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OBJECTIVE

Design a distributed reinforcement
learning controller that dynamically
adjusts loads over power lines

MOTIVATIONS
e Unmanageably large action space due to:

— Proliferation of renewable energy sources;

— Increasing size of the controlled power grid.

e Now there are obsolete traditional controllers
which strongly rely on:

— Human-in-the-loop interventions;

— Computationally intensive optimization
algorithms.

REQUIREMENTS

Scalability: Enable RL to control large power grids
by decomposing the problem over multiple agents.

Performance: Achieve longer grid survival time
compared to standard baselines.

Computational Efficiency: Guarantee lightweight
inference and training for real-time deployment.

CONTRIBUTIONS

* Novel Graph-based Distributed Deep
Reinforcement Learning (G2DRL) algorithm
splitting both the action and state spaces
among several agents:

— Innovative framework for graph-like data
creation from a power grid snapshot;

— Shared Graph Neural Network (GNN) to
process graph-like data, promoting
information sharing among the agents.

Practical techniques to speed-up the
convergence in this graph-based multi-agent
scenario:

— Imitation Learning — Deep Q-Learning
from Demonstrations (DQfD);

— Potential-based reward shaping —
bootstrapped reward shaping.
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ALGORITHM: GRAPH-BASED DISTRIBUTED DEEP RL (G2DRL)

Algorithm 1: G2DRL computational flow

1 if Danger situation then

i < Manager.select_agent(s;|u")

gt < convert_graph(s;)

ot <~ GNN(g; | ¢")]i]

a; + Agent;.policy_play(o; | 0%, af, 5})
return a;

Model’s components:

e Agents & Manager — Deep Double Dueling
Q-Learning agents with Prioritized
Experience Replay Buffer.
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e GNN — Graph Attention Network v2.

HIGH-LEVEL OVERVIEW
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DATA CONSTRUCTION: POWER GRID AS A GRAPH

Homogeneous graph representation of a power grid
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EXPERIMENTS

SETTING

Grid2Op Simulator on the "I2rpn_casel4_sandbox”
environment (12 stations and 20 links) using:

e 984 training episodes

e 10 validation episodes

e 10 test episodes

Baseline: Do-nothing agent

RESULTS
TEST-SET PERFORMANCE
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ABLATION STUDY

Configuration Test Performance
Basline 646.6
No DQfD 1877.9
No GNN 785.2
No Reward Shaping 5324.3
Complete System 6114.4

COMPUTATIONAL EFFICIENCY
Inference Time (avg + std) [s]
0.187 + 0.145
2.56 £0.223

Model
Proposed Model
Expert Agent
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