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Abstract

Autoregressive processes naturally arise in a
large variety of real-world scenarios, includ-
ing stock markets, sales forecasting, weather
prediction, advertising, and pricing. When
facing a sequential decision-making problem
in such a context, the temporal dependence
between consecutive observations should be
properly accounted for guaranteeing conver-
gence to the optimal policy. In this work,
we propose a novel online learning setting,
namely, Autoregressive Bandits (ARBs), in
which the observed reward is governed by
an autoregressive process of order k, whose
parameters depend on the chosen action.
We show that, under mild assumptions on
the reward process, the optimal policy can
be conveniently computed. Then, we de-
vise a new optimistic regret minimization
algorithm, namely, AutoRegressive Upper
Confidence Bound (AR-UCB), that suffers
sublinear regret of order Õ

(
(k+1)3/2

√
nT

(1−Γ)2

)
,

where T is the optimization horizon, n is the
number of actions, and Γ < 1 is a stability
index of the process. Finally, we empirically
validate our algorithm, illustrating its advan-
tages w.r.t. bandit baselines and its robustness
to misspecification of key parameters.

1 INTRODUCTION

In a large variety of sequential decision-making prob-
lems, a learner is required to choose an action that,
when executed, determines: (i) the immediate reward
and (ii) the behavior of an underlying process that will
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influence, in some unknown manner, the future rewards.
This process is influenced by the course of actions the
agent performs and generates a temporal dependence
between the sequence of observed rewards. A class
of stochastic processes widely employed to model the
temporal dependencies in real-world phenomena are
the autoregressive (AR) processes (Hamilton, 2020).
In this paper, we model the reward of a sequential
decision-making problem as an AR process whose pa-
rameters depend on the action selected by the agent
at every round. This scenario can be represented as
a particular class of continuous reinforcement learn-
ing problems (Sutton and Barto, 2018) where an AR
process governs the temporal structure of the observed
rewards through the action-dependent AR parameters
that are unknown to the agent. It is worth mention-
ing that such a scenario displays notable differences
compared to more traditional non-stationary learning
problems. Indeed, in the scenario we address, the en-
vironment does not change, and the reward dynamics
depend on the agent’s course of actions only.

Original Contribution In this work we propose a
novel setting, named AutoRegressive Bandit (ARB),
in which the reward follows an AR process of order k
whose parameters depend on the agent’s actions. Im-
portantly, we show that the optimal policy, differently
from many bandit models, is stationary and closed-
loop, as the optimal action depends on the previously
observed rewards (Section 2). Then, we devise a new
optimistic algorithm, namely AutoRegressive Upper
Confidence Bound (AR-UCB), to learn an optimal pol-
icy in an online fashion (Section 3), and we show that
it suffers sublinear regret of order Õ

(
(k+1)3/2

√
nT

(1−Γ)2

)
,

where T is the optimization horizon, n is the num-
ber of actions, and Γ < 1 is a stability index of the
process (Section 4). Finally, we empirically evaluate
AR-UCB comparing its performance with several bandit
baselines with competitive results and illustrating its
notable robustness w.r.t. the misspecification of key
parameters (Section 5).
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2 PROBLEM FORMULATION

In this section, we introduce the ARB setting, formal-
ize the learning problem, how the learner interacts
with the environment, assumptions, policies and defini-
tion of regret (Section 2.1). Subsequently, we derive a
closed-form solution for the optimal policy of an ARB
(Section 2.2).

2.1 Setting

We study the sequential interaction between a learner
and an environment. At every round t ∈ N, the learner
chooses an action at ∈ A := JnK, among the n ∈
N available ones.1 In the ARB setting, the reward
evolves according to an autoregressive process of order
k (AR(k), Hamilton, 2020). Thus, the learner observes
a noisy reward xt of the form:

xt = γ0(at) +

k∑
i=1

γi(at)xt−i + ξt, (1)

where xt ∈ X (X ⊆ R is the reward space), γ0(at) ∈ R
and (γi(at))i∈JkK ∈ Rk are the unknown parameters
depending on chosen action at, and ξt is a zero-mean
σ2-subgaussian random noise, independent conditioned
to the past. The reward evolution can be expressed in
an alternative form as follows:2

xt =⟨γ(at), zt−1⟩+ ξt, (2)

where zt−1 := (1, xt−1, . . . , xt−k)
T ∈ Z := {1} × X k is

the vector of past rewards expressing past history, and
γ(a) := (γ0(a), . . . , γk(a))

T ∈ Rk+1 is the parameter
vector, defined for all the actions a ∈ A. It is worth
noting that when γi(a) = 0 for all i ∈ JkK and a ∈ A,
the ARB setting reduces to a standard MAB (Auer
et al., 2002a).

Assumptions We introduce the assumption that we
employ in the paper and comment on its role.

Assumption 1. The parameters (γi(a))i∈J0,kK fulfill
the following conditions:

1Along the paper, we use the following notation. Let
a, b ∈ N with a ≤ b, we denote with Ja, bK := {a, . . . , b},
and with JbK := {1, . . . , b}. Let x,y ∈ Rn be real-valued
vectors, we denote with ⟨x,y⟩ = xTy =

∑n
i=1 xiyi the inner

product. For a positive semidefinite matrix A ∈ Rn×n, we
denote with ∥x∥2A = xTAx the weighted 2-norm. A zero-

mean random variable ξ is σ2-subgaussian if E[eλξ] ≤ e
λ2σ2

2 ,
for every λ ∈ R.

2Although the linear structure might resemble the con-
textual linear bandits (Chu et al., 2011), the two settings
are non-comparable. Indeed, in our ARBs the vector zt−1

is not sampled independently at every round, but, instead,
follows a sequential process depending on the past, making
the decision problem way more challenging.

a. (Non-negative coefficients) γi(a) ≥ 0 for every
a ∈ A, i ∈ J0, kK;

b. (Stability) Γ := maxa∈A
∑k

i=1 γi(a) < 1;
c. (Boundedness) m := maxa∈A γ0(a) < +∞.

First, Assumption 1.a requires that the coefficients
of the AR process are non-negative. This scenario is
ubiquitous in real-world AR phenomena (e.g., pricing,
stock markets, digital advertising), where processes
violating such an assumption will generate unrealistic
sign alternation behaviours. An extensive discussion
and a graphical elaboration about this assumption
are provided in Appendix C. Assumption 1.b requires
that the sum of (γi(a))i∈JkK is limited to a value Γ ∈
[0, 1) and Assumption 1.c enforces the boundedness of
γ0(a). These latter assumptions guarantee that the AR
process does not diverge in expectation regardless of
the sequence of the actions played.

Policies and Regret The learner’s behavior is
modeled by a deterministic policy π = (πt)t∈N de-
fined, for every round t ∈ N as πt : Ht−1 →
A, mapping the history of observations Ht−1 =
(x0, a1, x1, . . . , at−1, xt−1) ∈ Ht−1 to an action at =
πt(Ht−1) ∈ A where Ht−1 = X × (A×X )t−1 is the set
of histories of length t− 1. The performance of a pol-
icy π is evaluated in terms of the expected cumulative
reward over the horizon T ∈ N, defined as:

JT (π) := E

[
T∑

t=1

xt

]
(3)

with:

xt = ⟨γ(at), zt−1⟩+ ξt,

at = πt(Ht−1),

where the expectation is taken w.r.t. the random-
ness of the reward noise ξt. A policy π∗ is opti-
mal if it maximizes the expected average reward, i.e.,
π∗ ∈ argmaxπ JT (π), whose performance is denoted
as J∗

T := JT (π
∗). The goal of the learner is to mini-

mize the expected cumulative (policy) regret by playing
a policy π, competing against the optimal policy π∗

over a learning horizon T ∈ N+:

R(π, T ) = J∗
T − JT (π) = E

[
T∑

t=1

rt

]
, (4)

where rt := x∗
t − xt is the instantaneous policy regret

and (x∗
t )t∈JT K is the sequence of rewards observed by

playing the optimal policy π∗.

2.2 Optimal Policy

In this section, we derive a closed-form expression for
the optimal policy π∗ for the expected cumulative
reward of Equation (3), under Assumption 1.a.
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Theorem 1 (Optimal Policy). Under Assumption 1.a,
for every round t ∈ N, the optimal policy π∗

t (Ht−1)
satisfies:

π∗
t (Ht−1) ∈ argmax

a∈A
⟨γ(a), zt−1⟩. (5)

This result deserves some comments. First, the optimal
action depends on the vector of past rewards zt−1 and,
thus, on the most recent k rewards xt−1, . . . , xt−k only.
Thus, the optimal policy π∗ is non-Markovian with
memory k or, equivalently, Markovian w.r.t. the state
representation zt−1.3 Second, the optimal action maxi-
mizes, at every round t ∈ N, the expected instantaneous
reward E[xt|Ht−1] = ⟨γ(a), zt−1⟩. This is a conse-
quence of the non-negativity of the parameters γi(a)
(Assumption 1.a), which enforces a meaningful evolu-
tion of the AR process, compatible with our real-world
motivating scenarios. This way, the action maximizing
the expected immediate reward (i.e., a myopic policy)
is optimal for the expected cumulative reward too. The
proof can be found in Appendix A.

3 AUTOREGRESSIVE UPPER
CONFIDENCE BOUND

In this section, we present AutoRegressive Upper
Confidence Bound (AR-UCB), an optimistic regret min-
imization algorithm for the ARB setting whose pseudo-
code is reported in Algorithm 1. AR-UCB leverages
the myopic optimal policy for ARBs (Theorem 1) and
implements an incremental regularized least squares
procedure to estimate the unknown parameters γ(a),
for every action a ∈ A independently. The algorithm
requires the knowledge of the order k of the AR process,
although this knowledge can be replaced with the one
of an upper bound k > k of the AR order.4

AR-UCB starts by initializing for all the actions a ∈ A
the Gram matrix V0(a) = λIk+1, where λ > 0
is the Ridge regularization parameter, the vectors
b0(a) = γ̂0(a) = 0k+1, and the observations vector
z0 = (1, 0, . . . , 0)T (line 1).5 Then, for each round
t ∈ JT K, AR-UCB computes the Upper Confidence Bound
(UCB) index (line 3) for every a ∈ A. Such an opti-
mistic index is composed of the inner product between

3We can look at the ARB as a particular Markov Deci-
sion Processes (MDPs, Puterman, 2014) with zt−1 ∈ Z as
state representation.

4Indeed, any AR process of order k can be regarded as an
AR process of order k > k setting γi(a) = 0 for i ∈ Jk+1, kK.
An empirical validation of the AR-UCB performances in the
case of a misspecified k is provided in Section 5.4.

5We assume to know the initial observations vector z0. If
this is not the case, we can play an arbitrary action for the
first k rounds to observe (xt)t∈JkK with just an additional
constant loss term.

Algorithm 1: AR-UCB.
Input :Regularization parameter λ > 0, autoregressive

order k, exploration coefficients (βt−1)t∈JT K
1 Initialize t← 1, V0(a) = λIk+1, b0(a) = 0k+1,

γ̂0(a) = 0k+1, ∀a ∈ A, z0 = (1, 0, . . . , 0)T

2 for t ∈ JT K do
3 Compute at ∈ argmaxa∈A UCBt(a) :=

⟨γ̂t−1(a), zt−1⟩+ βt−1(a) ∥zt−1∥Vt−1(a)−1

4 Play action at and observe xt = ⟨γ(at), zt−1⟩+ ξt
5 Update for all a ∈ A:

6
Vt(a) = Vt−1(a) + zt−1z

T
t−11{a=at}

bt(a) = bt−1(a) + zt−1xt1{a=at}
γ̂t(a) = Vt(a)

−1bt(a)

7 Update zt = (1, xt, . . . , xt−k+1)
T

8 t← t+ 1
9 end

the estimated value of γ(a) and the state representation
zt−1, plus the confidence interval βt−1(a). Formally:

at ∈ argmax
a∈A

UCBt(a) :=

⟨γ̂t−1(a), zt−1⟩+ βt−1(a) ∥zt−1(a)∥Vt−1(a)−1 , (6)

where γ̂t−1(a) is the most recent estimate of the pa-
rameter vector γ(a), zt−1 = (1, xt−1, . . . , xt−k)

T is
the observations vector, and βt−1(a) ≥ 0 is an explo-
ration coefficient that will be defined later (Section 4).
The index UCBt(a) is designed to be optimistic, i.e.,
⟨γ(a), zt−1⟩ ≤ UCBt(a) with high probability for all
a ∈ A. Then, action at is executed (line 4) and the
new reward xt is observed. This sample is employed to
update the Gram matrix estimate Vt(at), the vector
bt(at), and the estimate γ̂t(at) (line 6).

4 REGRET ANALYSIS

In this section, we present the analysis of the regret of
AR-UCB. We start providing a self-normalized concen-
tration inequality for estimating the AR parameters
γ(a) (Section 4.1). Then, we derive a decomposition
of the regret (Section 4.2) that is useful to complete
the analysis and, finally, we present the bound on the
expected cumulative (policy) regret (Section 4.3). The
complete proofs of the theorems stated in this section
can be found in Appendix A.

4.1 Concentration Inequality for the
Parameter Vectors

We start by providing a concentration result for the
estimates γ̂t(a) of the true parameter vector γ(a), for
every action a ∈ A, as performed in Algorithm 1. At
the end of each round t ∈ N, where the chosen action is
at ∈ A, we solve the Ridge-regularized linear regression
problem and update the coefficient vector estimate
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γ̂t(at) associated to at:

γ̂t(at) = argmin
γ̃∈Rk+1

∑
l∈Ot(at)

(xl − ⟨γ̃, zl−1⟩)2 + λ ∥γ̃∥22

= Vt(at)
−1bt(at),

where Ot(a) is the set of rounds where action a has been
chosen, i.e., Ot(a) := {τ ∈ JtK : aτ = a}. The following
result shows how the estimate γ̂(a) concentrates around
the true parameters γ(a) over the rounds.
Lemma 2 (Self-Normalized Concentration). Let a ∈
A be an action, let (γ̂t(a))t∈O∞(a) be the sequence of
solutions to the Ridge regression problems computed by
Algorithm 1. Then, for every regularization parameter
λ > 0, confidence δ ∈ (0, 1), simultaneously for every
round t ∈ N and action a ∈ A, with probability at least
1− δ it holds that:

∥γ̂t(a)− γ(a)∥Vt(a)
≤

√
λ∥γ(a)∥2 + σ

√
2 log

(n
δ

)
+ log

(
detVt(a)

λk+1

)
.

Lemma 2 resembles the self-normalized concentration
inequality of (Abbasi-Yadkori et al., 2011, Theorem 1).
However, contrary to LIN-UCB (Abbasi-Yadkori et al.,
2011), the exploration coefficients βt(a) are different
for every action a ∈ A. Lemma 2 allows properly
defining the exploration coefficients βt(a) employed in
Algorithm 1, defined for every action a ∈ A and round
t ∈ J0, T − 1K:

βt(a) :=
√
λ(m2 + 1)+

+ σ

√
2 log

(n
δ

)
+ log

(
detVt(a)

λk+1

)
. (7)

This formula contains two terms. The first one is a
bias term that increases with m (i.e., the maximum
value of the largest γ0(a) over the actions a ∈ A,
see Assumption 1.c) and with the regularization pa-
rameter of the Ridge regression λ > 0. The sec-
ond one is the concentration term and increases with
the subgaussian parameter σ of the noise, the num-
ber of actions n, and the determinant of the design
matrix Vt(a), but decreases in λ. It is worth not-
ing that βt(a) is obtained from Lemma 2, by observ-
ing that, under Assumptions 1.b and 1.c, we have
∥γ(a)∥2 ≤

√
m2 + Γ2 ≤

√
m2 + 1. Thus, the explo-

ration coefficient βt(a) ensures that, with probability
1− δ, the following inequality holds simultaneously for
all actions a ∈ A and rounds t ∈ J0, T − 1K:

∥γ̂t(a)− γ(a)∥Vt(a)
≤ βt(a). (8)

We observe that βt(a) (see Equation 7) and AR-UCB do
not require the knowledge of the maximum sum Γ of the

parameters γi(a) over the actions (see Assumption 1.b).
This is a desirable feature of our algorithm as Γ is often
unknown in practice and difficult to upper bound or
estimate. Nevertheless, Γ appears in the regret analysis
in Section 4.2. Differently, the value of m, needed to
compute the optimistic coefficient βt(a), can be easily
replaced with an upper bound m > m when unknown.6

4.2 Regret Decomposition

In this section, we present a novel decomposition of
the regret that will be employed in the final bound
of Section 4.3. The contents of this section are of
independent interest and applicable to any learner’s
policy π, beyond AR-UCB. From a technical perspec-
tive, the analysis is composed of two steps: (i) we de-
compose the instantaneous (policy) regret rt in terms
of the instantaneous external regret ρt (Lemma 3);
(ii) we bound the cumulative expected (policy) regret
R(π, T ) = E[

∑T
t=1 rt] in terms of the expected cumula-

tive external regret ϱ(π, T ) = E[
∑T

t=1 ρt] (Lemma 4).

We start with step (i), by recalling that the definition
of cumulative expected (policy) regret R(π, T ) in Equa-
tion (4) compares the sequence of rewards (x∗

t )t∈JT K
when executing the optimal policy π∗ with the sequence
of rewards (xt)t∈JT K when executing the learner’s pol-
icy π. However, in our ARB setting, the observed
reward xt depends on the past history Ht−1. Thus,
the instantaneous (policy) regret rt := x∗

t − xt can
be decomposed in two terms: (a) the dissimilarity
between the past history H∗

t−1 when executing the op-
timal policy and the learner’s observed history Ht−1;
(b) the instantaneous external regret (Dekel et al., 2012)
ρt := ⟨γ(a∗t )− γ(at), zt−1⟩ representing the loss of ex-
ecuting the learner action at instead of the optimal
one a∗t = π∗

t (H
∗
t−1) assuming that such actions are ap-

plied to the observations vector zt−1 generated by the
execution of the learner’s policy. The following result
formalizes the instantaneous regret decomposition.

Lemma 3 (Policy Regret Decomposition). Let
(x∗

t )t∈JT K be the sequence of rewards by executing the
optimal policy π∗ and let (xt)t∈JT K be the sequence of
rewards by executing the learner’s policy π. Then, for
every t ∈ JT K it holds that:

rt = x∗
t − xt

=

k∑
i=1

γi(a
∗
t )(x

∗
t−i − xt−i) + ⟨γ(a∗t )− γ(at), zt−1⟩

=

k∑
i=1

γi(a
∗
t )rt−i + ρt, (9)

6An empirical analysis of the effect of the misspecifica-
tion of such a parameter is provided in Section 5.3.
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where rt := x∗
t − xt is the instantaneous policy regret,

ρt := ⟨γ(a∗t )−γ(at), zt−1⟩ is the instantaneous external
regret, a∗t = π∗

t (H
∗
t−1), and rt−i = 0 if i ≥ t.

The decomposition in Equation (9) comprises two
terms. The second one ρt is the instantaneous ex-
ternal regret discussed above. The first one defines
a recurrence relation of order k on the instantaneous
policy regret rt. We now move to step (ii) with the
following result that shows that the contribution of the
recurrence can be reduced to a term depending on Γ
and k that multiplies the cumulative external regret.
Lemma 4 (External-to-Policy Regret Bound). Let π
be the learner’s policy and T ∈ N be the horizon. Under
Assumptions 1.a and 1.b, it holds that:

R(π, T ) = E

[
T∑

t=1

[
k∑

i=1

γi(a
∗
t )rt−i + ρt

]]

≤
(

Γk

1− Γ
+ 1

)
ϱ(π, T ), (10)

where ϱ(π, T ) := E
[∑T

t=1 ρt

]
is the cumulative ex-

pected external regret.

Lemma 4 provide us a bound on the cumulative ex-
pected (policy) regret R(π, T ) achieved by AR-UCB (or
any algorithm playing in an ARB) by bounding the
cumulative expected external regret ϱ(π, T ). The order
of the regret bound w.r.t. T is governed by the external
regret, while the effect of a weaker history (i.e., the
sub-optimal actions of the past) emerges as an instance-
specific constant. Such a constant is 1 whenever k = 0
or Γ = 0, i.e., when the ARB reduces to a standard
MAB. In all other cases, the bigger the value of k or Γ,
the more visible the AR effects are, and, consequently,
the more the sub-optimal choices of the past get am-
plified. Finally, we point out that the multiplicative
factor Γk

1−Γ + 1 to pass from external to policy regret is
tight since there exists a sequence of external regrets
in which the inequality of Lemma 4 holds with equality
(see Appendix A).

4.3 Regret Bound

In the following, we present a bound on the expected
policy regret bound for AR-UCB.
Theorem 5. Let δ = (2T )−1. Under Assumptions 1.a,
1.b, and 1.c, AR-UCB suffers a cumulative expected (pol-
icy) regret bounded by (highlighting the dependence on
m, σ, k, Γ, n, and T ):

E[R(AR-UCB, T )] ≤ Õ
(
(m+ σ)(k + 1)3/2

√
nT

(1− Γ)2

)
.

Some observations are in order. First, when we set
k = 0 and Γ = 0, i.e., we reduce the ARB to a stan-

dard MAB, we obtain a regret rate of Õ((m+σ)
√
nT ),

which is tight for standard MABs. The quantity m+σ
1−Γ

is the maximum value that rewards can achieve, as
proven in Lemma 6. As intuition suggests, the ARB
learning problem becomes more challenging as the AR
order k increases and when the bound on the sum of
the parameters Γ approaches one. This is witnessed
in Theorem 5 with the dependence of the regret on
(k + 1)3/2 and (1− Γ)−1. The interplay between k and
(1 − Γ)−1 shows that even if two instances have the
same sum of parameters (i.e., Γ), the one with fewer
coefficients (i.e., k) is more easily learnable. This is
explained by the fact that our algorithm learns the
individual parameters by means of a regression pro-
cedure learning to a

√
k + 1 in the regret. Finally,

suppose we run AR-UCB with a larger AR order k > k.
In such a case, the dependence on (k + 1)3/2 becomes
(k + 1)(k + 1)1/2, since the factor due to passing from
external to policy regret (Lemma 4) will always contain
the true k, while k appears because of the estimation
process. Similarly, if we execute AR-UCB with a value
m > m, the regret bound still holds by replacing m
with m.

Remark 1 (Comparison with MDPs). If we consider
our problem as an MDP, we are in an undiscounted in-
finite horizon scenario. This scenario is more challeng-
ing w.r.t. the episodic one. Regret minimization in infi-
nite horizon MDPs has been studied in very few cases:
Tabular, LQR, and Hölder continuous MDPs (Ortner
and Ryabko, 2012). The ARB setting is not tabular (as
it has continuous space) nor an LQR (as it has discrete
actions). Our setting can be viewed as an Hölder con-
tinuous MDP by making a one-hot encoding of the n
actions, but the regret bounds for this family of processes
are, in the best-case scenario, in the order of Õ

(
T 2/3

)
,

much worse than our bound of order Õ
(√

T
)
.

5 NUMERICAL VALIDATION

In this section, we first provide (Section 5.1) a numeri-
cal validation of AR-UCB compared with other bandit
baselines in synthetically-generated domains. Then, we
discuss (Section 5.2) the importance of exploiting the
noise in this setting, and, subsequently, we analyze the
sensitivity of AR-UCB to the misspecification of the two
most important parameters, i.e., m (Section 5.3) and
k (Section 5.4). Additional experimental results are
provided in Appendix D. The code to reproduce the
experiments can be found at https://github.com/
gianmarcogenalti/autoregressive-bandits.

Running Time The algorithms are implemented in
Python 3.11, and run over an Intel Core i7− 8750H @
2.20 GHz with 16 GB DDR4 RAM. All the presented
experiments took ≈ 10 minutes for a complete run.

https://github.com/gianmarcogenalti/autoregressive-bandits
https://github.com/gianmarcogenalti/autoregressive-bandits
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Parameters
Setting k n m σ

A 2 2 1 0.75
B 4 7 20 1.5
C 4 7 920 10

Table 1: Settings description.

5.1 AR-UCB vs Bandit Baselines

Setting We evaluate AR-UCB in three scenarios that
differ in the properties of the autoregressive processes
that govern the rewards. The competing algorithms
are evaluated in terms of cumulative regret w.r.t. the
setting-specific clairvoyant. The three settings have
their AR(k) process order k ∈ {2, 4}, number of ac-
tions n ∈ {2, 7}, and scale m ∈ {1, 20, 920}. The
values of γ(a) have been sampled from uniform prob-
ability distributions for each action a ∈ A and for
each setting. The environments are noisy with a stan-
dard deviation σ ∈ {0.75, 1.5, 10}. We chose to set
the hyper-parameters of AR-UCB as follows: λ = 1,
while m ∈ {10, 100, 1000}, that is equivalent to chose
m of the same magnitude of the true value m, in a
pessimistic fashion. Table 1 summarizes the details of
the three environments.

Baselines AR-UCB will compete with several ban-
dit baselines. First, it is compared with UCB1 (Auer
et al., 2002a), a widely adopted solution for stochas-
tic MABs. Second, we consider EXP3, designed for
adversarial MABs (Auer et al., 1995, 2002b) and its ex-
tension to finite-memory adaptive adversaries B-EXP3
(Dekel et al., 2012). Lastly, we compare AR-UCB with
AR2 (Chen et al., 2023), an algorithm for managing
AR(1) processes. The hyper-parameters chosen for the
baselines are the ones proposed in the original papers.

Results Figure 1 shows the average cumulative regrets
for AR-UCB and the other bandit baselines. We observe
that AR-UCB suffers the smallest cumulative regret in
these scenarios, always displaying a sublinear behavior.
Both EXP3 and B-EXP3 in two scenarios out of three
(B and C) achieve sublinear regret. On the other hand,
both UCB1 and AR2 are not able to achieve sublinear
regret in the presented scenarios. This is not surprising
since we require them to learn more complex processes
than those they are designed for (i.e., models with
k = 0 and k = 1 for UCB1 and AR2, respectively).

5.2 On the Effect of Stochasticity

The optimal policy (Theorem 1) for the ARB setting
exploits the contribution of the noise to increase the
collected reward. In this section, we provide experimen-

σ Stochastic Deterministic

0 19994 (0) 19994 (0)
0.1 20167 (0.20) 19998 (2.04)
0.5 22049 (1.02) 20012 (1.02)
1.0 24504 (2.04) 20030 (2.04)
2.0 29428 (4.09) 20067 (4.08)

Table 2: Cumulative reward of the Stochastic and
Deterministic clairvoyants (100 runs, mean (std)).

tal evidence of this phenomenon. We first introduce a
notion of optimal policy without noise. Then, we con-
duct an experiment to highlight the variations between
the two policies in environments presenting different
noise magnitudes.

Optimal Policy without Noise The optimal policy,
when no noise is involved, is constant and corresponds,
for sufficiently large T , to playing the action a+ ∈ A
that brings the system to the most profitable steady
state.7 Such an action a+ is the one maximizing the
steady-state reward, namely:

a+ ∈ argmax
a∈A

γ0(a)

1−
∑k

i=1 γi(a)
. (11)

It is worth noting the role of Assumption 1.b
which guarantees the existence of the inverse (1 −∑k

i=1 γi(a))
−1 ≥ (1− Γ)−1 for each action a ∈ A. The

proof can be found in Appendix B.

Setting To demonstrate the importance of the noise
in this setting, we consider the two clairvoyant policies
defined above. We compare the optimal Stochastic
policy (Equation 5) and the optimal policy for the
Deterministic setting (Equation 11). The setting
selected is challenging and made of k = 2 actions,
a1 and a2, that are very close in terms of expected
steady-state reward:

γ(a1) = (1, ρ, 0)T γ(a2) = (1, 0, ρ− ϵ)T ,

where ρ = 0.5, ϵ = 0.02 and the noise is Gaussian with
σ ∈ {0, 0.1, 0.5, 1.0, 2.0}.

Results Table 2 shows the performance of the two
policies in terms of cumulative reward. First, with no
noise (i.e., σ = 0), the performances of the two policies
are equivalent. However, when we consider a stochastic
setting (i.e., σ > 0), the Stochastic policy can exploit
the beneficial effect of the noise in order to increase the
average reward. Indeed, the optimal Deterministic
policy retrieves almost the same reward for all the
tested values of σ, while Stochastic policy increases

7The request for large T is to make transient effects
neglectable.
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Figure 1: Settings and cumulative regret of AR-UCB and multiple baselines (100 runs, mean ± std).
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Figure 2: Effect of the choice of parameter m on the
AR-UCB cumulative regret (100 runs, mean ± std).

its average reward as much as the system is noisy (since
it can exploit it).

5.3 On the Knowledge of Parameter m

A fundamental parameter of AR-UCB is the value m =
maxa∈A γ0(a). In this part, we empirically show that
any choice in the same order of magnitude as the actual
value will let the algorithm achieve a sublinear regret,
while severe underestimation prevents the algorithm
from achieving a sublinear cumulative regret.

Setting We run multiple simulations varying the
value of parameter m. We chose n = 7, k = 4 and
γ0(a) = 500 for every action a ∈ A (i.e., m = 500).
The autoregressive parameters γi(a) have been sam-
pled from a uniform probability distribution with
support in [0, 1/4 − ϵ], where ϵ > 0 is an arbitrar-
ily small value. For this experiment, we test values
m ∈ {1, 10, 100, 500, 1000, 2500}.

Results In Figure 2, we report the cumulative regret
of AR-UCB under different choices of m. First, it is worth
noting how choosing values of m ≥ m always results
in a sublinear cumulative regret, with a progressive
increase as m gets larger. This is highlighted when
comparing the scenario where m = 2500 to the one
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Figure 3: Effect of the choice of parameter k on the
AR-UCB cumulative regret (100 runs, mean ± std).

where m ∈ {500, 1000}. When m is underestimated,
we empirically observe two facts. When m is in the
same order of magnitude as the true value m (e.g.,
m = 100), we empirically observe a smaller sublinear
cumulative regret. Instead, a severe underestimation
of the parameter leads to a linear cumulative regret,
as clearly visible for m ∈ {1, 10}, although, in these
settings, the cumulative regret is lower w.r.t. the other
settings in the very first stages of the simulations (due
to a more limited exploration).

5.4 On the Knowledge of the Autoregressive
Order k

As discussed in Section 4, AR-UCB can also run under
a misspecified parameter k ̸= k. We now empirically
study the effect of misspecifying such a value.

Setting We consider a configuration with n = 7,
k = 10, γ0(a) = 1 and γi(a) for i ≥ 1 sampled from
a uniform distribution having support in [0, 10−2 · 2i)
for every action a ∈ A. AR-UCB is run varying the
parameter k ∈ {1, 2, 4, 8, 10, 16}.

Results Figure 3 reports the average cumulative
regret for the considered values of k. On the one hand,
an underestimation of parameter k (i.e., k ∈ {1, 2, 4})
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results in an asymptotically linear cumulative regret.
This effect is justified since AR-UCB is not able to
learn the actual AR dynamics due to underfitting,
i.e., the considered models are too simple. On the
other hand, AR-UCB achieves sublinear cumulative re-
gret when k ≥ k (i.e., k ∈ {10, 16}). In particular,
when k > k, the linear models use more parameters
than required, resulting in slower learning. However,
as the samples increase, the algorithm learns that the
exceeding coefficients are not significant. A particular
case is when k is close to k but strictly lower (i.e.,
k = 8). Here, the cumulative regret degenerates to
linear, but if the coefficients γj(a) for j ∈ Jk+1, kK are
not very large, the performance of AR-UCB with mis-
specified k results, in practice, close to the one obtained
with the true k.

6 RELATED WORKS

In this section, we discuss and compare the works that
share similarities with the Autoregressive Bandits. We
analyze both solutions related to multi-armed bandits
and online learning in non-linear systems.

Multi-Armed Bandits In the more classical Multi-
Armed Bandit (MAB) setting, the learning problem
does not involve temporal dependencies between re-
wards. The MAB setting has been studied under the
assumptions of both stochastic and adversarial noise
models. In the former case, UCB1 (Lai and Robbins,
1985; Auer et al., 2002a) represents the parent algo-
rithm. Instead, when adversarial noise is involved
EXP3 (Auer et al., 1995, 2002b) is usually employed.
This algorithm has been extended by REXP3 (Besbes
et al., 2014) to handle with the non-stationary set-
ting. Differently from both the adversarial and non-
stochastic setting, we assume that the rewards are not
preselected by an adversary or nature but, instead,
they change as an effect of the actions played. Indeed,
the underlying autoregressive process (affected by a
stochastic noise) is such that the current action im-
pacts the future rewards. Therefore, importing the
adversarial MAB terminology, the ARBs can be re-
duced to an adversary setting with an adaptive (or
non-oblivious) adversary (Dekel et al., 2012). In par-
ticular, the O(

√
nT ) regret guarantees of EXP3 are not

achievable in the ARB setting as EXP3 competes against
the best constant policy while the optimal policy for
ARBs is not constant (see Theorem 1 and Section 5).
Moreover, our setting presents similarities with MABs
with delayed feedback (e.g., Pike-Burke et al., 2018).
However, in ARB the effect of the actions is propagated
(not exactly delayed). Markov (Ortner et al., 2012) and
restless (Tekin and Liu, 2012) bandits, instead, consider
underlying processes that influence the rewards. How-
ever, these processes are not supposed to be controlled

by the action history. Other works (e.g., Mussi et al.,
2023) consider complex action-dependent feedback van-
ishing over time. In Chen et al. (2023), the authors
study the control problem in a setting that considers
temporal structure modeled as an AR(1) process.

Online Learning in Non-Linear Systems The
ARB setting is a specific case of a non-linear dynamical
system. Although the literature related to this setting
is wide, no work faces all problems that the ARB set-
ting presents, including learning to control with regret
guarantees. Mania et al. (2022) focus on learning the
parameters of a particular class of non-linear systems.
However, the approach is limited to estimation and no
control algorithm is proposed. Similarly, Umlauft and
Hirche (2017) deal with learning the system parameters
with stability guarantees without the chance to con-
trol it. Several recent works (e.g., Kakade et al., 2020;
Lale et al., 2021) focus on the learning and control of
non-linear systems with regret guarantees. However,
these works make use of an oracle to solve a complex
optimization problem to perform optimistic planning
(i.e., optimal policy given an optimistic estimate of the
system). This problem in a non-linear setting, how-
ever, is proven to be NP-hard (Sahni, 1974; Dani et al.,
2008). Furthermore, the class of non-linear systems
considered in these works does not include the ARB
setting. Other works (e.g., Albalawi et al., 2021) over-
come the request for the oracle by searching in the
restricted space of constant policies, leading to the best
equilibrium. However, this solution can be suboptimal
in several cases, including ARBs (see Section 5.2).

7 CONCLUSIONS

In this work, we faced the online sequential decision-
making problem where an autoregressive temporal
structure between the observed rewards is present.
First, we formally introduced the ARB setting and
defined the notion of optimal policy, demonstrating
that a myopic policy is optimal also to optimize the
total reward, regardless of the target time horizon, and
that the optimal policy is not constant over time and
depends on the realizations of the reward. Then, we
proposed an optimistic bandit algorithm, AR-UCB, to
learn online the parameters of the underlying process
for each action. We demonstrated that the presented
algorithm enjoys sublinear regret, depending on the AR
order k and on an index of the speed at which the sys-
tem reaches a stable condition. Finally, we provided an
experimental campaign to validate the proposed solu-
tion, and we analyzed the behavior of AR-UCB when key
parameters are misspecified. Future directions should
focus on fully understanding the complexity of learning
in the ARB setting, deriving tight lower bounds, and
matching algorithms.
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A OMITTED PROOFS

Theorem 1 (Optimal Policy). Under Assumption 1.a, for every round t ∈ N, the optimal policy π∗
t (Ht−1)

satisfies:
π∗
t (Ht−1) ∈ argmax

a∈A
⟨γ(a), zt−1⟩. (5)

Proof. We first prove an intermediate result auxiliary to get to the final statement. Let us denote with J∗
T (z) the

expected cumulative reward when the initial observations vector is z = (1, x0, x−1, . . . , x−k+1). Let us denote
with ⪰ the element-wise inequality. We show that for every T ∈ N, if z ⪰ z, then J∗

T (z) ≥ J∗
T (z).

We proceed by induction.

For T = 1, we have J∗
1 (z) = maxa∈A⟨γ(a), z⟩ = ⟨γ(a∗1), z⟩, where a∗1 ∈ argmaxa∈A⟨γ(a), z⟩ and J∗

1 (z) =
maxa∈A⟨γ(a), z⟩ = ⟨γ(a∗1), z⟩, where a∗1 ∈ argmaxa∈A⟨γ(a), z⟩. Thus, we have:

J∗
1 (z) = ⟨γ(a∗1), z⟩ ≥ ⟨γ(a∗1), z⟩

(a)
≥ ⟨γ(a∗1), z⟩ = J∗

1 (z),

where inequality (a) follows from Assumption 1.a.

Suppose the statement holds for T − 1, we prove it for T > 1. To this end, we consider the transition operator
P : Z ×A× R → Z, defined for every observations vector zt = (1, xt−1, xt−2, . . . , xt−k) ∈ Z, action a ∈ A, and
noise ξ ∈ R as follows:

P (zt, a, ξ) = P




1

xt−1

xt−2

...
xt−k

 , a, ξ

 =


1
xt

xt−1

...
xt−k+1

 = zt+1, where xt = ⟨γ(a), zt⟩+ ξ.

Thus, we can look at the stochastic process as a Markov decision process (Puterman, 2014) with zt as state
representation. We immediately observe that if z ⪰ z, we have that P (z, a, ξ) ⪰ P (z, a, ξ), for every action a ∈ A
and noise ξ ∈ R. By applying the Bellman equation, we obtain:

J∗
T (z) = max

a∈A

{
⟨γ(a), z⟩+ EξT

[
J∗
T−1(P (z, a, ξT ))

]}
= ⟨γ(a∗T ), z⟩+ EξT

[
J∗
T−1(P (z, a∗T , ξT ))

]
,

J∗
T (z) = max

a∈A

{
⟨γ(a), z⟩+ EξT

[
J∗
T−1(P (z, a, ξT ))

]}
= ⟨γ(a∗T ), z⟩+ EξT

[
J∗
T−1(P (z, a∗T , ξT ))

]
,

where the actions are defined as a∗T ∈ argmaxa∈A
{
⟨γ(a), z⟩+ EξT

[
J∗
T−1(P (z, a, ξT ))

]}
and a∗T ∈

argmaxa∈A
{
⟨γ(a), z⟩+ EξT

[
J∗
T−1(P (z, a, ξT ))

]}
. Thus, we have:

J∗
T (z) = ⟨γ(a∗T ), z⟩+ EξT

[
J∗
T−1(P (z, a∗T , ξT ))

]
≥ ⟨γ(a∗T ), z⟩+ EξT

[
J∗
T−1(P (z, a∗T , ξT ))

]
(b)

≥ ⟨γ(a∗T ), z⟩+ EξT

[
J∗
T−1(P (z, a∗T , ξT ))

]
= J∗

T (z),

where (b) follows from Assumption 1.a when bounding ⟨γ(a∗T ), z⟩ ≥ ⟨γ(a∗T ), z⟩ and by observing that P (z, a∗T , ξ1) ⪰
P (z, a∗T , ξT ) and, then, exploiting the inductive hypothesis.

We conclude that the optimal policy is the myopic one by observing that both ⟨γ(a), z⟩ and J∗
T−1(P (z, a, ξ)) are

simultaneously maximized by argmaxa∈A⟨γ(a), z⟩.

Lemma 2 (Self-Normalized Concentration). Let a ∈ A be an action, let (γ̂t(a))t∈O∞(a) be the sequence of
solutions to the Ridge regression problems computed by Algorithm 1. Then, for every regularization parameter
λ > 0, confidence δ ∈ (0, 1), simultaneously for every round t ∈ N and action a ∈ A, with probability at least 1− δ
it holds that:

∥γ̂t(a)− γ(a)∥Vt(a)
≤

√
λ∥γ(a)∥2 + σ

√
2 log

(n
δ

)
+ log

(
detVt(a)

λk+1

)
.



Bacchiocchi, Genalti, Maran, Mussi, Restelli, Gatti and Metelli

Proof. We consider an action at a time; then, the final result is obtained with a union bound over A = JnK. Let
a ∈ A. We first observe that the estimates of action a change only when a is pulled. Let l ∈ N be an index and let
tl(a) ∈ N be the round in which action a is pulled for the l-th time, i.e., {tl(a) : l ∈ N} = O∞(a). Thus, we have:

γtl(a) = V−1
tl(a)

(a)b−1
tl(a)

(a)

=

λIk+1 +

l∑
j=1

ztj(a)−1z
T
tj(a)−1

−1
l∑

j=1

ztj(a)−1xtj

=

λIk+1 +

l∑
j=1

ztj(a)−1z
T
tj(a)−1

−1
l∑

j=1

ztj(a)−1

(
⟨γ(a), ztj(a)−1⟩+ ξtj(a)

)
(a)
= γ(a)− λ

λIk+1 +

l∑
j=1

ztj(a)−1z
T
tj(a)−1

−1

γ(a)+

+

λIk+1 +

l∑
j=1

ztj(a)−1z
T
tj(a)−1

−1
l∑

j=1

ztj(a)−1ξtj(a)

= γ(a)− λV−1
tl(a)

(a)γ(a) +V−1
tl(a)

(a)

l∑
j=1

ztj(a)−1ξtj(a)︸ ︷︷ ︸
stl(a)

,

where the passage (a) derives from the observation that
∑l

j=1 ztj−1(⟨γ(a), ztj−1⟩) =
∑l

j=1 ztj−1z
T
tj−1γ(a). Thus,

we have: ∥∥γtl(a)(a)− γ(a)
∥∥
Vtl(a)(a)

≤
√
λ∥γ(a)∥2 + ∥stl(a)∥V−1

tl(a)
(a).

Let us denote with Ftl(a) = σ(z0, a1, z1, a2, . . . , ztl(a)−1, atl(a)) be the filtration generated by all events realized
at round tl(a). Let us now consider the stochastic processes (ξtl(a))l∈N and (ztl(a)−1)l∈N. We observe that ξtl(a)
is Ftl(a)-measurable and conditionally σ2-subgaussian and that ztl(a)−1 is Ftl(a)−1-measurable. By applying
Theorem 1 of Abbasi-Yadkori et al. (2011), we have that simultaneously for all l ∈ N, w.p. 1− δ:

∥stl(a)∥V−1
tl(a)

(a) ≤ σ

√
2 log

1

δ
+ log

detVtl(a)(a)

λk+1
.

Clearly, this hold for the rounds t ∈ N in which the action a is not pulled, since the corresponding estimates do
not change.

Lemma 3 (Policy Regret Decomposition). Let (x∗
t )t∈JT K be the sequence of rewards by executing the optimal

policy π∗ and let (xt)t∈JT K be the sequence of rewards by executing the learner’s policy π. Then, for every t ∈ JT K
it holds that:

rt = x∗
t − xt

=

k∑
i=1

γi(a
∗
t )(x

∗
t−i − xt−i) + ⟨γ(a∗t )− γ(at), zt−1⟩

=

k∑
i=1

γi(a
∗
t )rt−i + ρt, (9)

where rt := x∗
t − xt is the instantaneous policy regret, ρt := ⟨γ(a∗t )− γ(at), zt−1⟩ is the instantaneous external

regret, a∗t = π∗
t (H

∗
t−1), and rt−i = 0 if i ≥ t.

Proof. Let t ∈ JT K and let us denote with z∗t−1 = (1, x∗
t−1, . . . , x

∗
t−k)

T the observations vector associated with the
execution of the optimal policy and with zt−1 = (1, xt−1, . . . , xt−k)

T the observations vector associated with the
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execution of the learner’s policy. We have:

rt = x∗
t − xt

= ⟨γ(a∗t ), z∗t−1⟩ − ⟨γ(at), zt−1⟩
= ⟨γ(a∗t ), z∗t−1⟩ − ⟨γ(a∗t ), zt−1⟩+ ⟨γ(a∗t ), zt−1⟩ − ⟨γ(at), zt−1⟩
= ⟨γ(a∗t ), z∗t−1 − zt−1⟩+ ⟨γ(a∗t )− γ(at), zt−1⟩

=

k∑
i=1

γi(a
∗
t ) (x

∗
t−i − xt−i)︸ ︷︷ ︸

rt−i

+ ⟨γ(a∗t )− γ(at), zt−1⟩︸ ︷︷ ︸
ρt

,

where in expanding the inner product we made the summation start from i = 1 as the two vectors z∗t−1 and zt−1

have the same first component equal to 1.

Lemma 4 (External-to-Policy Regret Bound). Let π be the learner’s policy and T ∈ N be the horizon. Under
Assumptions 1.a and 1.b, it holds that:

R(π, T ) = E

[
T∑

t=1

[
k∑

i=1

γi(a
∗
t )rt−i + ρt

]]

≤
(

Γk

1− Γ
+ 1

)
ϱ(π, T ), (10)

where ϱ(π, T ) := E
[∑T

t=1 ρt

]
is the cumulative expected external regret.

Proof. We start from the decomposition of Lemma 3. To prove the result we employ the so-called “superposition
principle”, which allows us to decompose the linear recurrence as follows:

rt =

k∑
i=1

γi(a
∗
t )rt−i + ρt =

+∞∑
τ=0

ρτ r̃t,τ ,

where if τ > t we set r̃t,τ = 0 and if τ ≤ t we have that r̃t,τ is given by the recurrence:

r̃t,τ =

k∑
i=1

γi(a
∗
t )r̃t−i,τ + δt,τ where δt,τ :=

{
1 t = τ

0 t ̸= τ
.

This way, we decompose the exogenous term ρτ as a linear combination of unitary impulses. Then by As-
sumption 1.a and 1.b, recalling that r̃t,τ = 0 if τ > t and that r̃τ,τ = 1, we have that for every t > τ it holds
that:

r̃t,τ ≤ Γmax
i∈JkK

r̃t−i,τ ≤ Γ2 max
i∈JkK

max
j∈JkK

r̃t−i−j,τ ≤ · · · ≤ Γ⌈(t−τ)/k⌉,

since we will encounter the 1 = δτ,τ after ⌈(t− τ)/k⌉ steps of unfolding.

Now, we can manipulate this formula to have an expression of the full regret:

T∑
t=1

rt ≤
T∑

t=1

(
ρt +

t−1∑
τ=1

Γ⌈(t−τ)/k⌉ρτ

)

=

T∑
τ=1

(
1 + ρτ

T∑
t=τ+1

Γ⌈(t−τ)/k⌉

)
(a)

≤
T∑

τ=1

ρτ

(
1 +

+∞∑
s=1

Γ⌈s/k⌉

)
(b)
=

T∑
τ=1

ρτ

(
1 +

+∞∑
l=1

kΓl

)
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=

(
1 +

Γk

1− Γ

) T∑
τ=1

ρτ ,

where (a) follows from bounding the summation with the series and changing the index s = t − τ and (b) is
obtained by observing that the exponent ⌈s/k⌉ changes only when s is divisible by k.

Counterexample to show that this bound is tight.

There are k arms:

γ(a1) := [Γ, 0 . . . 0], γ(a2) := [0,Γ, 0 . . . 0], . . . γ(ak) := [0, . . . 0,Γ].

All these arms have non-negative coefficients whose sum is bounded by Γ. If the sequence of internal regrets is:

ρt =

{
1 t = 1

0 t > 1
,

and the sequence of arms is a∗1 = 1, and a∗t = at−1 (mod k)+1 (which means a1, a2, . . . , ak, a1, a2, . . . ), we have:

r1 = 1, r2 = Γ, r3 = Γ, . . . , rk+1 = Γ,

and then, we start again with the same sequence of arms:

rk+2 = Γ2, rk+3 = Γ2, . . . , r2k+1 = Γ2.

Making the sum of these terms for t from one to infinity, we get:

∞∑
t=1

rt = 1 + k

∞∑
t=1

Γt = 1 +
kΓ

1− Γ
,

which is exactly the bound we get.
Lemma 6. Let (zt)t∈JT K be the sequence of observation vectors observed by executing the learner’s policy. If
z0 = (1, 0, . . . , 0)T , then, for every δ ∈ (0, 1), with probability at least 1 − δ, simultaneously for all t ∈ JT K, it
holds that:

∥zt−1∥2 ≤

√
1 + k

(
m+ η

1− Γ

)2

,

where η =
√
2σ2 log(T/δ).

Proof. Let (ξt)t∈JT K be the sequence of noises. We consider the event E =
⋂T

t=1

{
|ξt| ≤ η

}
prescribing that

all noises are smaller than η in absolute value. By union bound, knowing that all the noises are independent
σ2-subgaussian random variables we, can bound the probability of event E :

P(E) = P

(
T⋂

t=1

{
|ξt| ≤ η

})
≥ 1− Te−

η2

2σ2 = 1− δ,

having set η =
√
2σ2 log(T/δ). Under event E and when z0 = (1, 0, . . . , 0)T , we prove by induction that all

rewards xt are bounded in absolute value by m+η
1−Γ , regardless the actions played. For T = 1, the statement is

trivial since x1 = γ0(a1) + η1 and, thus, |x1| ≤ γ0(a1) + |η1| ≤ m+ η ≤ m+η
1−Γ . Suppose the statement holds for all

s < t, we prove it for t. We have:

xt = γ0(at) +

k∑
i=1

γi(at)xt−i + ηt =⇒ |xt| ≤ γ0(at) +

k∑
i=1

γi(at)|xt−i|+ |ηt|
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≤ m+ Γ
m+ Γ

1− Γ
+ η =

m+ η

1− Γ
,

where the first inequality uses Assumption 1.a, the second inequality follows from the inductive hypothesis and
by Assumptions 1.b and 1.c. Passing to the observations vector, we have:

∥zt−1∥22 = 1 +

k∑
i=1

x2
t−i ≤ 1 + k

(
m+ η

1− Γ

)2

.

For deriving the regret bound, we make use of the following result, known as Elliptic Potential Lemma (Lattimore
and Szepesvári, 2020, Lemma 19.4).

Lemma 7 (Elliptic Potential Lemma). Let V0 ∈ Rd×d be a positive definite matrix and let a1, . . . , an ∈ Rd be a
sequence of vectors such that ∥at∥2 ≤ L < +∞ for all t ∈ JnK. Let Vt = V0 +

∑t
s=1 asa

T
s , Then:

n∑
t=1

min{1, ∥as∥Vt−1
−1} ≤ 2d log

(
tr(V0) + nL2

ddet(V0)1/d

)
.

Theorem 5. Let δ = (2T )−1. Under Assumptions 1.a, 1.b, and 1.c, AR-UCB suffers a cumulative expected (policy)
regret bounded by (highlighting the dependence on m, σ, k, Γ, n, and T ):

E[R(AR-UCB, T )] ≤ Õ
(
(m+ σ)(k + 1)3/2

√
nT

(1− Γ)2

)
.

Proof. We denote with (x∗
t )t∈JT K the sequence of rewards generated by playing the optimal policy and with

(xt)t∈JT K the sequence of rewards generated by playing AR-UCB. Thanks to Lemma 4, we have to bound the
external regret only. Let δ ∈ (0, 1), and define, as in the main paper, for every round t ∈ JT K and action a ∈ A:

βt(a) :=
√
λ(m2 + 1) + σ

√
2 log

(n
δ

)
+ log

(
detVt(a)

λk+1

)
.

Let us define the confidence set Ct(a) := {γ ∈ Rk+1 : ∥γ− γ̂t−1(a)∥Vt−1(a) ≤ βt−1(a)} and the optimistic estimate
of the true parameter vector γ(a):

γ̃t(a) ∈ argmax
γ∈Ct(a)

⟨γ, zt−1⟩,

By Theorem 2, we have that, for every action a ∈ A and round t ∈ JT K, the true parameter vector satisfies
γ(a) ∈ Ct(a) with probability at least 1− δ. Therefore, with the same probability, we have:

⟨γ(a∗t )− γ(at), zt−1⟩ = ⟨γ(a∗t )− γ̃t(at), zt−1⟩︸ ︷︷ ︸
≤0

+⟨γ̃t(at)− γ(at), zt−1⟩

≤ ⟨γ̃t(at)− γ̂t−1(at), zt−1⟩+ ⟨γ̂t−1(at)− γ(at), zt−1⟩
≤ 2βt−1(at)∥zt−1∥Vt−1(a)−1 ,

where the first inequality follows from the optimism and in the last passage we have used Cauchy-Schwartz
inequality, recalling that for every couple of vectors v,w it holds ⟨v,w⟩ ≤ ∥v∥Vt−1(a)∥w∥Vt−1(a)−1 , and having
observed that γ(at), γ̃t(at) ∈ Ct(at).

Furthermore, we observe that the external regret ρt = ⟨γ(a∗t )− γ(at), zt−1⟩ ≤ ∥zt−1∥2 +m, since the coefficients
γj for j ̸= 0 have a sum bounded by Γ < 1 and get multiplied by zt−1, while γ0, which is bounded by m gets
multiplied by 1, then we have ρt ≤ L+m = O(m). By Lemma 6 with probability of at least 1− δ we have:

∥zt∥2 ≤

√
1 + k

(
m+ η

1− Γ

)2

=: L,
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where η =
√
2σ2 log(T/δ) and, consequently:

ρt ≤ m+ L =: C1.

At this point, we proceed as follows:

ρt ≤ 2min{C1, βt−1(at)∥zt−1∥Vt−1(at)−1} ≤ 2max{C1, βt−1(at)}min{1, ∥zt−1∥Vt−1(at)−1}.

Summing over t ∈ JT K, we obtain a bound on the cumulative external regret:

ϱ(AR-UCB, T ) =
T∑

t=1

ρt =

T∑
t=1

1 · ρt

≤

√√√√T

T∑
t=1

ρ2t

≤ 2max{C1, βT−1}

√√√√T

T∑
t=1

min{1, ∥zt−1∥2Vt−1(at)−1}

where:

βT−1 := max
a∈A

βT−1(a),

where the first inequality follows from an application of Cauchy-Schwartz inequality and the last passage holds
since the sequence βt(at) is non-decreasing, and so we can bound each of them with their value at t = T . Now,
we are finally able to use the Elliptic Potential Lemma (Lemma 7):

T∑
t=1

min{1, ∥zt−1∥2Vt−1(at)−1} =
∑
a∈A

∑
l∈OT (a)

min{1, ∥zl−1∥2Vl−1(a)−1}

≤
∑
a∈A

2(k + 1) log

(
λ(k + 1) + |OT (a)|L2

λ(k + 1)

)
≤ 2n(k + 1) log

(
1 +

TL2

nλ(k + 1)

)
,

where the first inequality follows from an application of the elliptic potential lemma for each action a ∈ A
observing that V0 = λIk+1 and, consequently, tr(V0) = λ(k + 1) and det(V0)

1/(k+1) = λ. The second inequality
follows by observing that

∑
a∈A |OT (a)| = T and since the log is a concave function, the worst allocation of pulls

is the uniform one. Now that we have bounded the inner summation, we can state that:

ϱ(AR-UCB, T ) =
T∑

t=1

ρt ≤ 2max{C1, βT−1}

√
2Tn(k + 1) log

(
1 +

TL2

nλ(k + 1)

)
.

To conclude, we bound the term βT−1 as follows:

βT−1 =
√
λ(m2 + 1) + σmax

a∈A

√
2 log

(n
δ

)
+ log

(
detVT−1(a)

λk+1

)

≤
√

λ(m2 + 1) + σ

√
2 log

(n
δ

)
+ (k + 1) log

(
λ(k + 1) + TL2

λ(k + 1)

)
.

Therefore, by highlighting the dependences on m, k, σ, and Γ, we have:

βT−1 = Õ
(
m+ σ

√
k + 1

)
, C1 = Õ

(
1 +

√
k
m+ σ

1− Γ

)
.
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These results hold with probability 1− 2δ. We set δ = (2T )−1. Putting all together, we obtain:

ϱ(AR-UCB, T ) =
T∑

t=1

ρt ≤ Õ

(
(m+ σ)

√
n(k + 1)T

1− Γ

)
,

and, applying the previous Lemma 4, this results in:

R(AR-UCB, T ) ≤ Õ
(
(m+ σ)(k + 1)3/2

√
nT

(1− Γ)2

)
.

B OPTIMAL POLICY WITHOUT NOISE

In the case of no noise, our system writes:

xt = γ0(at) +

k∑
i=1

γi(at)xt−i. (12)

In this case, the process evolution is deterministic. Therefore, even if it is still true that the optimal policy is
given by Theorem 1, it is possible to say that there is a constant policy that is asymptotically optimal, in the
sense that its cumulative regret is bounded by a constant. This policy is given by:

a∗ ∈ argmax
a∈A

γ0(at)

1−
∑k

i=1 γi(at)
. (13)

This result is not surprising. In fact, this action makes the process converge to the highest possible stationary
reward, which is of course argmaxa∈A

γ0(at)

1−
∑k

i=1 γi(at)
. Precisely, the following result holds.

Theorem 8. Let us consider the problem formulation of Equation (12). Define:

a∗ = argmax
a∈A

γ0(at)

1−
∑k

i=1 γi(at)
,

as in Equation (13). Then, there exist no policy π (even non-constant) such that:

lim sup
t→+∞

xπ
t − x∗

t > 0

(where xπ
t denotes the sequence obtained with policy π, while x∗

t is the one relative to a∗). Moreover, the cumulative
regret with respect to the actual optimal policy is bounded by:

γ0(a
∗)

k

(1− Γ)2
.

Proof. If we play always a∗, we have:

lim sup
t→+∞

x∗
t =

γ0(a
∗)

1−
∑k

i=1 γi(a
∗)
,

by imposing the condition of stationarity. For the rest of the proof, let us denote:

x∗ :=
γ0(a

∗)

1−
∑k

i=1 γi(a
∗)
.

Now, we prove that, for any policy π, we cannot achieve an xt > x∗. By contradiction, if lim supt→∞ xπ
t −x∗

t > 0,
then the set {t ∈ N : xt > x∗} is non-empty. Let t0 = min{t ∈ N : xt > x∗}. Then, by definition:
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xt0 = γ0(at0) +

k∑
i=1

γi(at0)xt0−i.

Recalling that t0 is the first time in which we surpass x∗, we have:

x∗ < xt0 = γ0(at0) +

k∑
i=1

γi(at0)xt0−i ≤ γ0(at0) +

k∑
i=1

γi(at0)x
∗.

This inequality entails that: (
1−

k∑
i=1

γi(at0)
)
x∗ < γ0(at0),

and, therefore:
γ0(a

∗)

1−
∑k

i=1 γi(a
∗)

= x∗ <
γ0(at0)

1−
∑k

i=1 γi(at0)
,

which contradicts the definition of a∗.

For the second part, we start considering that the regret obtained by using constant action a∗ is bounded by:

+∞∑
t=1

x∗ − xt,

since x∗ is the maximum instantaneous reward that every policy can achieve. Now, note that γ0(a∗) > 0, otherwise
it could not be the optimal action. At this point, we have for 0 < t ≤ k that xt ≥ γ0(a

∗), by simply using the
fact that all the coefficients of the autoregressive model are non-negative. From this fact we have for k < t ≤ 2k
that xt ≥ γ0(a

∗)(1 +
∑k

i=1 γi(a
∗)); and generalizing:

∀j > 0 and jk − k < t ≤ jk : xt ≥ γ0(a
∗)
( j∑

ℓ=0

(Γ∗)ℓ
)
, Γ∗ =

k∑
i=1

γi(a
∗).

Therefore, we have xt ≥ γ0(a
∗) 1−Γ⌊t/k⌋

1−Γ , which means:

Rt ≤
+∞∑
t=1

x∗ − xt

≤
+∞∑
t=1

x∗ − γ0(a
∗)
1− Γ⌊t/k⌋

1− Γ

= γ0(a
∗)

+∞∑
t=1

1

1− Γ
− 1− Γ⌊t/k⌋

1− Γ

= γ0(a
∗)

+∞∑
t=1

Γ⌊t/k⌋

1− Γ

= γ0(a
∗)

k

(1− Γ)2
.

C DISCUSSION ON ASSUMPTION 1.a

In this appendix, we further detail the meaning of Assumption 1.a related to non-negative coefficients governing
the AR process (Assumption 1.a). Even if, theoretically, this setting is less general than the one that considers all
possible values for the parameters, we argue that, for the real-world applications of interest, considering negative
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τ τ + 1 τ + 2 t

xt

xτ

xτ+1

xτ+2

xτ

xτ+1

xτ+2

Figure 4: An illustration of the effect of a negative
γ1(a) over time.

τ τ + 1

xτ

xt

t

0 < γ1(i) < 1

γ1(i) = 0

γ1(i) < 0

Figure 5: The effect of γ1(a) in the evolution of the
state xt, in the case of a non-negative one (in black),
and a negative one (in red).

coefficients is not meaningful.
Before introducing our example, let us remark on the meaning of xt in practice. This value represents the
sales volume in the case of pricing, the value of a stock in the stock market, the number of customers that an
e-commerce website may have, and so on. In all these real-world scenarios, the quantity xt is meaningful whenever
we consider non-negative values that we want to maximize. We argue that when Assumption 1.a is not fulfilled
(i.e., at least one γi(a) is negative), the positivity of xt is no longer ensured.
Consider now the example presented in Figure 4, where we present a general scenario in which, at time τ , we are
in a given with a certain positive xτ . Consider, for the sake of simplicity, a noiseless setting with k = 1 (i.e., an
AR(1) process) and, for a given action i, we have γ0(a) = 0. Consider now γ1(a) < 0. Figure 4 shows what will
happen in this case. The value of xt continuously changes its sign at each time step, and this behavior is not
compatible with the real-world phenomena of our interest. This is even more unrealistic if we think about the
scenario in which we have another value of the state xτ > xτ . In this scenario, after performing the same action i,
we will observe that the best-starting state xτ leads to a worst next state xτ+1 < xτ+1. This behavior has no
practical meaning in the applications of our interest. Given these considerations, we can derive that the worst
possible effect of a given action is to reset the state, which corresponds to have γ1(a) = 0. A representation of
this phenomenon is drawn in Figure 5. From this figure, it is possible to notice how a process can always decrease
as an effect of an action, even for γ1(a) > 0.
This consideration trivially generalizes for any k > 1 given a generic state representation zτ .

D ADDITIONAL EXPERIMENTAL RESULTS

In this appendix, we provide additional experimental results. In Appendix D.1, we assert the effectiveness of
AR-UCB in the classic stochastic bandit problem by comparing its performances with two standard baselines from
the literature. In Appendix D.2, we stress the effect of misspecifying parameter k in the standard multi-armed
bandit problem. Finally, in Appendix D.3, we provide experimental results in the particular case of autoregressive
processes of order 1 (i.e., k = 1).

D.1 Stochastic Bandit Problem

Setting We evaluate AR-UCB in the special case k = 0. This problem is equivalent to solving a standard stochastic
bandit problem. This experiment compares the performances of AR-UCB in this setting against well-known gold
standards: UCB1 and EXP3. The competing algorithms are evaluated in terms of cumulative regret w.r.t. the
setting-specific clairvoyant. The three settings differ in the values of m ∈ {2, 7.5} (i.e., the maximum arms’
expected reward) and the values of σ ∈ {0.9, 1.25, 2}, the noise’s standard deviation.

Results Figure 6 shows the average cumulative regrets for AR-UCB, UCB1, and EXP3. We immediately observe
that all the algorithms suffer sublinear cumulative regret, as expected since they are all able to provide no-regret
theoretical guarantees in this setting. In all the experiments, UCB1 outperforms all the other algorithms since it is
specifically designed for the scenario under analysis. AR-UCB, as expected, performs properly in this setting since,
as already discussed in Section 4.3, its regret is asymptotically optimal when k = 0.
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Figure 6: Cumulative regret of AR-UCB, UCB1, and EXP3 in the case of k = 0 (100 runs, mean ± std).
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Figure 7: Cumulative regret of AR-UCB in the case of k = 0, in with k parameter misspecified (100 runs, mean ±
std).

D.2 On the Misspecification of k in Stochastic Bandit Problem

Setting We evaluate AR-UCB in the special case k = 0. This problem is equivalent to solving a standard
stochastic bandit problem. This experiment compares the performances of AR-UCB under different values of the
parameter k. In particular, this experiment aims to highlight the performances of AR-UCB under a misspecification
of the process memory in the special case where the true underlying process does not present a dynamic temporal
structure. The parameters γ0(a) have been sampled by a uniform distribution having support [6, 7], and m is set
to 10. The noise’s standard deviation σ is set to 1. The number of actions is n = 7.

Results Figure 7 shows the average cumulative regrets for AR-UCB under different values of k, when the true
value is k = 0. The figure shows that AR-UCB is capable of achieving sublinear cumulative regret even when the
misspecification is severe (e.g., k = 16), coherently with the theoretical results, the performance degrades as the
misspecification grows.

D.3 AR(1) Bandit Problem

AR(1) processes are the simplest autoregressive processes. Therefore, we will present a specific analysis of this
setting to show how AR-UCB and the baselines perform when the complexity given by the dynamic temporal
structure is minimal. Results show how even the minimal autoregressive contribution can lead all the algorithms
(except for AR-UCB) to linear cumulative regret.

Setting We evaluate AR-UCB in the case k = 1. This is the simplest setting in which an autoregressive component
contributes to the reward. This experiment compares the performances of AR-UCB in this setting against the
same baselines as Section 5.1. The competing algorithms are evaluated in terms of cumulative regret w.r.t. the
setting-specific clairvoyant. The three settings differ in the values of m ∈ {2, 8, 10} (i.e., the maximum arms’
expected reward) and the values of σ ∈ {1, 1.25, 2}, the noise’s standard deviation. The values of the γ1(a)
parameters have been sampled from uniform distributions having their sampling ranges inside [0, 1). The number
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Figure 8: Cumulative regret of AR-UCB and the others bandit baselines in the case of k = 1 (100 runs, mean ±
std).

of actions is n = 7.

Results Figure 8 shows the average cumulative regrets for all the competing algorithms. We immediately
observe that the only algorithms able to achieve sublinear regret are AR-UCB (in all three settings), B-EXP3 (first
and third experiments), and EXP3 (first experiment only). Such a result is unsurprising since none of the baselines
has specific theoretical guarantees in the Autoregressive Bandit problem, even in the simple scenario when
k = 1. Even though, we decided to adopt these algorithms as baselines since they represent the gold standard
algorithms in the bandit literature (UCB1, EXP3) and the algorithms that solve problems near to ours (B-EXP3 ,
AR2), respectively.
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