

POWER GRID CONTROL WITH GRAPH-BASED DISTRIBUTED REINFORCEMENT LEARNING

CARLO FABRIZIO*, GIANVITO LOSAPIO*, MARCO MUSSI, ALBERTO MARIA METELLI, AND MARCELLO RESTELLI {carlo.fabrizio, gianvito.losapio, marco.mussi, albertomaria.metelli, marcello.restelli}@polimi.it

OBJECTIVE

Design a distributed reinforcement learning controller that dynamically adjusts loads over power lines

MOTIVATIONS

- Unmanageably large action space due to:
- Proliferation of renewable energy sources;
- Increasing size of the controlled power grid.
- Now there are obsolete traditional controllers which strongly rely on:
 - Human-in-the-loop interventions;
- Computationally intensive optimization algorithms.

REQUIREMENTS

- Scalability: Enable RL to control *large power grids* by decomposing the problem over multiple agents.
- **Performance**: Achieve longer grid survival time compared to standard baselines.
- Computational Efficiency: Guarantee lightweight inference and training for real-time deployment.

CONTRIBUTIONS

- Novel Graph-based Distributed Deep Reinforcement Learning (G2DRL) algorithm splitting both the action and state spaces among several agents:
- Innovative framework for graph-like data creation from a power grid snapshot;
- Shared Graph Neural Network (GNN) to process graph-like data, promoting information sharing among the agents.
- Practical techniques to speed-up the convergence in this graph-based multi-agent scenario:
- Imitation Learning Deep Q-Learning from Demonstrations (DQfD);
- Potential-based reward shaping bootstrapped reward shaping.

ALGORITHM: GRAPH-BASED DISTRIBUTED DEEP RL (G2DRL)

Model's components:

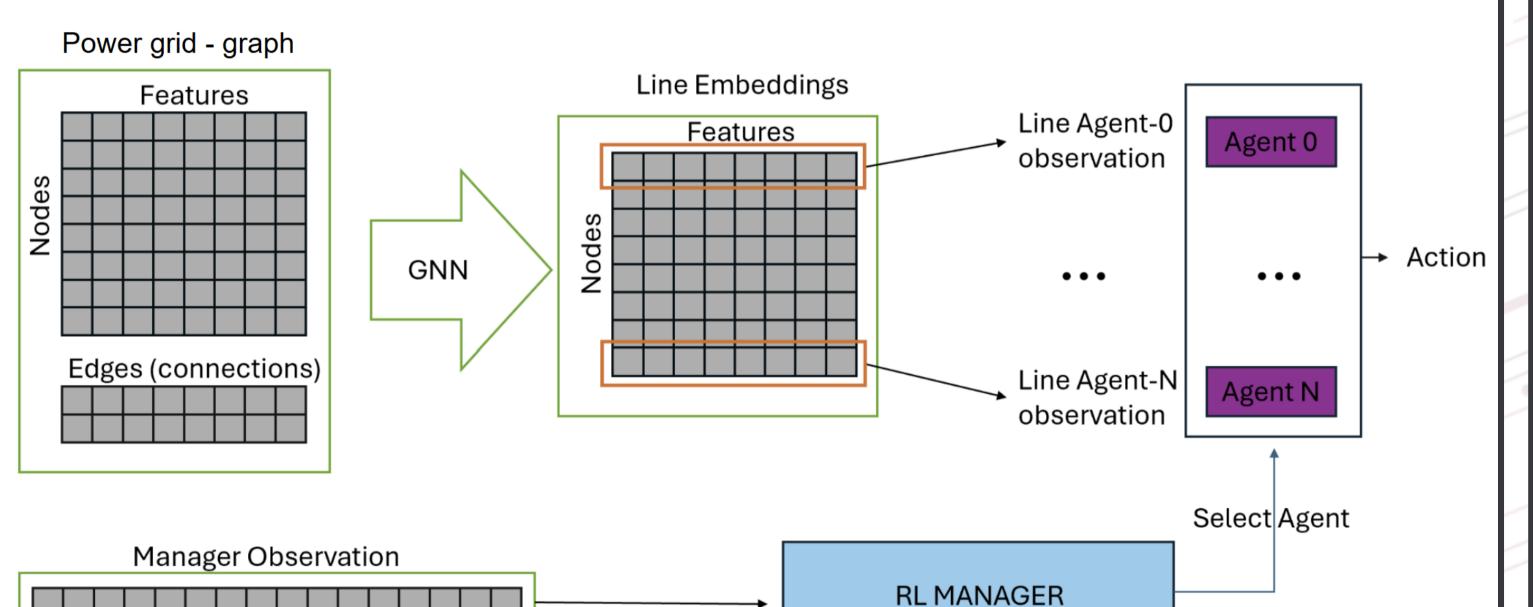
- Agents & Manager → Deep Double Dueling
 Q-Learning agents with Prioritized
 Experience Replay Buffer.
- $GNN \rightarrow Graph Attention Network v2$.

Algorithm 1: G2DRL computational flow

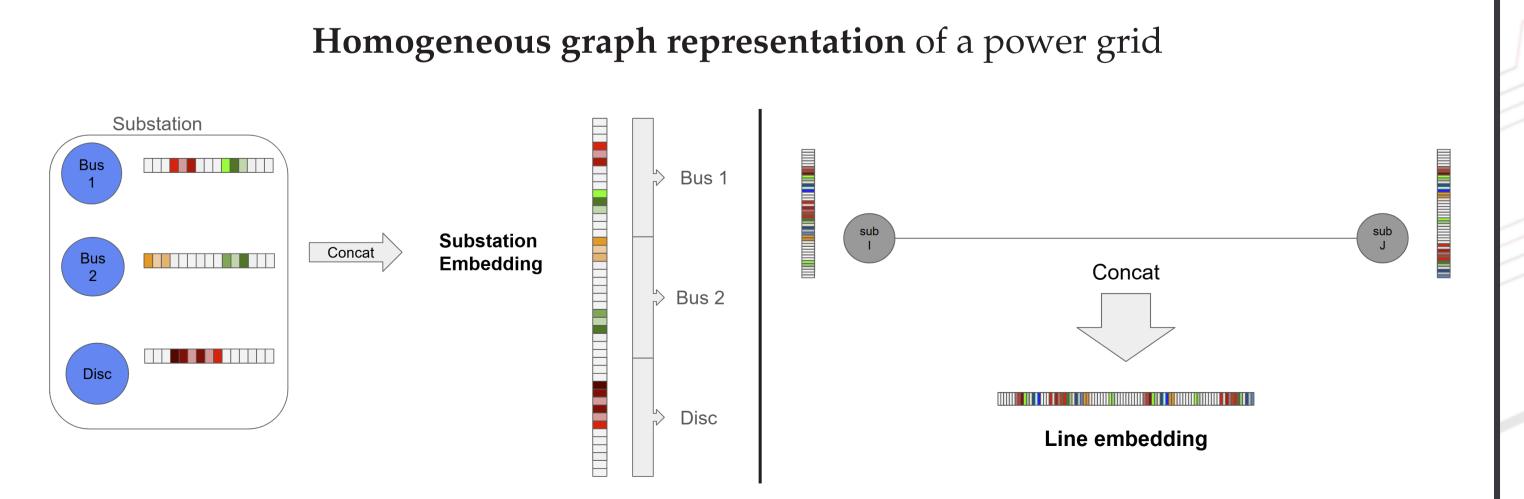
1 **if** Danger situation **then**

- $i \leftarrow \text{Manager.select_agent}(s_t | \mu^t)$
- $g_t \leftarrow \text{convert_graph}(s_t)$
- 4 $o_t \leftarrow \text{GNN}(g_t \mid \phi^t)[i]$
- $a_t \leftarrow \text{Agent}_i.\text{policy_play}(o_t \mid \theta_i^t, \alpha_i^t, \beta_i^t)$
- a return a_t

HIGH-LEVEL OVERVIEW



DATA CONSTRUCTION: POWER GRID AS A GRAPH



EXPERIMENTS

SETTING

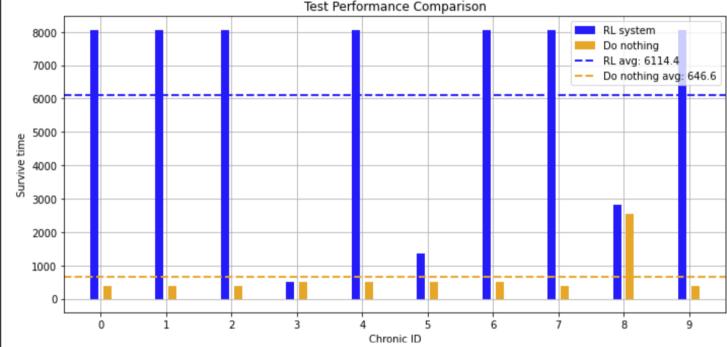
Grid2Op Simulator on the "l2rpn_case14_sandbox" environment (12 stations and 20 links) using:

- 984 training episodes
- 10 validation episodes
- 10 test episodes

Baseline: Do-nothing agent

RESULTS

TEST-SET PERFORMANCE



ABLATION STUDY

Configuration	Test Performance
Basline	646.6
No DQfD	1877.9
No GNN	785.2
No Reward Shaping	5324.3
Complete System	6114.4

COMPUTATIONAL EFFICIENCY

Model	Inference Time (avg ± std) [s]
Proposed Model	0.187 ± 0.145
Expert Agent	2.56 ± 0.223

REFERENCES

Matthijs de Jong, Jan Viebahn, and Yuliya Shapovalova. Generalizable graph neural networks for robust power grid topology control. *arXiv preprint arXiv:2501.07186*, 2025.

Todd Hester, Matej Vecerik, Olivier Pietquin, Marc Lanctot, Tom Schaul, Bilal Piot, Dan Horgan, John Quan, Andrew Sendonaris, Gabriel Dulac-Arnold, Ian Osband, John Agapiou, Joel Z. Leibo, and Audrunas Gruslys. Deep q-learning from demonstrations. In *AAAI conference on artificial intelligence*, 2018.

Antoine Marot, Benjamin Donnot, Gabriel Dulac-Arnold, Adrian Kelly, Aidan O'Sullivan, Jan Viebahn, Mariette Awad, Isabelle Guyon, Patrick Panciatici, and Camilo Romero. Learning to run a power network challenge: a retrospective analysis. In *NeurIPS Competition and Demonstration Track*, 2020a.

Antoine Marot, Benjamin Donnot, Camilo Romero, Balthazar Donon, Marvin Lerousseau, Luca Veyrin-Forrer, and Isabelle Guyon. Learning to run a power network challenge for training topology controllers. *Electric Power Systems Research*, 2020b.