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Abstract. The necessary integration of renewable energy sources, com-
bined with the expanding scale of power networks, presents significant
challenges in controlling modern power grids. Traditional control sys-
tems, which are human and optimization-based, struggle to adapt and
to scale in such an evolving context, motivating the exploration of more
dynamic and distributed control strategies. This work advances a graph-
based distributed reinforcement learning framework for real-time, scal-
able grid management. The proposed architecture consists of a network
of distributed low-level agents acting on individual power lines and coor-
dinated by a high-level manager agent. A Graph Neural Network (GNN)
is employed to encode the network’s topological information within the
single low-level agent’s observation. To accelerate convergence and en-
hance learning stability, the framework integrates imitation learning and
potential-based reward shaping. In contrast to conventional decentralized
approaches that decompose only the action space while relying on global
observations, this method also decomposes the observation space. Each
low-level agent acts based on a structured and informative local view
of the environment constructed through the GNN. Experiments on the
Grid20p simulation environment show the effectiveness of the approach,
which consistently outperforms the standard baseline commonly adopted
in the field. Additionally, the proposed model proves to be much more
computationally efficient than the simulation-based Expert method.

1 Introduction

Power grids across the world are controlled from control centers by human dis-
patchers, who monitor the electricity network 24 hours per day, 365 days per
year. They must constantly keep the network within its thermal limits, frequency
ranges, and voltage ranges by taking remedial actions on network elements such
as lines and substations via remote control command (Kelly et al., 2020).

Modern power grids are undergoing a strong transformation due to the intro-
duction of renewable energy sources. Unlike conventional non-renewable genera-
tors, renewable energy sources (such as solar and wind) introduce high variability
and limited dispatchability in the energy production since they depend on the
atmospheric conditions.

Traditional power grid control systems, strongly reliant on human-in-the-
loop and optimization-based algorithms, are unable to cope with the increasing
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complexity of such control problems. In order to overcome this complexity, it
is required to develop new methods. Among emerging techniques, Reinforce-
ment Learning (RL) has been explored in several works over the last years with
promising results (Dorfer et al., 2022; Chauhan et al., 2023; van der Sar et al.,
2023; Lehna et al., 2024).

In order to investigate the potential use of RL methods within next-generation
power grid controllers, the French electricity network management company
RTE (Réseau de Transport d’Electricité) developed a series of challenges called
“Learning to Run a Power Network” (L2RPN, Marot et al., 2020). These chal-
lenges were designed to simulate realistic sequential decision-making environ-
ments, in which agents must maintain the power grid operative under different
conditions of uncertainty. The challenges were offered over the Grid20p frame-
work, developed by RTE. Specifically, the Grid20p framework provides realistic
simulations of power grids and supports a wide range of control actions and
interventions (Donnot, 2020).

The main advantage of using RL is that it can identify and also capitalize
on under-utilized, cost-effective actions that human dispatchers and traditional
solution techniques are unaware of or unaccustomed to, resulting in more efficient
control of the power grid by learning effective relations in a data-driven way.

In parallel, the growing size of power grids, i.e., the increasing number of
controllable elements and complex interconnections, results in a combinatorial
explosion of potential control configurations. With this large state and action
spaces, RL algorithms suffer a problem known as the curse of dimensionality,
i.e., the amount of data/computation required to achieve a good solution may
be out of reach. Distributed Reinforcement Learning (DRL) algorithms can be
considered to mitigate this problem by distributing the learning process among
multiple agents (Zhang et al., 2021).

Original Contribution. In this work, we propose a DRL algorithm for power
grid control. In our solution, each agent uses a state representation based on
a Graph Neural Network (GNN, Wu et al., 2020). GNNs are a class of neural
networks designed to work directly with graph-structured data. In a graph, data
is represented as nodes (entities) and edges (relationships), which makes GNNs
well-suited for problems where the structure or connections between elements
are important, such as power grids. The combination of RL and GNNs allows
to learn a control strategy that captures dependencies and interactions between
connected nodes and efficiently handles large-scale graphs using message passing,
where nodes iteratively aggregate information from their neighbors. This work
focuses on a specific class of control actions named topology-based control, which
are particularly relevant in power grid operations due to their zero operational
cost. These actions operate by altering the electrical connectivity of controllable
components within the grid. Unlike interventions on generators — which incur
in financial costs — topology reconfigurations offer a cost-free alternative for
redirecting power flows and maintaining grid stability. However, the complexity
of such actions lies in their discrete, combinatorial nature and their non-local
effects on the grid.
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This work proposes a scalable distributed graph-based RL architecture for
large-scale power grids. The main contributions can be summarized as follows:

— Graph-Based Representation: Development of an effective homogeneous
graph representation of the power grid, enabling informative encoding of the
system’s topology.

— Modular Control Architecture: Design and implementation of a two-
layer distributed architecture, consisting of low-level agents acting on power
lines and a high-level controller coordinating their behavior, promoting mod-
ularity and scalability.

— Observation Space Decomposition: Integration of GNNs to perform fea-
ture extraction and implicitly decompose the observation space, allowing
agents to operate on partial but informative views of the grid.

— Imitation Learning for Accelerated Training: Implementation of Deep
Q-Learning from Demonstrations (DQfD, Hester et al., 2018) to inject expert
behavior into the training process, significantly accelerating convergence.

— Reward Decomposition: Design of a bootstrapped potential-based reward
shaping strategy (Adamczyk et al., 2025) aimed at improving credit assign-
ment and learning efficiency, particularly in large-scale power grid scenarios.

Paper Structure. The paper is organized as follows. Section 2 provides the prob-
lem formulation and discusses the learning objective. Section 3 contains a de-
tailed description of our proposed solution. Section 4 shows the experimental
results. Section 5 presents related works, while Section 6 concludes the paper
with possible future work.

2 Problem Formulation

The work was conducted over the Grid20p simulation environment, which is de-
signed to simulate realistic power grids for a given period, usually several days,
at 5-minute intervals. At each timestep, the agent is called to take an action
on the simulator, leading to the next simulator’s state. The power grid is repre-
sented as a graph of connected elements: nodes and edges represent, respectively,
substations and power lines. The simulator also models other elements, specifi-
cally, generators and loads. Generators produce electricity while loads consume
it. Substations can be viewed as routers within the power network: they encom-
pass two internal buses to which their elements (loads, generators, or power lines)
can be connected. Substations have no other role than controlling their internal
connections, affecting the overall flow of energy. Among the various interventions
supported by the simulator, topology-based actions are undoubtedly the most
interesting and extensively studied. This is because they have no operational
cost and are highly complex due to their combinatorial nature, making them
particularly challenging for humans to execute effectively. These actions allow
modifications to the internal connectivity within substations. Thus, a substation
i controlling N; elements can perform up to 2V¢ actions, corresponding to all



4 Fabrizio et al.

possible configurations of its elements across the two buses. To ensure system
stability, Grid20p allows only one substation to be controlled at each time step,
as simultaneous interventions may cause unpredictable interactions and insta-
bilities. The simulation runs for at most 7" time steps, but it ends prematurely
in case of a blackout. A blackout can occur if the energy demand (load requests)
is not satisfied by the current configuration. The primary cause of a blackout is
known as “line overload”. When the current flow of a specific power line exceeds
a certain threshold, the simulator automatically disconnects the power line. This
can potentially lead to a grid configuration that violates the load requirements.
Grid20p offers a large number of features at each time step to describe the envi-
ronment’s state, more details can be found in (Donnot, 2020). The objective of a
control algorithm is to keep the power grid stable despite the unknown evolution
of energy production and consumption. As a performance metric, we consider
the so-called “survive time”, which corresponds to the number of time steps the
grid remains operational before a blackout occurs during an episode. The goal
of an algorithm in this scenario is to maximize the survive time.

Notably, as the size of the power grid grows, the action space grows with the
number of controllable elements. Moreover, the state representation becomes
hard to be learned effectively due to the expanding grid’s graph structure and
increasing number of complex interconnections. An efficient control algorithm
must therefore handle an extremely large action space while leveraging graph-
structured data to generate informative observations.

3 Proposed Solution

In this section, we present the proposed solution, detailing the key components
and procedures. First, an overview of the learning components is provided, fol-
lowed by a description of the procedure used to convert the power grid state into
a homogeneous graph.

3.1 Distributed RL Module

The core idea of the proposed solution is to design a two-layer distributed model
that decomposes the large combinatorial action space into subsets, allowing each
to be managed almost independently. Rather than relying on a full global view
of the system, the approach uses local observations. To make these observations
more informative, the model leverages graph-structured data, allowing agents
to extract meaningful features from their local neighborhood and better cope
with the partial observability inherent in such distributed settings. The proposed
control system is composed of:

1. Low-Level Agents: Deep Dueling Double Q-learning agents with Priori-
tized Experience Replay buffer (Wang et al., 2016) in charge of managing the
power lines. Each agent controls a distinct power line, performing only the
topology actions associated with that specific line. Moreover, each agent per-
ceives only its power line, receiving a local observation composed exclusively
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by the subset of features related to that power line. Therefore, from a single
agent’s perspective, all the other agents belong to the environment, which
becomes complex and partially observable. Although common reinforcement
learning multi-agent approaches for power grid management assign agents to
substations (Yoon et al., 2021; van der Sar et al., 2023; de Mol et al., 2025),
we chose to assign agents to power lines instead, which more naturally aligns
with the objective of controlling the grid stability, avoiding lines’ overloads.

2. Shared GNN: all low-level agents share a common GNN, which processes
a graph-based representation of the power grid to enrich the information
available to the single agents. The GNN acts as a feature extractor that
enhances the informativeness of the single line observation by incorporating
neighborhood information. The Graph Neural Network aims to reduce the
degree of partial observability of the environment from each low-level agent’s
perspective. Moreover, since the GNN is shared among agents, it implicitly
promotes cooperation and possibly enhances generalization capabilities. This
procedure potentially allows graph-neural transfer learning, where a model
trained on a smaller grid can be used to initialize the model on a larger one,
possibly improving convergence.

3. High-Level Controller: an RL controller that manages the agents, decid-
ing which agent has to act on a specific situation. It receives as input the
power lines’ thermal limits and current flow information, and a binary topol-
ogy vector. In a dangerous situation, the controller selects which agent has
to act. Differently from many of the distributed solutions, which involve a
rule-based selection procedure called CAPA (Yoon et al., 2021; van der Sar
et al., 2023), this work enables a more flexible solution by means of an RL
top-level agent, following a new promising research direction as (Manczak
et al., 2023; de Mol et al., 2025). In this case, the high-level controller is a
Deep Dueling Double Q-learning agent with Prioritized Experience Replay
Buffer (Wang et al., 2016).

Since convergence in such a two-layer Multi-Agent setting is hard to achieve,
both low-level and top-level agents are pre-trained to learn expert demonstra-
tions deriving from an Expert simulation-based algorithm (Marot et al., 2018),
by means of Deep-Q-Learning from demonstrations (Hester et al., 2018). More-
over, in such a multi-agent collaborative setting, the use of a global reward may
lead to instabilities or difficulties during learning, therefore, a potential-based
reward-shaping technique (Adamczyk et al., 2025) is implemented, yielding in-
teresting results.

To better illustrate the computational steps required to produce an action,
Alg. 1 outlines the flow executed by the architecture when called to act on the
environment. An abstract high-level representation of the model is provided in
Fig. 1.

3.2 Graph-Based Observation Construction

The raw simulator observation has been pre-processed to obtain graph-like data
before passing it to the Graph Neural Network. Both the Grid20p simulator
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Fig. 1. Abstract high-level representation of the model.

and the research community have proposed methods for representing the power
grid as a graph; however, each approach presents certain limitations. All of the
existing methods work by considering each element as a node (e.g., load, gener-
ator, power line, bus), raising the problem of graph heterogeneity: nodes present
dissimilar features or belong to different classes. In general, the problem of graph
heterogeneity strongly affects the performance of GNNs (Zhu et al., 2020), which
usually fails to generalize in that setting. Therefore, the common approach to
handling heterogeneous graphs with Graph Neural Networks is to employ mod-
els specifically designed for such structures, which inevitably increases model
complexity (Li et al., 2025; Zhu et al., 2020; Mao et al., 2023).

Moreover, most of the existing methods represent buses in the graph but
omit substations, meaning that the two buses belonging to the same substation
are not connected. This leads to what is known as “bus-bar information asym-
metry”, where each bus lacks access to information about potential connections
originating from its counterpart within the same substation. The preprocessing
procedure of this work is novel, returns a homogeneous graph representation and
naturally handles the problem of busbar information asymmetry without using
heterogeneous graphs as in (de Jong et al., 2025).

Initially, every element of the grid, except for substations, is directly repre-
sented as a vector. Then, the vectors of the elements connected to the same bus
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are summed to create the bus embedding. To represent a substation, the embed-
dings of its buses, including the bus of disconnected elements, are concatenated
to form the substation embeddings. Finally, the power lines’ embeddings are
obtained by concatenating the embeddings of their two terminal substations.

Each element (power line, load, generator, or bus) is represented as a feature
vector using a one-hot-like encoding, where the vector is zero in all positions
except for the subset of dimensions reserved for its specific type. In this way, it
is possible to represent a substation by considering the vectors of the elements
connected to it. By summing the vectors bus-wise, we obtain the bus embeddings,
which are then concatenated to construct the substation embeddings, as shown
in Fig. 2. Finally, the line embedding is created as the concatenation of the
embeddings of its origin and extremity substations as illustrated in Fig. 3.

At this point, each line is represented by a vector that captures the informa-
tion from both substations it connects. To build the graph, each power line is
treated as a node, and two nodes are connected if their corresponding power lines
share a common substation. This transformation converts the original power grid
into a line graph, where power lines (originally edges) become nodes, and substa-
tions (originally nodes) become edges. With this procedure, a sequence of power
grid observations is turned into a sequence of undirected homogeneous graphs.
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4 Experiments

In this section, we empirically validate our model on the Grid20p environment.
The code used to run the experiments presented in this section is available at:
https://github.com/Carlo000ml/RL4PG.

4.1 Environment Description

The analysis was conducted on the “I2rpn_ casel/ sandboz” environment of the
Grid20p simulator (Fig. 4). It represents a power grid counting 14 substations,
20 lines, 6 generators, and 11 loads, and it encompasses 1004 different episodes.
Each episode is represented as a set of time series (referred to as a chronics),
which models the behavior of generators and loads over time. The agent must
keep the power grid stable despite the unknown evolution of energy production
(time series on generators) and consumption (time series on loads). The simula-
tion runs for a maximum of 8064 time steps. If the agent survives until the end,
the simulation terminates regardless of whether a blackout has occurred.

4.2 Training Configuration

Each power line is controlled by a dedicated low-level agent, resulting in 20 such
agents operating in parallel. Including the RL manager, the system consists of
21 learning agents. Each agent maintains a pair of neural networks — a main
network and a target network. A GNN is employed as a feature extractor, with
both main and target versions. Overall, 44 neural networks are simultaneously
loaded on the computing device, with 22 actively trained and the remaining 22
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kept frozen for target computation. Carefully chosen strategies were necessary
to ensure stable and effective learning. To this end, gradient clipping and soft
main-target synchronization were adopted to achieve stable learning and effective
training. Each main neural network was optimized using the ADAM optimizer
(Kingma and Ba, 2015). Inspired by the original DQN work (Mnih et al., 2015),
gradients were clipped in the range [—3, 3]. In addition, soft updates between the
main and target networks were employed, as this is a widely adopted practice
for enhancing training stability in Deep Q-learning methods (Lillicrap et al.,
2016). Nevertheless, the most significant contribution to training stability came
from increasing the synchronization interval. Synchronizing the main and target
networks too frequently was indeed observed to cause an exponentially growing
loss. The most straightforward and easily configurable e decay strategy based on
half-life was selected for all experiments. In this approach, the value of € decays
according to an exponential schedule defined by a half-life parameter, which
represents the number of steps required for e to be reduced by half (Paszke,
2024).

The proposed architecture is evaluated and tested against the Do-Nothing
baseline. This baseline represents a passive control strategy where the agent
takes no action throughout the episode, regardless of the system’s state. The
strength of this policy lies in the design of the environment itself. By design, the
initial configuration, where all components in the grid are connected to bus 1 of
their respective substations, is a stable configuration. This setup allows the sys-
tem to maintain safe operation for a considerable duration without intervention,
especially under moderate or favorable chronics. As a result, the Do-Nothing pol-
icy often achieves non-trivial survival times and serves as a meaningful reference
for evaluating learned strategies.

4.3 Results

As shown in Fig. 5, the proposed architecture outperforms the Do-Nothing base-
line on both validation and test sets. The z-axis denotes the id of the specific
chronic (10 in total for both validation and test sets), while the y-axis reports
the survive time.

For a deeper understanding of the model’s components, an ablation study was
conducted. The contribution of the components of the proposed architecture
was analyzed by removing them one at a time and observing the impact on
performance. A summary of the results is provided in Tab. 1.

The ablation study highlights that components such as DQfD and the GNN
are essential to achieve competitive performance within a limited amount of
time. In contrast, the impact of bootstrapped reward shaping is less evident
in the current environment. However, it is reasonable to expect that in larger
and more complex grid topologies, where reward signals may be highly diluted,
reward shaping could play a more critical role in stabilizing and accelerating the
learning process.

Finally, the learned weights of the first GNN layer are analyzed to provide
insights about the generalization capabilities of the model. Fig. 6 displays a
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Fig. 5. Comparison of the performance of our RL agent against the Do-Nothing base-
line over the validation set (top) and the test set (bottom).

Table 1. Ablation study results: average survival time on validation and test sets. The
best result per column is in bold. The first row (Do-Nothing) reports the performance
of the baseline.

Configuration Validation Perf. Test Perf.
Do-Nothing (baseline) 997.7 646.6

No DQfD 1985 1878

No GNN 1206.4 785.2

No Reward Shaping 5667.1 5324.3

Complete System 5452.2 6114.4
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Table 2. Inference Time Comparison: Proposed approach against Expert agent.

Model Inference Time (avg =+ std) [s]

Proposed Model  0.187 + 0.145
Expert Agent 2.56 £ 0.223

heatmap of these weights, providing a qualitative perspective on how the model
processes structured power grid information.

Recall that the input vector processed by the GNN is formed by concatenat-
ing the feature vectors of the origin and extremity substations of each power line.
This structural symmetry is reflected in the heatmap, which displays a clearly
symmetrical pattern with respect to the column indices corresponding to these
two segments. This symmetry suggests that the GNN has effectively learned the
structure of its input representation, potentially indicating strong generalization
capabilities.

Computational Complezity. To analyze the efficiency of the model, the compu-
tational requirements of the proposed approach were investigated. In general,
simulating a power grid is, by nature, a computationally intensive task. The
plain power grid simulation takes on average 0.1097 seconds to simulate a single
step. Thus, it takes almost 15 minutes to simulate all the 8064 time steps of
an episode. The inference time of the proposed approach is compared against
the one of the Expert agent used to collect expert demonstrations. The results,
provided in Tab. 2, reveal the computational efficiency of the proposed model
compared to the one of the simulation-based expert agent.
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5 Related Works

Distributed RL. Most of the RL methods developed to control power grids are
related to the L2RPN competitions (Kelly et al., 2020; Serré et al., 2022). An
overview of the solutions proposed during the first edition is reported in (Marot
et al., 2020). The winning solutions of the last two editions are presented in
(Dorfer et al., 2022) and (Artelys, 2023), respectively. All the solutions proposed
so far severely restrict the action space and are based on a single agent or multiple
agents acting on the entire grid.

The first approach that introduced multi-agent solutions within the power
grid topology management problem was presented in (Manczak et al., 2023). The
solution is a two-layer distributed RL model: a single RL-manager and multiple
low-level agents (one for substation). When it is time to play, the manager selects
the low-level agent that consequently plays on its controlled substation. Another
Multi-Agent approach for the power grid topology management problem was
implemented by (van der Sar et al., 2023). In this work, each substation is
managed by a different agent trained with PPO (Schulman et al., 2017). The
high-level logic deciding which agent comes to play upon a critical situation is a
rule-based logic called CAPA, which was first introduced by (Yoon et al., 2021)
but for a different scope. When a line is in overload, the CAPA logic selects as
candidate agents the two substations extremities to the overloaded power line,
and later, the substation with the highest average line utilization is selected
among the two candidates. The CAPA logic presents an important limitation
in the performance of such a distributed architecture: it becomes difficult for
the agents to develop long-term cooperative strategies. The two previous works
have been joined together in the recent work (de Mol et al., 2025). Here, the
authors compare several two-layer RL solutions. In particular, the effect of CAPA
high-level logic against an RL manager. The results show that the RL manager
outperforms the system with a CAPA high-level manager in large power grids.

This work aims to go one step further by addressing both the observation- and
action-space dimensions of the scalability challenge. We propose a distributed
framework in which every agent can observe just a limited part of the state space
and take only a small number of actions, but all the agents cooperate to achieve
a common goal.

Graph Neural Networks. There is no well-established and standard framework to
use GNNs within the context of power grid management via topology changes.
Many approaches have been proposed over the years, differing in many aspects
of the procedures, even in the representation of the power grid as a graph. A
comprehensive survey about the use of GNN within power grids is provided in
(Hassouna et al., 2024). The first work to introduce GNNs for power grid topol-
ogy control was Xu et al. (2020), where the GNN was used as a feature extractor
for a standard DQN agent. This solution represented the power grid as a het-
erogeneous graph in which the nodes were generators, loads and ends of power
lines, with two elements linked if connected to the same bus. The same graph
representation was adopted in several subsequent works (Taha et al., 2022; Xu
et al., 2022). The first solution, introducing a new graph representation, is the
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winning solution of the L2ZRPN 2020 challenge (Yoon et al., 2021). It represented
the power grid as a graph in which nodes are substations, thus using a homo-
geneous graph representation. Notably, a heterogeneous graph representation of
the power grid raises two important problems: the so-called “bus-bar informa-
tion asymmetry” and the need for heterogeneous GNN models. The former high-
lights the fact that, within heterogeneous graph representation, elements linked
to different buses on the same substation are not connected together. Therefore,
information about potential connection is lost. The latter, instead, underlines a
common problem of using standard GNNs with heterogeneous graphs: they fail
to generalize. This topic has been analyzed by de Jong et al. (2025) that solved
both problems by slightly improving the heterogeneous graph representation and
by using a heterogeneous GNN model. However, the adoption of a heterogeneous
GNN inevitably increases the model’s complexity.

6 Conclusions

In this work, we introduced a novel distributed graph-based RL algorithm to
perform power grid operation control. The method consists of a network of dis-
tributed low-level agents, each controlling a different power line, coordinated by a
high-level manager. Each low-level agent operates solely on its associated power
line and receives a local observation preprocessed by a shared graph neural net-
work. This procedure makes it possible to decompose the action space and the
observation space simultaneously, enabling a fully scalable solution. To further
improve learning efficiency and stability, the framework incorporates Deep Q-
Learning from Demonstrations and potential-based reward shaping techniques.
The results obtained in the Grid20p simulation environment demonstrate the
effectiveness of the proposed graph-based framework. The method significantly
outperforms the standard Do-Nothing baseline in terms of survival time, while
also showing much lower inference time compared to the Expert System. These
outcomes confirm the scalability and efficiency of the architecture, particularly
in scenarios requiring rapid decision-making across large-scale networks.

The main contribution of this work lies in the novel application of Graph
Neural Networks to decompose the observation space while constructing infor-
mative local observations for the decentralized agents. Both the conversion of the
environment’s observation into a homogeneous graph structure and the use of a
shared Graph Neural Network at the base of all distributed agents are carefully
motivated design choices. Together, they contribute significantly to the strength
and coherence of the proposed approach, enabling structured local observations
and efficient information sharing. The combination of Deep Q-Learning from
Demonstrations and potential-based reward shaping also plays an important
role in the proposed framework. Deep Q-Learning from Demonstrations proved
to be essential for reaching competitive performance within a limited amount of
time, while potential-based reward shaping appears to be a promising research
direction for addressing the problem of diluted rewards in large-scale power net-
works.
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Limitations and Future Works. Despite its strengths, the proposed approach
still presents some limitations. Firstly, although the low-level agents receive lo-
cal observations, the manager needs access to a complete global view of the
environment to make decisions. This global view limits the scalability of the
overall architecture. To overcome this limitation, multi-layer architectures rep-
resent a promising research direction. In these architectures, multiple high-level
managers control different, independent portions of the power grid, identified
through power grid decomposition methods. Secondly, applying imitation learn-
ing assumes the availability of a dataset of expert demonstrations, which is not
always the case. This is particularly problematic when dealing with large, un-
manageable power grids for which expert strategies are unknown. Lastly, while
the model effectively decomposes the action space, it still relies on a single-step
simulation at runtime to perform a greedy action-space reduction. This step
likely helps achieve good performance in a shorter amount of time, but it may
not be strictly necessary. Alternative action space reduction techniques should
be explored. A promising direction is the N-1 criterion proposed by (de Mol
et al., 2025; van der Sar et al., 2025). This criterion statically reduces the action
space by nearly half by retaining only those actions that preserve N-1 stability,
ensuring that the power grid remains operational even if a random power line is
disconnected.

Future developments should focus on addressing some of the mentioned lim-
itations. The development of multi-layer solutions, with multiple region-based
high-level managers coordinated by a top-level rule-based logic, represents a
possible approach to avoid using complete global views of the environment.
Additionally, alternative action space reduction techniques, as the previously
mentioned N-1 criterion, should be explored in order to significantly reduce the
inference time. Lastly, an interesting research direction, introduced by the use
of a single shared GNN, is GNN-based transfer learning. This involves using
a GNN trained on a smaller power grid as initialization for a model operat-
ing on a larger grid. This approach could significantly accelerate convergence in
large-scale scenarios.
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