jk+1, kK are not very large,
the performance of AR-UCB with misspecified k results, in
practice, close to the one obtained with the true k.

6.5. Validation using Real-World Data

We evaluate AR-UCB over the dynamic pricing task in e-
commerce. The problem of sequentially choosing the price
while dealing with the exploration-exploitation dilemma is
a well-known task in the literature (Kleinberg & Leighton,
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σ Stochastic Deterministic

0 1.9994 (0) 1.9994 (0)
0.1 2.0167 (2.03e-5) 1.9998 (2.04e-5)
0.5 2.2049 (1.02e-4) 2.0012 (1.02e-4)
1.0 2.4504 (2.04e-4) 2.0030 (2.04e-4)
2.0 2.9428 (4.09e-4) 2.0067 (4.08e-4)

Table 1: Performance of the Clairvoyant
Stochastic and Deterministic poli-
cies (100 runs, mean (std)).
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Figure 2: Effect of the choice of pa-
rameter m on the AR-UCB cumula-
tive regret (100 runs, mean ± std).
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Figure 3: Effect of the choice of pa-
rameter k on the AR-UCB cumulative
regret (100 runs, mean ± std).
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Figure 4: AR-UCB, UCB1, EXP3, B-EXP3 , and AR2 in the experiment from real-world data (100 runs, mean ± std).

2003; Mussi et al., 2022a). We show that AR-UCB is able
to find the pricing schedule that maximizes the total sales
while accounting for loyalty dynamics, using a simulation
environment generated from real-world data.

Setting Configuration We have the possibility to access
a dataset of transactions generated from a real e-commerce
website selling consumables.5 For each product, we have
weekly records of the number of units sold and the related
price. We focused on the top 4 best-selling products, esti-
mating the hidden autoregressive parameters governing the
sales through standard regression methods. In particular,
we discretize the prices into n = 8 price bands (i.e., our
actions) and we build the simulation environment consid-
ering a maximum delay of k = 8 weeks. The choice of
k = 8 (i.e., two months) is ruled by business logic that is
characteristic of the market in analysis. We test AR-UCB
and the other bandit baselines presented in Section 6.1.

Results Figure 4 shows that only AR-UCB achieves sub-
linear regret for all the four products. EXP3 and B-EXP3
achieve sublinear regret for 3 out to 4 products, although
their cumulative regret is always larger than that of AR-UCB,
making the latter the best performing algorithm over the
competitors. Lastly, both UCB1 and AR2 suffer linear regret

5We cannot share the original dataset due to NDA.

for all the products under analysis.

7. Discussion and Conclusions
In this work, we faced the online sequential decision-making
problem where an autoregressive temporal structure be-
tween the observed rewards is present. First, we formally
introduced the ARB setting and defined the notion of opti-
mal policy, demonstrating that, under certain circumstances,
a myopic policy is optimal also to optimize the total reward,
regardless of the target time horizon, and that the optimal
policy is not constant over time and depends on the most
recent observed rewards. Then, we proposed an optimistic
bandit algorithm, AR-UCB, to learn online the parameters
of the underlying process for each action. We demonstrated
that the presented algorithm enjoys sublinear regret, de-
pending on the AR order k and on an index of the speed
at which the system reaches a stable condition (Γ). Finally,
we provided an experimental campaign to validate the pro-
posed solution demonstrating the effectiveness of AR-UCB
w.r.t. several bandit baselines on both synthetic and real-
world scenarios, and we analyzed the behavior of AR-UCB
when key parameters are misspecified. Future directions
include the study of the complexity of learning in the ARB
setting with the goal of deriving regret lower bounds and the
extension of the presented setting to continuous actions.
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A. Omitted Proofs
Theorem 1 (Optimal Policy). Under Assumption 1.a, for every round t ∈ N, the optimal policy π∗t (Ht−1) satisfies:

π∗t (Ht−1) ∈ arg max
a∈A

〈γ(a), zt−1〉. (5)

Proof. We first prove an intermediate result auxiliary to get to the final statement. Let us denote with J∗T (z) the expected
cumulative reward when the initial context vector is z = (1, x0, x−1, . . . , x−k+1). Let us denote with � the element-wise
inequality. We show that for every T ∈ N, if z � z, then J∗T (z) ≥ J∗T (z).

We proceed by induction.

For T = 1, we have J∗1 (z) = maxa∈A〈γ(a), z〉 = 〈γ(a∗1), z〉, where a∗1 ∈ arg maxa∈A〈γ(a), z〉 and J∗1 (z) =
maxa∈A〈γ(a), z〉 = 〈γ(a∗1), z′〉, where a∗1 ∈ arg maxa∈A〈γ(a), z〉. Thus, we have:

J∗1 (z) = 〈γ(a∗1), z〉 ≥ 〈γ(a∗1), z〉
(a)
≥ 〈γ(a∗1), z〉 = J∗1 (z),

where inequality (a) follows from Assumption 1.a.

Suppose the statement hold for T − 1, we prove it for T > 1. To this end, we consider the transition operator P :
Z ×A× R→ Z , defined for every context vector zt = (1, xt−1, xt−2, . . . , xt−k) ∈ Z , action a ∈ A, and noise ξ ∈ R as
follows:

P (zt, a, ξ) = P




1

xt−1

xt−2

...
xt−k

 , a, ξ

 =


1
xt
xt−1

...
xt−k+1

 = zt+1, where xt = 〈γ(a), zt〉+ ξ.

Thus, we can look at the stochastic process as a Markov decision process (Puterman, 2014) with zt as state representation.
We immediately observe that if z � z, we have that P (z, a, ξ) � P (z, a, ξ), for every action a ∈ A and noise ξ ∈ R. By
applying the Bellman equation, we obtain:

J∗T (z) = max
a∈A

{
〈γ(a), z〉+ EξT

[
J∗T−1(P (z, a, ξT ))

]}
= 〈γ(a∗T ), z〉+ EξT

[
J∗T−1(P (z, a∗T , ξT ))

]
,

J∗T (z) = max
a∈A

{
〈γ(a), z〉+ EξT

[
J∗T−1(P (z, a, ξT ))

]}
= 〈γ(a∗T ), z〉+ EξT

[
J∗T−1(P (zs, a∗T , ξT ))

]
,

where the actions are defined as a∗T ∈ arg maxa∈A
{
〈γ(a), z〉+ EξT

[
J∗T−1(P (z, a, ξT ))

]}
and a∗T ∈

arg maxa∈A
{
〈γ(a), z〉+ EξT

[
J∗T−1(P (z, a, ξT ))

]}
. Thus, we have:

J∗T (z) = 〈γ(a∗T ), z〉+ EξT
[
J∗T−1(P (z, a∗T , ξT ))

]
≥ 〈γ(a∗T ), z〉+ EξT

[
J∗T−1(P (z, a∗T , ξT ))

]
(b)

≥ 〈γ(a∗T ), z〉+ EξT
[
J∗T−1(P (z, a∗T , ξT ))

]
= J∗T (z),

where (b) follows from Assumption 1.a when bounding 〈γ(a∗T ), z〉 ≥ 〈γ(a∗T ), z〉 and by observing that P (z, a∗T , ξ1) �
P (z, a∗T , ξT ) and, then, exploiting the inductive hypothesis.

We conclude that the optimal policy is the myopic one by observing that both 〈γ(a), z〉 and J∗T−1(P (z, a, ξ)) are simultane-
ously maximized by arg maxa∈A〈γ(a), z〉.

Lemma 2 (Self-Normalized Concentration). Let a ∈ A be an action, let (γ̂t(a))t∈O∞(a) be the sequence of solutions to the
Ridge regression problems computed by Algorithm 1. Then, for every regularization parameter λ > 0, confidence δ ∈ (0, 1),
simultaneously for every round t ∈ N and action a ∈ A, with probability at least 1− δ it holds that:

‖γ̂t(a)− γ(a)‖Vt(a) ≤
√
λ‖γ(a)‖2+

+ σ

√
2 log

(n
δ

)
+ log

(
detVt(a)

λk+1

)
.

Proof. We consider an action at a time; then, the final result is obtained with a union bound over A = JnK. Let a ∈ A. We
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first observe that the estimates of action a change only when a is pulled. Let l ∈ N be an index and let tl(a) ∈ N be the
round in which action a is pulled for the l-th time, i.e., {tl(a) : l ∈ N} = O∞(a). Thus, we have:

γtl(a) = V−1
tl(a)(a)b−1

tl(a)(a)

=

λIk+1 +

l∑
j=1

ztj(a)−1z
T
tj(a)−1

−1
l∑

j=1

ztj(a)−1xtj

=

λIk+1 +

l∑
j=1

ztj(a)−1z
T
tj(a)−1

−1
l∑

j=1

ztj(a)−1

(
〈γ(a), ztj(a)−1〉+ ξtj(a)

)
(a)
= γ(a)− λ

λIk+1 +

l∑
j=1

ztj(a)−1z
T
tj(a)−1

−1

γ(a) +

λIk+1 +

l∑
j=1

ztj(a)−1z
T
tj(a)−1

−1
l∑

j=1

ztj(a)−1ξtj(a)

= γ(a)− λV−1
tl(a)(a)γ(a) + V−1

tl(a)(a)

l∑
j=1

ztj(a)−1ξtj(a)︸ ︷︷ ︸
stl(a)

,

where the passage (a) derives from the observation that
∑l
j=1 ztj−1(〈γ(a), ztj−1〉) =

∑l
j=1 ztj−1z

T
tj−1γ(a). Thus, we

have: ∥∥γtl(a)(a)− γ(a)
∥∥
Vtl(a)

(a)
≤
√
λ‖γ(a)‖2 + ‖stl(a)‖V−1

tl(a)
(a).

Let us denote with Ftl(a) = σ(z0, a1, z1, a2, . . . , ztl(a)−1, atl(a)) be the filtration generated by all events realized at round
tl(a). Let us now consider the stochastic processes (ξtl(a))l∈N and (ztl(a)−1)l∈N. We observe that ξtl(a) isFtl(a)-measurable
and conditionally σ2-subgaussian and that ztl(a)−1 is Ftl(a)−1-measurable. By applying Theorem 1 of Abbasi-Yadkori et al.
(2011), we have that simultaneously for all l ∈ N, w.p. 1− δ:

‖stl(a)‖V−1
tl(a)

(a) ≤ σ
√

2 log
1

δ
+ log

detVtl(a)(a)

λk+1
.

Clearly, this hold for the rounds t ∈ N in which the action a is not pulled, since the corresponding estimated do not
change.

Lemma 3 (Policy Regret Decomposition). Let (x∗t )t∈JT K be the sequence of rewards by executing the optimal policy π∗

and let (xt)t∈JT K be the sequence of rewards by executing the learner’s policy π. Then, for every t ∈ JT K it holds that:

rt = x∗t − xt

=

k∑
i=1

γi(a
∗
t )(x

∗
t−i − xt−i) + 〈γ(a∗t )− γ(at), zt−1〉

=

k∑
i=1

γi(a
∗
t )rt−i + ρt, (8)

where rt := x∗t − xt is the instantaneous policy regret, ρt := 〈γ(a∗t )− γ(ât), zt−1〉 is the instantaneous external regret,
a∗t = π∗t (H∗t−1), and rt−i = 0 if i ≥ t.

Proof. Let t ∈ JT K and let us denote with z∗t−1 = (1, x∗t−1, . . . , x
∗
t−k)T the context vector associated with the execution of

the optimal policy and with zt−1 = (1, xt−1, . . . , xt−k)T the context vector associated with the execution of the learner’s
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policy. We have:

rt = x∗t − xt
= 〈γ(a∗t ), z

∗
t−1〉 − 〈γ(at), zt−1〉

= 〈γ(a∗t ), z
∗
t−1〉 − 〈γ(a∗t ), zt−1〉+ 〈γ(a∗t ), zt−1〉 − 〈γ(at), zt−1〉

= 〈γ(a∗t ), z
∗
t−1 − zt−1〉+ 〈γ(a∗t )− γ(at), zt−1〉

=

k∑
i=1

γi(a
∗
t ) (x∗t−i − xt−i)︸ ︷︷ ︸

rt−i

+ 〈γ(a∗t )− γ(at), zt−1〉︸ ︷︷ ︸
ρt

,

where in expanding the inner product we made the summation start from i = 1 as the two vectors z∗t−1 and zt−1 have the
same first component equal to 1.

Lemma 4 (External-to-Policy Regret Bound). Let π be the learner’s policy and T ∈ N be the horizon. Under Assump-
tions 1.a and 1.b, it holds that:

R(π, T ) ≤
(

1 +
Γk

1− Γ

)
%(π, T ), (9)

where %(π, T ) := E
[∑T

t=1 ρt

]
is the cumulative expected external regret.

Proof. We start from the decomposition of Lemma 3. To prove the result we employ the so called “superposition principle”
that allows us to decompose the linear recurrence as follows:

rt =

k∑
i=1

γi(a
∗
t )rt−i + ρt =

+∞∑
τ=0

ρτ r̃t,τ ,

where if τ > t we set r̃t,τ = 0 and if τ ≤ t we have that r̃t,τ is given by the recurrence:

r̃t,τ =

k∑
i=1

γi(a
∗
t )r̃t−i,τ + δt,τ where δt,τ :=

{
1 t = τ

0 t 6= τ
.

This way, we decompose the exogenous term ρτ as a linear combination of unitary impulses. Then by Assumption 1.a
and 1.b, recalling that r̃t,τ = 0 if τ > t and that r̃τ,τ = 1, we have that for every t > τ it holds that:

r̃t,τ ≤ Γ max
i∈JkK

r̃t−i,τ ≤ Γ2 max
i∈JkK

max
j∈JkK

r̃t−i−j,τ ≤ · · · ≤ Γd(t−τ)/ke,

since we will encounter the 1 = δτ,τ after d(t− τ)/ke steps of unfolding.

Now, we can manipulate this formula to have an expression for the full regret:
T∑
t=1

rt ≤
T∑
t=1

(
ρt +

t−1∑
τ=1

Γd(t−τ)/keρτ

)

=

T∑
τ=1

(
1 + ρτ

T∑
t=τ+1

Γd(t−τ)/ke

)
(a)

≤
T∑
τ=1

ρτ

(
1 +

+∞∑
s=1

Γds/ke

)
(b)
=

T∑
τ=1

ρτ

(
1 +

+∞∑
l=1

kΓl

)

=

(
1 +

Γk

1− Γ

) T∑
τ=1

ρτ ,

where (a) follows from bounding the summation with the series and changing the index s = t− τ and (b) is obtained by
observing that the exponent ds/ke changes only when s is divisible by k.
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Lemma 5. Let (zt)t∈JT K be the sequence of context vectors observed by executing the learner’s policy. If z0 = (1, 0, . . . , 0)T ,
then, for every δ ∈ (0, 1), with probability at least 1− δ, simultaneously for all t ∈ JT K, it holds that:

‖zt−1‖2 ≤

√
1 + k

(
m+ η

1− Γ

)2

,

where η =
√

2σ2 log(T/δ).

Proof. Let (ξt)t∈JT K be the sequence of noises. We consider the event E =
⋂T
t=1

{
|ξt| ≤ η

}
prescribing that all noises are

smaller than η in absolute value. By union bound, knowing that all the noises are independent σ2-subgaussian random
variables we, can bound the probability of event E :

P(E) = P

(
T⋂
t=1

{
|ξt| ≤ η

})
≥ 1− Te−

η2

2σ2 = 1− δ,

having set η =
√

2σ2 log(T/δ). Under event E and when z0 = (1, 0, . . . , 0)T , we prove by induction that all rewards xt are
bounded in absolute value by m+η

1−Γ , regardless the actions played. For T = 1, the statement is trivial since x1 = γ0(a1) + η1

and, thus, |x1| ≤ γ0(a1) + |η1| ≤ m+ η ≤ m+η
1−Γ . Suppose the statement hold for all s < t, we prove it for t. We have:

xt = γ0(at) +

k∑
i=1

γi(at)xt−i + ηt =⇒ |xt| ≤ γ0(at) +

k∑
i=1

γi(at)|xt−i|+ |ηt|

≤ m+ Γ
m+ Γ

1− Γ
+ η =

m+ η

1− Γ
,

where the first inequality uses Assumption 1.a, the second inequality follows from the inductive hypothesis and by
Assumptions 1.b and 1.c. Passing to the context vector, we have:

‖zt−1‖22 = 1 +

k∑
i=1

x2
t−i ≤ 1 + k

(
m+ η

1− Γ

)2

.

For deriving the regret bound, we make use of the following result, known as Elliptic Potential Lemma (Lattimore &
Szepesvári, 2020, Lemma 19.4).

Lemma 7 (Elliptic Potential Lemma). Let V0 ∈ Rd×d be a positive definite matrix and let a1, . . . ,an ∈ Rd be a sequence
of vectors such that ‖at‖2 ≤ L < +∞ for all t ∈ JnK. Let Vt = V0 +

∑t
s=1 asa

T
s , Then:

n∑
t=1

min{1, ‖as‖Vt−1
−1} ≤ 2d log

(
tr(V0) + nL2

ddet(V0)1/d

)
.

Theorem 6. Let δ = (2T )−1. Under Assumptions 1.a, 1.b, and 1.c, AR-UCB suffers a cumulative expected (policy) regret
bounded by (highlighting the dependence on m, σ, k, Γ, n, and T only):

R(AR-UCB, T ) ≤ Õ
(

(m2 + σ)(k + 1)3/2
√
nT

(1− Γ)2

)
.

Proof. We denote with (x∗t )t∈JT K the sequence of rewards generated by playing the optimal policy and with (xt)t∈JT K the
sequence of rewards generated by playing AR-UCB. Thanks to Lemma 4, we have to bound the external regret only. Let
δ ∈ (0, 1), and define, as in the main paper, for every round t ∈ JT K and action a ∈ A:

βt(a) :=
√
λ(m2 + 1) + σ

√
2 log

(n
δ

)
+ log

(
detVt(a)

λk+1

)
.

Let us define the confidence set Ct(a) := {γ ∈ Rk+1 : ‖γ − γ̂t−1(a)‖Vt−1(a) ≤ βt−1(a)} and the optimistic estimate of
the true parameter vector γ(a):

γ̃t(a) ∈ arg max
γ∈Ct(a)

〈γ, zt−1〉,
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By Theorem 2, we have that, for every action a ∈ A and round t ∈ JT K, the true parameter vector satisfies γ(a) ∈ Ct(a)
with probability at least 1− δ. Therefore, with the same probability, we have:

〈γ(a∗t )− γ(at), zt−1〉 = 〈γ(a∗t )− γ̃t(at), zt−1〉︸ ︷︷ ︸
≤0

+〈γ̃t(at)− γ(at), zt−1〉

≤ 〈γ̃t(at)− γ̂t−1(at), zt−1〉+ 〈γ̂t−1(at)− γ(at), zt−1〉
≤ 2βt−1(at)‖zt−1‖Vt−1(a)−1 ,

where the first inequality follows from the optimism and in the last passage we have used Cauchy-Schwartz’ inequality,
recalling that for every couple of vectors v,w it holds 〈v,w〉 ≤ ‖v‖Vt−1(a)‖w‖Vt−1(a)−1 , and having observed that
γ(at), γ̃t(at) ∈ Ct(at).

Furthermore, we observe that the external regret ρt ≤ ‖zt−1‖2(‖γ(a∗t )‖2 +‖γ(at)‖2) ≤ 2
√
m2 + 1‖zt−1‖2. By Lemma 5

with probability of at least 1− δ we have:

‖zt‖2 ≤

√
1 + k

(
m+ η

1− Γ

)2

=: L,

where η =
√

2σ2 log(T/δ) and, consequently:

ρt ≤ 2L
√
m2 + 1 =: C1.

At this point, we proceed as follows:

ρt ≤ 2 min{C1, βt−1(at)‖zt−1‖Vt−1(at)−1} ≤ 2 max{C1, βt−1(at)}min{1, ‖zt−1‖Vt−1(at)−1}.
Summing over t ∈ JT K, we obtain a bound on the cumulative external regret:

%(AR-UCB, T ) =

T∑
t=1

ρt =

T∑
t=1

1 · ρt

≤

√√√√T

T∑
t=1

ρ2
t

≤ 2 max{C1, βT−1}

√√√√T

T∑
t=1

min{1, ‖zt−1‖2Vt−1(at)−1}, where βT−1 := max
a∈A

βT−1(a),

where the first inequality follows from an application of Cauchy-Schwartz’ inequality and the last passage holds since the
sequence βt(at) is nondecreasing, and so we can bound each of them with their value at t = T . Now, we are finally able to
use the Elliptic Potential Lemma (Lemma 7):

T∑
t=1

min{1, ‖zt−1‖2Vt−1(at)−1} =
∑
a∈A

∑
l∈OT (a)

min{1, ‖zl−1‖2Vl−1(a)−1}

≤
∑
a∈A

2(k + 1) log

(
λ(k + 1) + |OT (a)|L2

λ(k + 1)

)
≤ 2n(k + 1) log

(
1 +

TL2

nλ(k + 1)

)
,

where the first inequality follows from an application of the elliptic potential lemma for each action a ∈ A observing that
V0 = λIk+1 and, consequently, tr(V0) = λ(k + 1) and det(V0)1/(k+1) = λ. The second inequality follows by observing
that

∑
a∈A |OT (a)| = T and since the log is a concave function, the worst allocation of pulls is the uniform one. Now that

we have bounded the inner summation, we can state that:

%(AR-UCB, T ) =

T∑
t=1

ρt ≤ 2 max{C1, βT−1}

√
2Tn(k + 1) log

(
1 +

TL2

nλ(k + 1)

)
.
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To conclude, we bound the term βT−1 as follows:

βT−1 =
√
λ(m2 + 1) + σmax

a∈A

√
2 log

(n
δ

)
+ log

(
detVT−1(a)

λk+1

)

≤
√
λ(m2 + 1) + σ

√
2 log

(n
δ

)
+ (k + 1) log

(
λ(k + 1) + TL2

λ(k + 1)

)
.

Therefore, by highlighting the dependences on m, k, σ, and Γ, we have:

βT−1 = Õ
(
m+ σ

√
k + 1

)
, C1 = Õ

(
m

(
1 +
√
k
m+ σ

1− Γ

))
.

These results hold with probability 1− 2δ. We set δ = (2T )−1. Putting all together, we obtain:

%(AR-UCB, T ) =

T∑
t=1

ρt ≤ Õ

(
(m2 + σ)

√
n(k + 1)T

1− Γ

)
,

and, applying the previous Lemma 4, this results in:

R(AR-UCB, T ) ≤ Õ
(

(m2 + σ)(k + 1)3/2
√
nT

(1− Γ)2

)
.

B. Optimal Policy without Noise
In the case of no noise, our system writes:

xt = γ0(at) +

k∑
i=1

γi(at)xt−i. (11)

In this case, the process evolution is deterministic. Therefore, even if it is still true that the optimal policy is given by
Theorem 1, it is possible to say that there is a constant policy that is asymptotically optimal, in the sense that its cumulative
regret is bounded by a constant. This policy is given by:

a∗ ∈ arg max
a∈A

γ0(at)

1−
∑k
i=1 γi(at)

. (12)

This result should not surprise. In fact, this action makes the process converge to the highest possible stationary reward,
which is of course arg maxa∈A

γ0(at)

1−
∑k
i=1 γi(at)

. Precisely, the following result holds.

Theorem 8. Let us consider the problem formulation of Equation (11). Define:

a∗ = arg max
a∈A

γ0(at)

1−
∑k
i=1 γi(at)

,

as in Equation (12). Then, there exist no policy π (even non-constant) such that:

lim sup
t→+∞

xπt − x∗t > 0

(where xπt denotes the sequence obtained with policy π, while x∗t is the one relative to a∗). Moreover, the cumulative regret
with respect to the actual optimal policy is bounded by:

γ0(a∗)
k

(1− Γ)2
.

Proof. If we play always a∗, we have:

lim sup
t→+∞

x∗t =
γ0(a∗)

1−
∑k
i=1 γi(a

∗)
,
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by imposing the condition of stationarity. For the rest of the proof, let us denote:

x∗ :=
γ0(a∗)

1−
∑k
i=1 γi(a

∗)
.

Now, we prove that, for any policy π, we cannot achieve an xt > x∗. By contradiction, if lim supt→∞ xπt − x∗t > 0, then
the set {t ∈ N : xt > x∗} is non-empty. Let t0 = min{t ∈ N : xt > x∗}. Then, by definition:

xt0 = γ0(at0) +

k∑
i=1

γi(at0)xt0−i.

Recalling that t0 is the first time in which we surpass x∗, we have:

x∗ < xt0 = γ0(at0) +

k∑
i=1

γi(at0)xt0−i ≤ γ0(at0) +

k∑
i=1

γi(at0)x∗.

This inequality entails that: (
1−

k∑
i=1

γi(at0)
)
x∗ < γ0(at0),

and, therefore:
γ0(a∗)

1−
∑k
i=1 γi(a

∗)
= x∗ <

γ0(at0)

1−
∑k
i=1 γi(at0)

,

which contradicts the definition of a∗.

For the second part, we start considering that the regret obtained by using constant action a∗ is bounded by:
+∞∑
t=1

x∗ − xt,

since x∗ is the maximum instantaneous reward that every policy can achieve. Now, note that γ0(a∗) > 0, otherwise
it could not be the optimal action. At this point, we have for 0 < t ≤ k that xt ≥ γ0(a∗), by simply using the fact
that all the coefficients of the autoregressive model are non-negative. From this fact we have for k < t ≤ 2k that
xt ≥ γ0(a∗)(1 +

∑k
i=1 γi(a

∗)); and generalizing:

∀j > 0 and jk − k < t ≤ jk : xt ≥ γ0(a∗)
( j∑
`=0

(Γ∗)`
)
, Γ∗ =

k∑
i=1

γi(a
∗).

Therefore, we have xt ≥ γ0(a∗) 1−Γbt/kc

1−Γ , which means:

Rt ≤
+∞∑
t=1

x∗ − xt

≤
+∞∑
t=1

x∗ − γ0(a∗)
1− Γbt/kc

1− Γ

= γ0(a∗)

+∞∑
t=1

1

1− Γ
− 1− Γbt/kc

1− Γ

= γ0(a∗)

+∞∑
t=1

Γbt/kc

1− Γ

= γ0(a∗)
k

(1− Γ)2
.


