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Abstract
We consider Kernelized Bandits (KBs) to optimize a function f : X Ñ r0, 1s belonging to the
Reproducing Kernel Hilbert Space (RKHS) Hk. Mainstream works on kernelized bandits focus on
a subgaussian noise model in which observations of the form fpxtq ` ϵt, being ϵt a subgaussian
noise, are available (Chowdhury and Gopalan, 2017). Differently, we focus on the case in which we
observe realizations yt „ Berpfpxtqq sampled from a Bernoulli distribution with parameter fpxtq.
While the Bernoulli model has been investigated successfully in multi-armed bandits (Garivier and
Cappé, 2011), logistic bandits (Faury et al., 2022), bandits in metric spaces (Magureanu et al., 2014),
it remains an open question whether tight results can be obtained for KBs. This paper aims to draw
the attention of the online learning community to this open problem.
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1 Introduction

In this work, we present three open problems related to Kernelized Bandits (KBs, Chowdhury and
Gopalan 2017) for optimizing a function f : X Ñ r0, 1s belonging in the Reproducing Kernel Hilbert
Space (RKHS) Hk. We assume to observe samples yt „ Berpfpxtqq from a Bernoulli distribution
with parameter fpxtq. In the following, we revise the literature about Bernoulli observations coupled
with different bandit structures and the subgaussian noise model for KBs.

Bernoulli Samples. Garivier and Cappé (2011) developed the first optimal algorithm (KL-UCB)
for regret minimization in Multi-Armed Bandits (MABs) with Bernoulli rewards (and no structure
on the arms). KL-UCB leverages optimism and a concentration bound based on the Kullback-Leibler
divergence (KL, Kullback and Leibler, 1951) succeeding in asymptotically matching the lower
bound (Lai and Robbins, 1985). Several works extended MABs with Bernoulli rewards to account
for structure, including metric spaces (Magureanu et al., 2014) and linear (logistic) models (Faury
et al., 2022).

Kernelized Bandits. The seminal work (Srinivas et al., 2010) introduce GP-UCB, the first no-regret
solution based on Gaussian Processes (GPs, Rasmussen and Williams, 2006). GP-UCB enjoys
regret guarantees both in the cases when f is indeed sampled from a GP and when f belongs to
a suitable RKHS (agnostic case). (Chowdhury and Gopalan, 2017) derive an improved version of
GP-UCB, called IGP-UCB, working under subgaussian noise model. The analysis is based on a
novel self-normalized concentration inequality for subgaussian samples fpxtq ` ϵt that extends and
generalizes that of (Abbasi-Yadkori et al., 2011) for linear models. These solutions can be adapted to
learn also in the presence of Bernoulli rewards1 at the price of (possibly) looser guarantees.

1. A Bernoulli random variable is λ-subgaussian, with λ “ 1{2.
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Subgaussian Bernoulli

No Structure Lattimore and Szepesvári 2020 (Corollary 5.5) Garivier and Cappé 2011 (Theorem 10)

Linear Abbasi-Yadkori et al. 2011 (Theorem 2) Faury et al. 2022 (Proposition 3)

Metric Space Kleinberg et al. 2008 (Theorem 4.2) Magureanu et al. 2014 (Theorem 2)

RKHS Chowdhury and Gopalan 2017 (Theorem 2) Open Problem

Table 1: Summary of the state-of-the-art in concentration bounds.

These results are possible thanks to specifically designed concentration bounds, which are
(almost) optimal for their specific settings. As we can notice from Table 1, the only missing solution
is the one to learn with kernelized structure in the presence of Bernoulli rewards. The goal of this
work is to raise the attention of the online learning community on this gap in the literature.

2 Problem Formulation

In this section, we describe the setting, the learning problem, and the considered assumptions.

Setting. We consider the problem of sequentially maximizing a fixed and unknown function
f : X Ñ r0, 1s over a decision set X Ď Rd (also called action set). At every round t P JT K :“
t1, . . . , T u, being T P N the learning horizon, the algorithm A chooses an action xt P X based on the
history of past observations Gt :“ tpxs, ysqusPJt´1K and observes a random variable yt „ Berpfpxtqq,
where Berppq denotes a Bernoulli distribution with parameter p P r0, 1s.

Learning Problem. The goal of the learning algorithm A is to minimize the regret:

RT pAq :“ T fpx‹q ´
ÿ

tPJT K

fpxtq where x‹ P argmax
xPX

fpxq. (1)

Regularity Conditions. We consider the frequentist-type regularity assumption that is usually
employed in KBs (Srinivas et al., 2010; Chowdhury and Gopalan, 2017). Let Hk be a RKHS induced
by the kernel function k : X ˆ X Ñ R so that every function h P Hk satisfies the reproducing
property hpxq “ xh, kp¨, xqyHk

, where x¨, ¨yHk
is the inner product defined on the space Hk. We

denote with }h}Hk
“

a

xh, hyHk
the RKHS norm. We enforce the following standard assumption

prescribing that f belongs to the RKHS with bounded norm.

Assumption 2.1 (Regularity Conditions) f belongs to the RKHS, i.e., f P Hk, and:
• the function f has a bounded RKHS norm, i.e., }f}Hk

ď B ă `8 (B is known);
• the kernel function k is bounded, i.e., kpx,xq ď 1 for every x P X .

3 Open Problems

3.1 Open Problem 1: Estimation

Can we effectively estimate fpxq in a new point x P X based on the
history of past observations Gt :“ tpxs, ysqusPJt´1K where ys are Bernoulli samples?

When the observations are of the form yt “ fpxtq ` ϵt with ϵt being a λ-subgaussian noise, the
standard approach consists in resorting to GPs. We consider a prior GP model GPp0, kp¨, ¨qq for
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function f and a Gaussian likelihood model N p0, ν2q for the noise ϵt.2 Given the history Gt :“
tpxs, ysqusPJt´1K, the posterior distribution of f is GPpµtp¨q, ktp¨, ¨qq, where, for every x,x1 P X :

µtpxq :“ ktpxqJpKt ` ν2Iq´1yt, ktpx,x
1q :“ kpx,xq ´ ktpxqJpKt ` ν2Iq´1ktpx

1q,

where ktpxq :“ pkpx1,xq, . . . , kpxt,xqqJ, Kt :“ pkpxi,xjqqi,jPJtK, and yt :“ py1, . . . , ytq
J. This

allows to have the estimate µtpxq and an index of uncertainty σ2
t pxq :“ ktpx,xq of the estimate.

´1 0 1 2

0

1

2
tpxs, ysqu

µtpxq

fpxq

Figure 1: GP estimate example of
f P r0, 1s.

This approach can be employed when yt „ Berpfpxtqq,
since a Bernoulli variable is 1{2-subgaussian. However, the
drawback is that µtpxq is not guaranteed to lie in r0, 1s, al-
though the true fpxq P r0, 1s, being the parameter of a
Bernoulli distribution (Figure 1).

A first attempt to fix this consists of keeping the prior
GPp0, kp¨, ¨qq for the unknown function f and change the
likelihood model to a Bernoulli one. However, this attempt is
unsuccessful since the posterior computation would require
evaluating the conditional distribution Prpyt|fpxtqq that is not
well defined when f „ GPp0, kp¨, ¨qq since fpxtq may take
values outside r0, 1s.

A second attempt consists in changing both the prior and the likelihood model to overcome
the “incompatibility” between the GP and the Bernoulli likelihood model. Aiming for a conjugate
prior update, we should use a Beta prior and a Bernoulli likelihood model. However, as noted
in (Rolland et al., 2019), enforcing correlation with Beta distributions is challenging differently
from the Gaussian case. The notion of “Beta process” was introduced in survival analysis but
displays a too-limited modeling power (Hjort, 1990; Paisley and Carin, 2009). Furthermore, there is
no consensus on one definition of multivariate Beta distribution. A common approach (Westphal,
2019) bases on a Dirichlet distribution Dirpζq defined over the support t0, 1u2

t
(with parameter

ζ “ pζ1, . . . , ζ2tq
J P R2t

ě0) from which to sample a probability vector pt “ pp1, . . . , p2tq
J „ Dirpζq

needed to define the multivariate Beta variable as θ “ Htpt where Ht “ pbinp0q| . . . |binp2tqq and
binpnq is the binary encoding of number n. Although this allows for a simple posterior calculation, it
is completely unstructured and does not allow embedding the structure enforced by the kernel k.

These attempts focus on deriving a “proper” Bayesian update. Since even for the subgaussian
KBs, GPs are just an estimation tool, we may consider non-Bayesian updates. (Goetschalckx et al.,
2011) proposes a sample-sharing method in which samples contribute weighted by the kernel k:

αtpxq :“ α0 `
ÿ

sPJtK

yskpx,xsq, βtpxq :“ β0 `
ÿ

sPJtK

p1 ´ ysqkpx,xsq.

This approach has convergence guarantees when f is Lipschitz continuous. Other approaches
leverage on Logistic Gaussian Processes (Leonard, 1978) or Gaussian Process Copulas (Wilson and
Ghahramani, 2010), and they all involve non-Bayesian updates due to the analytical intractability.

3.2 Open Problem 2: Concentration

Can we derive concentration guarantees for the deviation |fpxq ´ µtpxq|

(being µtpxq a suitable estimator of fpxq) which is tight for the Bernoulli observations?

2. The GP model is used for estimation and the true f may not be sampled from the GP (Chowdhury and Gopalan, 2017).
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For the λ-subgaussian case, by resorting to the GP-based estimator presented in Section 3.1
(Srinivas et al., 2010), it is possible, under Assumption 2.1, to achieve the following concentration
bound for the deviation that holds w.p. 1 ´ δ simultaneously for every t ě 1 and x P X :

|µt´1pxq ´ fpxq| ď

´

B ` λ
a

2 pγt´1 ` 1 ` logp1{δqq

¯

σt´1pxq, (2)

where γt “ maxAĂX :|A|“t IpyA; fAq is the maximum information gain at time t. This result is
obtained by deriving a self-normalized concentration inequality that bounds a suitable weighted
norm of the noise process pϵ1, . . . , ϵt´1qJ (Chowdhury and Gopalan, 2017, Theorem 1). Clearly,
Equation (2) holds for Bernoulli distributions too, being them subgaussian with λ “ 1{2.

While Equation (2) is likely tight for subgaussian observations, it fails to capture the stronger
concentration rate that characterizes Bernoulli random variables. Indeed, in the unstructured case
(i.e., MABs with no correlation between the arms), Garivier and Cappé (2011) obtain the stronger
concentration bound, holding w.p. 1 ´ δ for a fixed x P X and simultaneously for every t ě 0:

Let: utpxq :“ maxtq ě µtpxq : Ntpxqdpµtpxq, qq ď c1 logpt{δq ` c2 log logpt{δqu,
then: fpxq ď utpxq,

(3)

where dpa, bq “ a logpa{bq ` p1 ´ aq logpp1 ´ aq{p1 ´ bqq for a, b P r0, 1s is the Bernoulli KL-
divergence, µtpxq “

ř

sPJtK ys1txs “ xu{Ntpxq, Ntpxq “
ř

sPJtK 1txs “ xu, and c1, c2 ą 0 are
universal constants. Equation (3) evaluates the distance using the KL-divergence dp¨, ¨q between
Bernoulli parameters and, therefore, delivers a stronger concentration bound compared to that of
Equation (2). The derivation of this result (Garivier and Cappé, 2011) makes use of a martingale-
based argument deeply depending on the moment-generating function of the Bernoulli distribution
that seems not to be easily extensible to the KB setting in which correlation among arms is present.

3.3 Open Problem 3: Regret Minimization

Can we design regret minimization algorithms which achieve a log T regret guarantee,
highlighting the dependence on dpfpxq, fpx‹qq when X is finite?

Under Assumption 2.1, by applying the improved GP-UCB presented in IGP-UCB (Chowdhury
and Gopalan, 2017, Theorem 2), we obtain a worst-case rOp

?
T q regret guarantee w.p. 1 ´ δ:

RT pIGP-UCBq ď O
´

B
?
γT `

a

TγT pγT ` logp1{δqq

¯

.

The study of instance-dependent regret bounds for KBs is introduced in (Shekhar and Javidi, 2022),
focusing on the packing properties of the RKHS and still achieving regret bounds of order rOpTαq

for some α P p0, 1q. Here, instead, when X is finite, we are interested in understanding if achieving
log T regret is possible for KBs with Bernoulli observations. Indeed, in the unstructured case (and
|X | ă `8), the KL-UCB (Garivier and Cappé, 2011) achieves the tight instance-dependent bound:

RT pKL-UCBq ď O
ˆ

ÿ

xPX

log T

dpfpxq, fpx‹qq

˙

.

We perceive that this should be possible since, when |X | ă `8, using the trivial kernel kpx,x1q “

1tx “ x1u for every x,x1 P X , the KB reduces to an unstructured MAB. Furthermore, we conjec-
ture that this possibility (at least for optimistic algorithms) is strictly related to the open problem
of Section 3.2. Indeed, the bound of Equation (3) is specifically designed for the KL-UCB algo-
rithm (Garivier and Cappé, 2011).
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