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A B S T R A C T

In recent years, the use of Lithium-ion batteries in smart power systems and hybrid/electric vehicles has become
increasingly popular since they provide a flexible and cost-effective way to store and deliver power. Their full
integration into more complex systems requires an accurate estimate of the energy a battery is currently storing,
a.k.a. State of Charge (SoC). However, the standard techniques present in the literature provide an accurate
estimation of the SoC only having a priori knowledge about the battery. Moreover, their accuracy degrades
if the battery working conditions (e.g., external temperature) are variable over time, or battery measurements
necessary for the SoC estimation are affected by offset or gain biases. To overcome these limitations, this paper
proposes a novel data-driven optimization based methodology for battery SoC estimation, namely VDB-SE. The
proposed methodology provides accurate SoC estimations without knowing battery model parameters, such as
capacity and internal resistance, whose characterization would require complex and long laboratory tests.
Experimental verification and comparisons demonstrate that VDB-SE performance are comparable to the state-
of-the-art algorithms over a wide range of working conditions. Indeed, the difference in terms of performance
is smaller than 0.2%. Moreover, experimental results showed that on a real energy storage system the proposed
method provides a SoC estimation with an error of less than 2.1%.
1. Introduction

In recent years, the use of batteries in a wide range of energy-
management systems has become a key element to be handled by
energy managers [1]. For instance, according to the International Re-
newable Energy Agency [2], focusing only on battery storage in station-
ary applications, they are expected to store a total amount of 235 GW
in 2030, which rivals the one provided today by pumped-hydro stor-
age. Indeed, lithium-ion batteries have become more efficient and less
unwieldy, allowing them to be used in both self-consumption systems
to compensate for the excesses and abundance of energy production in
smart grid architectures, as well as in electric and hybrid vehicles [3],
where they can deliver power in a prompt and fast way without adding
too much weight to the vehicle. A critical issue with these applications
is that they require accurate, real-time estimation of the State-of-
Charge (SoC), defined as the ratio between the charge remaining in
the battery and the maximum charge accumulated when the battery
is fully charged. Indeed, SoC estimation is a crucial factor for efficient
battery management since energy consumption policies are commonly
based on the remaining charge and assume to have a reliable prediction
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of energy consumption given a specific load. However, unlike other
electric measurements, there is no physical sensor to measure a battery
SoC, and, therefore, it should be computed from other measurements
coming from the battery, e.g., current and voltage. This fact suggests
using data-driven methods to model the SoC behaviour and predict
its future values given a power consumption profile. Even if battery
discharge models can be built using laboratory tests at the beginning
of the battery life, they might provide unreliable predictions caused
by the variation of the working conditions over time, e.g., external
temperature changes and battery ageing, and due to the fact that the
physical measurements have small biases, e.g., the measured current
has a constant offset w.r.t. the real one [4].

In scientific literature, three different approaches for SoC estima-
tion have been considered: physical-based, black-box, and model-based
ones. None of the currently available approaches can handle the com-
plex scenario of real-time SoC estimation without the knowledge of a
priori information about the battery. More specifically, most physical-
based models, such as Coulomb Counting [5], require frequent cali-
bration of the estimator by disconnecting the battery from the power
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system or performing a full charge, thus interrupting its functionality.
Therefore, this approach is not feasible for those applications requiring
no discontinuity of service, e.g., smart grids. Conversely, black-box
techniques [6], even if they can adapt to new information coming from
the system, to provide accurate predictions they require a large amount
of data from the whole spectrum of the battery SoC (such as data
coming from multiple full battery discharges) and from all the different
working conditions the battery might encounter. Finally, the model-
based methods [6] present so far in the literature require some a priori
nowledge of the battery in use, e.g., the parameters of an equivalent
odel, and/or to set some hyper-parameter to provide accurate esti-
ation performance, and, thus, they should be appropriately tuned for

ach new energy system. Even if the model-based approaches present
n the literature do not provide a straightforward solution to the SoC
stimation problem, they have pros over physical-based and black-box
nes. Indeed, these solutions provide a parametric description of the
attery, which can be used to manage the battery even more accurately.

riginal contribution. The novel contribution provided by the current
ork are:

• the design of a novel model-based estimation procedure for the
SoC, namely VDB-SE, which uses an electric battery model, the
so-called Thevenin model [7,8], and the derivation of an opti-
mization scheme for the SoC estimation of a generic battery based
on the data-driven estimation of the model parameters.

• a method for battery SoC estimation which requires only the
knowledge of the open circuit voltage function and the voltage
and current measurements during the battery lifetime.

• an experimental campaign, based on simulation and field tests,
showing that VDB-SE is robust to changes of the external tem-
perature, battery ageing, and measurement uncertainty affecting
real-world applications.

The paper is structured as follows: Section 2 reviews the currently
vailable methods to estimate the SoC in Lithium-ion batteries; Sec-
ion 3 describes the necessary background to introduce the presented
ethod; Section 4 describes the proposed VDB-SE method in details;

ection 5 provides a thorough experimental analysis of the proposed
ethod; Section 6 draws some conclusions on the presented work and
elineates the possible future works.

. Related works

In what follows, the main related scientific works used for SoC
stimation are reviewed. The section is divided into three paragraphs,
orresponding to the three different ways to estimate the SoC of a
attery: physical-based, black-box, and model-based. See Waag et al.
6], Zhang and Fan [9], Lipu et al. [10], and Qays et al. [11] for a
omplete review on this topic.

hysical-based approach. The most effective physical approach is the
oulomb Counting (CC), as described by Ng et al. [12]. This method
stimates the SoC by knowing the initial SoC and using the inbound
nd outbound currents over time as an estimate for the SoC variation.
C shows good estimation performance over short periods but it ac-
umulates error over time and it is not able to recover from an initial
isspecification of the SoC. Therefore, it cannot be used in stationary

pplications, such as self-consumption, as it would require periodic
ecalibrations and, consequently, a temporary suspension of battery
vailability to obtain an accurate SoC estimate.

lack-box approach. The black-box category contains most of the data-
riven approaches to solve the SoC estimation problem. The most
ommon solution is to model the problem as a regression task and to
se classic Machine Learning techniques to solve it. More specifically,
he most used techniques are Artificial Neural Networks (ANN) [13–
2

8], which provide results without having complete knowledge of the i
pecific battery system, Support Vector Machines (SVM) [19–21], and
uzzy Logic modelling [22,23]. The aforementioned solutions provide
ood empirical results thanks to the use of power profiles that explore
ll possible values for the SoC. This is because these techniques cannot
eneralize well into those regions of the input/output space that have
ot been explored well in the training set. However, having a large
ariety of power profiles is not common in practice, making this class
f methods unsuitable for real-world applications.

odel-based approach. The model-based approach uses a mathematical
odel of the battery coupled with an algorithm to estimate the model
arameters. Regarding the model, it has been shown by Hu et al. [24]
nd Einhorn et al. [25] that the first-order Thevenin RC equivalent
odel represents an interesting trade-off between the model complexity

nd an accurate representation of the system. For instance, Codeca
t al. [26] starts from the knowledge of the parameters of this model
o estimate the battery SoC in closed loop. Notice that despite them
equiring additional information on the battery, such methods are
egarded as state of the art for battery estimation [27].

As batteries may change some characteristics during their lifetime,
he most suitable way to estimate the parameters turned out to be
n the field of online learning. Indeed, the battery behaviour changes
ver time, requiring the model to follow the evolution of the storage
ystem. The methodologies that have provided the best performance so
ar are those based on the Kalman Filter (KF) [28–30], which integrates
ew information as soon as it becomes available, thus adapting to the
volving behaviour of the battery. Plett [31,32] and Vasebi et al. [33]
se an Extended Kalman Filter (EKF) to model, in a discrete way, the
on-linear relationships that describe the dynamics of the components
f the equivalent model. Xiong et al. [34], He et al. [35] and Xu
t al. [36] extend this approach using Adaptive Extended Kalman Filter
AEKF) [37] for SoC estimation, self-adjusting its parameters, which
n the previous case must be known. Sun et al. [38] and Wang et al.
39,40] propose a method based on the Unscented Kalman Filter (UKF),
sing a non-linear model for battery dynamics, and Cao et al. [41]
nd Li et al. [42] combine this approach with multiple parameter
ptimization methods. The main advantage of these approaches is that
hey work in a closed-loop, which allows reducing the error as soon
s new measurements are available. Conversely, the main drawback is
hat they require prior knowledge of the battery system to properly
nitialize the model and setting properly the KF hyperparameters to
uickly converge to an accurate estimate.

In addition to the categories mentioned above, there are also hybrid
pproaches that combine different methods, such as the one proposed
y He et al. [43], using Artificial Neural Networks with Unscented
alman Filters to reduce the noise in the SoC estimation. In this work,

he UKF is used only to balance the high variability of the ANN, but
he issues presented for the black-box approaches are still present.

In practice, Model-based methods and CC are the most widely used
pproaches. More specifically, the former has the intrinsic characteris-
ic to follow the evolution of the system step by step, while the latter
llows adopting this solution in multiple contexts due to the simplicity
f the computational circuit it requires. Nonetheless, these methods are
till limited in their usability (see Rivera-Barrera et al. [44] and Qays
t al. [11] for a detailed discussion on their limitations).

. Preliminaries

The State of Charge 𝑆𝑜𝐶(𝑡) ∈ [0, 1] at time 𝑡 is defined as follows:

𝑜𝐶(𝑡) ∶=
𝑄(𝑡)

𝑄max(𝑡)
, (1)

where 𝑄(𝑡) is the actual capacity, and 𝑄max(𝑡) the fully charged battery
apacity at time 𝑡.1

1 The selected measurement units are provided in Table 1. If no reference
s provided, the quantity is dimensionless.
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Fig. 1. Thevenin equivalent model of the battery.

able 1
elected measurement units.
Quantity Units

𝑄(𝑡), 𝑄max(𝑡), 𝑄𝑁 Ah
𝑅𝑆 , 𝑅𝑃 Ω
𝐶 F
𝐼(𝑡) A
𝑉 (𝑡), 𝑉𝑂𝐶𝑉 (𝑡), 𝑉𝑅𝑆

(𝑡), 𝑉𝐶 (𝑡) V
𝑡, 𝛥𝑡 s

Given that batteries capacity degrades over time, a definition of the
tate of Health (SoH) of the battery must be taken into account. Among
he definitions available in literature, authors consider as most relevant
or this problem the State of Health 𝑆𝑜𝐻(𝑡) ∈ [0, 1] at time 𝑡 is defined

as:

𝑆𝑜𝐻(𝑡) ∶= 1
1 − 𝑝

𝑄max(𝑡)
𝑄𝑁

−
𝑝

1 − 𝑝
, (2)

where 𝑝 is the rate of the nominal capacity for which the battery cannot
be used anymore for the selected application, and 𝑄𝑁 is the nominal
capacity for the battery. For instance, for batteries used for automotive
and self-consumption applications it is common to have a 𝑆𝑜𝐻(𝑡) = 0

hen the value of 𝑄max(𝑡) is below the 80% of the nominal capacity,
.e., to use the value 𝑝 = 0.8 [45].

Since the direct measurement of the SoC is not a viable option, it is
ommon to use electrical models to characterize the battery behaviour
nd infer the SoC from it. It has been shown that the use of Thevenin’s
quivalent model [7,8], i.e., a first-order electric RC model of the
attery, shown in Fig. 1, is sufficient to model the dynamics of lithium-
on batteries. In this model, the battery is characterized by an internal
mpedance 𝑅𝑆 (𝑆𝑜𝐶, 𝑆𝑜𝐻, 𝑇 ) in series with an RC group (consisting of a
esistance 𝑅𝑃 (𝑆𝑜𝐶, 𝑆𝑜𝐻, 𝑇 ) and a capacitance 𝐶(𝑆𝑜𝐶, 𝑆𝑜𝐻, 𝑇 )) and a
oltage source, the Open Circuit Voltage 𝑉𝑂𝐶𝑉 (𝑡).2 Given this model,

the SoC estimation problem is formalized as the estimation of the
relationship between the current 𝐼(𝑡) and the voltage 𝑉 (𝑡) with the SoC,
iven the curve that characterizes the relationship between the Open
ircuit Voltage 𝑉𝑂𝐶𝑉 (𝑡) and the State of Charge 𝑆𝑜𝐶(𝑡). More specif-

cally, the SoC/Open Circuit Voltage function 𝑓 ∶ 𝑆𝑜𝐶(𝑡) → 𝑉𝑂𝐶𝑉 (𝑡)
predicts the 𝑆𝑜𝐶(𝑡) given 𝑉𝑂𝐶𝑉 (𝑡) at a specific time 𝑡. An example of
the above-mentioned relationship is presented in Fig. 2. Note that,
given a battery model, this function 𝑓 (⋅) regulating the dependence of
𝑉𝑂𝐶𝑉 (𝑡) and 𝑆𝑜𝐶(𝑡) has been proven to be experimentally constant over
time [46], therefore, it requires to be estimated only once for each

2 This notation is intended to highlight the dependence of the equiv-
lent parameters from the SoC, SoH, and Temperature (T). From now on,
or the sake of simplicity, these dependencies are dropped, i.e., 𝑅𝑆 ∶=
(𝑆𝑜𝐶, 𝑆𝑜𝐻, 𝑇 ), 𝑅 ∶= 𝑅 (𝑆𝑜𝐶, 𝑆𝑜𝐻, 𝑇 ), and 𝐶 ∶= 𝐶(𝑆𝑜𝐶, 𝑆𝑜𝐻, 𝑇 ).
3

𝑆 𝑃 𝑃 a
Fig. 2. Example of the nonlinear relationship 𝑓 (⋅) between 𝑆𝑜𝐶(𝑡) and 𝑉𝑂𝐶𝑉 (𝑡).

attery. Commonly, the estimation is done by the battery producer;
therwise, it can be estimated as shown by [47].3

. Proposed method

The approach proposed in this work, namely Voltage Dynamic-Based
tate Estimation (VDB-SE), aims at providing an estimate of the SoC,
uring the operational life of a battery given the current and voltage
easurements. The proposed methodology exploits a discretization of

he battery dynamics over time and uses it to optimize the parameters
f Thevenin’s battery model. Indeed, this work uses batches of data
ollected using the battery measurement instruments to retrieve the pa-
ameters of the equivalent Thevenin’s battery model and minimizes the
oltage reconstruction error using a non-linear optimization approach.
inally, thanks to the estimated model combined with the SoC/Open
ircuit Voltage relationship 𝑓 (⋅), it generates the SoC estimate.

The proposed model requires two time series, i.e., the measurements
f the battery current 𝐼(𝑡) and the voltage 𝑉 (𝑡), over a finite time
orizon 𝑡 ∈  , and the function 𝑓 (⋅) linking the 𝑆𝑜𝐶 with the 𝑉𝑂𝐶𝑉 .

As a preliminary to the description of the VDB-SE algorithm, in
hat follows, it is provided a formal derivation for the dynamics of
(𝑡) provided by Thevenin’s equivalent model. Using Kirchhoff’s laws
n the model, the following relationship among the voltage values of a
ithium-ion battery can be inferred:

𝑂𝐶𝑉 (𝑡) = 𝑉 (𝑡) + 𝑉𝑅𝑆
(𝑡) + 𝑉𝐶 (𝑡), (3)

here 𝑉𝑅𝑆
(𝑡) and 𝑉𝐶 (𝑡) are the voltage over the resistance 𝑅𝑆 and the

C group at time 𝑡, respectively, as shown in Fig. 1.
The dynamic evolution of the battery system over time comes from

he derivation of Eq. (3) w.r.t. time 𝑡, formally:

̇𝑂𝐶𝑉 (𝑡) = �̇� (𝑡) + �̇�𝑅𝑆
(𝑡) + �̇�𝐶 (𝑡), (4)

here the dot operator denotes the derivative w.r.t. time. Using the
quation above the dynamics of the voltage over the RC group and the
esistance 𝑅𝑆 are:

̇𝐶 (𝑡) =
𝐼(𝑡)
𝐶

−
𝑉𝐶 (𝑡)
𝐶 ⋅ 𝑅𝑃

=
𝐼(𝑡)
𝐶

−
𝑉𝑂𝐶𝑉 (𝑡) − 𝑉 (𝑡) − 𝑅𝑆 ⋅ 𝐼(𝑡)

𝐶 ⋅ 𝑅𝑃
, (5)

�̇�𝑅𝑆
(𝑡) = 𝑅𝑆 ⋅ �̇�(𝑡) + �̇�𝑆 ⋅ 𝐼(𝑡), (6)

espectively.
Since this analysis takes into account short periods of time, 𝑅𝑆 can

e approximated as a constant, i.e., �̇�𝑆 = 0, as suggested by He et al.

3 Notice that the function 𝑓 may present different characteristics according
o the kind of Lithium-ion technology, e.g., the Lithium Ion Phosphate ones.
t is known in the literature that the estimation of such batteries using a
odel-based approach is not a viable option [48], and should be solved with
different approach.
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Fig. 3. An example of the algorithm applied to a real signal.

[49]. By combining Eqs. (4), (5), and (6), the final expression of the
battery dynamics becomes:

�̇� (𝑡) − �̇�𝑂𝐶𝑉 (𝑡) + 𝑅𝑆 ⋅ �̇�(𝑡) +
𝐼(𝑡)
𝐶

−
𝑉𝑂𝐶𝑉 (𝑡) − 𝑉 (𝑡) − 𝑅𝑆 ⋅ 𝐼(𝑡)

𝐶 ⋅ 𝑅𝑃
= 0. (7)

Using Eq. (7) and assuming 𝛥𝑡 as sampling interval, the battery
dynamics equation becomes:

𝑉 (𝑡) − 𝑉 (𝑡 − 1)
𝛥𝑡

−
𝑉𝑂𝐶𝑉 (𝑡) − 𝑉𝑂𝐶𝑉 (𝑡 − 1)

𝛥𝑡
+ 𝑅𝑆

[

𝐼(𝑡) − 𝐼(𝑡 − 1)
𝛥𝑡

]

+
𝐼(𝑡)
𝐶

−
𝑉𝑂𝐶𝑉 (𝑡) − 𝑉 (𝑡) − 𝑅𝑆 ⋅ 𝐼(𝑡)

𝐶 ⋅ 𝑅𝑃
= 0, (8)

where backward finite differences had been used to approximate the
derivatives.

The VDB-SE algorithm is articulated into two phases, both con-
sistently executed during the operational life of the battery: first, an
approximation of the model �̂� of the battery is computed, then, the
estimated dynamic of the battery voltage 𝑉 (�̂�, 𝑡) derived from the model
is used to get an estimate of the SoC 𝑆𝑜𝐶(�̂�, 𝑡).

A block diagram showing the proposed model is presented in Fig. 3
and an example of execution of the algorithm over time is provided
in Fig. 4. In the first phase, VDB-SE estimates a model for the voltage
𝑉 (𝜗, 𝑡) to obtain an approximate value for the Open Circuit Voltage
𝑉𝑂𝐶𝑉 (𝜗, 𝑡). Using a training dataset coming from the time interval  ∶=
{𝜏,… , 𝜏 +𝑁}, the VDB-SE algorithm infers a model, which depends on
the parameter vector 𝜗 ∶=

(

𝑅𝑆 , 𝑅𝑃 , 𝐶, 𝑆𝑜𝐶𝜏 , 𝑄max
)

which fully char-
acterize Thevenin’s approximation of a battery, where 𝑆𝑜𝐶𝜏 denotes
the battery SoC at the beginning of the time interval  . Formally, the
analytical formalization of this problem is:

min
𝜗

𝜏+𝑁
∑

𝑡=𝜏+1
|𝑉 (𝜗, 𝑡) − 𝑉 (𝑡)|, (9)

where the voltage dynamics are denoted by:

𝑉 (𝜗, 𝑡) =
𝛥𝑡 ⋅ 𝐶 ⋅ 𝑅𝑃
𝛥𝑡 + 𝐶 ⋅ 𝑅𝑃

[

( 1
𝛥𝑡

)

𝑉 (𝜗, 𝑡 − 1) +
(

1
𝛥𝑡

+ 1
𝐶 ⋅ 𝑅𝑃

)

𝑉𝑂𝐶𝑉 (𝜗, 𝑡)

−
( 1
𝛥𝑡

)

𝑉𝑂𝐶𝑉 (𝜗, 𝑡 − 1) −
(

𝑅𝑆
𝛥𝑡

+ 1
𝐶

+
𝑅𝑆

𝐶 ⋅ 𝑅𝑃

)

𝐼(𝑡) +
(

𝑅𝑆
𝛥𝑡

)

⋅ 𝐼(𝑡 − 1)
]

,

(10)

𝑉𝑂𝐶𝑉 (𝜗, 𝑡) = 𝑓

(

𝑆𝑜𝐶𝜏 +
𝛥𝑡

3600 𝑄max

𝑡
∑

ℎ=𝜏
𝐼(ℎ)

)

, (11)
4

Fig. 4. An example of the VDB-SE over time.

for each 𝑡 ∈  , where Eq. (10) has been derived substituting the
voltage and Open Circuit Voltage estimators in Eq. (8), and Eq. (11)
uses a CC approach to compute the values of the Open Circuit Voltage.
Solving the minimization problem in Eq. (9) requires to set an initial
parameter vector 𝜗0 ∶=

(

𝑅0
𝑆 , 𝑅

0
𝑃 , 𝐶

0, 𝑆𝑜𝐶0
𝜏 , 𝑄

0
max

)

, and use an iterative
nonlinear optimization procedure to find the optimal vector �̂� ∶=
(

�̂�𝑆 , �̂�𝑃 , �̂�, 𝑆𝑜𝐶𝜏 , �̂�max

)

.4

Subsequently, �̂� is used to generate a prediction of the SoC,
𝑆𝑜𝐶(�̂�, 𝑡), at time 𝑡. More specifically, using the measurements coming
from the operational life of the battery 𝐼(𝑡) and 𝑉 (𝑡), the inverse
SoC/Open Circuit Voltage relationship 𝑓−1(⋅) and the expression of
the Open Circuit Voltage 𝑉𝑂𝐶𝑉 (�̂�, 𝑡), the estimated SoC for 𝑡 > 𝜏 + 𝑁
becomes 𝑆𝑜𝐶(�̂�, 𝑡) = 𝑓−1(𝑉𝑂𝐶𝑉 (�̂�, 𝑡)), where:

𝑉𝑂𝐶𝑉 (�̂�, 𝑡) =
𝛥𝑡 ⋅ �̂�𝑃 ⋅ �̂�

𝛥𝑡 + �̂�𝑃 ⋅ �̂�

[

( 1
𝛥𝑡

)

𝑉𝑂𝐶𝑉 (�̂�, 𝑡 − 1) +

(

𝛥𝑡 + �̂�𝑃 ⋅ �̂�

𝛥𝑡 ⋅ �̂�𝑃 ⋅ �̂�

)

𝑉 (𝑡)

−
( 1
𝛥𝑡

)

𝑉 (𝑡 − 1) +

(

�̂�𝑆
𝛥𝑡

+ 1
�̂�

+
�̂�𝑆

�̂�𝑃 ⋅ �̂�

)

𝐼(𝑡) −

(

�̂�𝑆
𝛥𝑡

)

𝐼(𝑡 − 1)

]

. (12)

Since the auto-regressive coefficient �̂�𝑃 ⋅�̂�
𝛥𝑡+�̂�𝑃 ⋅�̂�

in Eq. (12) is smaller
than one for any value of 𝛥𝑡 > 0, the estimation process is always stable
w.r.t. misspecification of the initial 𝑉𝑂𝐶𝑉 . This phenomenon will be
further investigated in Section 5.2.

Notice that during the operational life of the battery, the above-
mentioned phases can be carried out on a moving window of fixed
size, so that the resulting estimation is up-to-date w.r.t. the battery
status. For instance in Fig. 4, after a first estimation of �̂�1, the VDB-
SE algorithm provides a prediction 𝑆𝑜𝐶(�̂�1, 𝑡) using such a parameter
in Eq. (12). Over time, due to changing environmental conditions or

4 Each quantity 𝑋0 and �̂� denotes the initial and optimal version of the
original quantity 𝑋, respectively.
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Fig. 5. Power profile input signal for Single-Cell experiments.

able 2
haracteristics of the simulated cell.
Feature Value

Rated voltage 3.6 V
Minimum voltage 2.7 V
Maximum voltage 4.2 V
Rated capacity 40 Ah/160 Wh
Rated charging/discharging current 40 A

battery ageing, this model start providing poor performance. To cope
with that, a new parameter �̂�2 is estimated on more recent measure-

ents, and the prediction 𝑆𝑜𝐶(�̂�2, 𝑡) is performed using the up-to-date
model. This process can be repeated every time new data is available.

5. Experiments

In this section, the VDB-SE methodology is tested in two sets of
experiments. First, a real self-consumption power profile, provided in
Fig. 5, is used to simulate a single battery setting included as energy
storage system in a real smart grid. The current 𝐼(𝑡) and voltage 𝑉 (𝑡)
time series are generated using this power profile and the correspond-
ing first-order Thevenin’s battery model. Notice that the proposed test
aims at comparing the performance of the different methods when
dealing with biases and different conditions in a fully controlled con-
text, i.e., in which the SoC estimation provided by the methods can be
compared with the real value of the SoC.

Second, the real inputs (current and voltage) from a real-world
energy storage system are taken into account. The test aims at under-
standing how VDB-SE performs on the task of estimating the overall
SoC of a real battery , given the large number of factors that affect the
quality of the estimate on a real system.

5.1. Single-cell experiments

The RC model parameters 𝑅𝑆 , 𝑅𝑃 , 𝐶, and the curve 𝑉𝑂𝐶𝑉 (𝑡) =
𝑓 (𝑆𝑜𝐶(𝑡)) used for the first experiment are based on the results of
a performance test done on a Nickel-Manganese-Cobalt (NMC) cell
manufactured by Kokam, model 𝑆𝐿𝑃𝐵100216216𝐻 . Table 2 shows the
characteristics of the cell.

The experiments have been performed using a battery simulator
developed using real-world battery data, which generates the values of
the battery current, voltage and reference SoC over time. This simulator
has been implemented in Matlab-Simulink.5 The code used for the
results provided in this section has been run on a Intel(R) I5(R) 8259U
@ 2.30 GHz CPU with 8 GB of LPDDR3 system memory. The operating

5 https://it.mathworks.com/products/simulink.html. The corresponding
ode, and the code to replicate the experiments of this section are available
t https://github.com/marcomussi/vdbse.
5

system was macOS 11.2.3, and the experiments have been run on
Matlab(R) 𝑅2020𝑏.

In what follows, the tests conducted use different values of the
temperature and SoH set in the simulator. More specifically, the tem-
peratures varies in 𝑇 ∈ {10 ◦C, 20 ◦C, 30 ◦C}, and the SoH varies in
𝑆𝑜𝐻 ∈ {1, 0.75, 0.5, 0.25, 0}, assuming that 𝑝 = 0.8. The tests have been
conducted using a real-world power profile, which causes the battery
SoC to vary in the range [0.15, 0.9], which includes those SoC values
for which the function 𝑓 is less variable and, therefore, where the SoC
estimation task presents the most challenges. Moreover, two types of
biases on the current and voltage signals were considered: an offset and
a gain bias of 1% for the current, and an offset and gain bias of 0.1%
for the voltage, whose magnitudes were chosen so that they are in line
with what is provided in the technical data sheet of the measurement
instrument [4] used by the battery. In this set of experiments, the
two biases are applied to current and voltage simultaneously since, in
real life, they might affect the sensors concurrently. These scenario has
been denoted from now on with 𝐵, while the experiments conducted
without any bias has been denoted with 𝑊𝐵. Finally, the authors
analyse a setting in which the voltage used to estimate the function
𝑓 (⋅) is affected by the same offset and gain biases occurring on 𝑉 (𝑡).
This last experiment, from now on referred as 𝐵𝐹 , exemplifies the case
in which the same measuring instrument is used to estimate 𝑓 (⋅) and
during the operational life of the system.

In the tests, the estimation of the Thevenin’s model parameters
used in VDB-SE is performed using a sliding window whose width is
determined by a variation of the SoC of at least 0.4. More specifi-
cally, the estimation phase of VDB-SE is performed each time using
the values of current and voltage measurements from a time window
 = {𝜏,… , 𝜏 + 𝑁} such that max𝑡∈ 𝑆𝑜𝐶(𝑡) − min𝑡∈ 𝑆𝑜𝐶(𝑡) = 0.4.6 In
the analysed setting, the cardinality of the time window for the first
estimation phase is 𝑁 = 43,000, corresponding to approximately 12 h
of measurements. The model is used to estimate the Thevenin’s model
parameters and the initial SoC, and, subsequently, the procedure is
repeated on a sliding window with same amplitude as above, each time
the SoC variation exceeds 0.2.

During the operational life of the system, the SoC value is propa-
gated using the discrete dynamic equations of the Thevenin’s model
with the most recent parameter available to estimate the 𝑉𝑂𝐶𝑉 (𝑡).

The VDB-SE algorithm has been compared with two methods that
are suitable in real online applications: the Coulomb Counting (CC)
[50] which has a small computational effort, and the model-based
method described in Codeca et al. [26], hereafter referred as MB,
which works online but requires a priori knowledge of the Thevenin’s
equivalent model parameters of the battery. Notice that more complex
methods from the literature would not constitute a fair comparison to
our method since they require the availability of lab experiments to
characterize the battery, while VDB-SE only exploits the data coming
from the operational life of the battery. The VDB-SE, CC, and MB
methods are compared in terms of the percentage error 𝜖(𝑡), defined
as follows:

𝜖(𝑡) = 100 ||
|

𝑆𝑜𝐶(𝑡) − 𝑆𝑜𝐶(�̂�, 𝑡)||
|

.

esults. A preliminary experiment has been conducted to evaluate
he capabilities of VDB-SE in the case no noise and bias are present.
he implemented approach, applied to a batch of 20,000 noiseless
easurements generated from a stationary battery, e.g., with fixed

emperature and SoH and with no measurement biases, can reconstruct
he dynamics of the voltage 𝑉 (𝑡) with an average error of 10−2 V and
corresponding error on the SoC estimation of 𝜖(𝑡) ≤ 0.01%.

6 In generic settings, it is possible to set a percentage of the SoC to deter-
mine the length of the period 𝑁 used for optimizing the model parameters,
to use a fixed number of samples, or use a condition on both the variation of
the SoC percentage and a maximum number of samples.

https://it.mathworks.com/products/simulink.html
https://github.com/marcomussi/vdbse
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Table 3
Errors (percentage) on the different setting as the SoH, temperature and different biases
are present on the battery measurements.
𝑆𝑜𝐻 𝑇 𝑊 𝐵 𝐵 𝐵𝐹

CC VDB-SE MB CC VDB-SE MB CC VDB-SE MB

1
10 ◦C 0.00 0.15 0.00 0.94 1.32 1.31 0.94 0.22 0.04
20 ◦C 0.00 0.07 0.00 0.94 1.28 1.29 0.94 0.14 0.02
30 ◦C 0.00 0.01 0.07 0.94 1.28 1.29 0.94 0.14 0.06

0.75
10 ◦C 0.90 0.17 0.01 1.17 1.32 1.31 1.17 0.24 0.05
20 ◦C 0.91 0.07 0.01 1.18 1.28 1.29 1.18 0.15 0.03
30 ◦C 0.91 0.01 0.05 1.18 1.28 1.29 1.18 0.15 0.05

0.5
10 ◦C 1.91 0.19 0.02 2.15 1.31 1.30 2.15 0.26 0.06
20 ◦C 1.92 0.06 0.02 2.16 1.27 1.28 2.16 0.15 0.04
30 ◦C 1.93 0.01 0.05 2.17 1.27 1.28 2.17 0.15 0.04

0.25
10 ◦C 3.03 0.20 0.04 3.26 1.31 1.29 3.26 0.27 0.07
20 ◦C 3.05 0.07 0.04 3.29 1.27 1.28 3.29 0.16 0.05
30 ◦C 3.06 0.02 0.04 3.29 1.27 1.28 3.29 0.16 0.04

0
10 ◦C 4.29 0.20 0.05 4.52 1.30 1.29 4.52 0.26 0.09
20 ◦C 4.32 0.07 0.05 4.55 1.26 1.27 4.55 0.17 0.07
30 ◦C 4.34 0.02 0.03 4.57 1.26 1.27 4.57 0.16 0.03

Table 3 shows the results of the experimental campaign conducted
n synthetic data. First, variations of the operational temperature do
ot change significantly (less than 0.07%) the estimation error of the
C and MB methods, while generally higher values of the tempera-
ure provide smaller errors for VDB-SE, with a decrease in the range
0.0%, 0.18%]. Instead, regarding variations of the SoH, MB and VDB-SE
eals with a degradation of the battery health, with an error increasing
f at most of 0.05% from 𝑆𝑜𝐻 = 1 to 𝑆𝑜𝐻 = 0. Conversely, the
C methods has a significant increase in terms of error, i.e., from
%–1% for 𝑆𝑜𝐻 = 1 to 4.3%–4.7% for 𝑆𝑜𝐻 = 0. More specifically,

MB maintains an almost constant estimation error over different SoHs,
thanks to the closed-loop approach, which allows to adapt to the new
battery behaviour. Similarly, VDB-SE does not suffer from an increased
error due to SoH variations since its optimization procedure adapts the
value of 𝑄max. Both algorithms keep the error below 1.32%, where
CC error increases up to 4.5% as the battery status worsen. Finally,
comparing the B and BF settings, notice that the coherence in terms
of measurements when estimating the 𝑓 (⋅) relationship and the values
of the current and voltage from the battery, allows VDB-SE and MB to
recover from the introduced biases. Conversely, CC does still have an
error magnified by the introduction of current and voltage biases.

Most of the times MB and VDB-SE provide similar error, i.e, around
0.2% in the WB and BF cases, and around 1.3% in the B case. Moreover,
their difference in terms of performance is always smaller than 0.2%.
This highlight the capability of VDB-SE to provide a good SoC estima-
tion, even if it does not require a priori knowledge of the parameters
of the Thevenin’s equivalent model. Conversely, MB is providing good
estimates but only correctly setting the Thevenin’s model parameters
at the beginning of the estimation procedure.

The predictions over time of VDB-SE and the comparison methods
in the settings 𝐵 and 𝐵𝐹 are presented in Fig. 6. VDB-SE presents
an estimate of the SoC that is qualitatively better than the CC and
comparable with MB, preventing the estimate from diverging from the
real SoC over time.

Fig. 6a represents the error 𝜖(𝑡) for the analysed methods in the
presence of the offset and gain biases for both current and voltage,
as usually happens in real systems. The figure shows how CC has no
mechanism to avoid the ever-increasing estimation error. Conversely,
MB can recover from the occurrence of a large estimation error as it
exceeds a predetermined threshold. This phenomenon is due to the
correction mechanism provided by the closed-loop structure, used by
MB, which evaluates the battery voltage, and introduces a correction if
the predicted and actual voltage values differ more than a predefined
threshold. In this experiment, VDB-SE provides an estimation that is
qualitative comparable with MB. Indeed, the VDB-SE model prevents
6

Fig. 6. Error in SoC estimation in presence of measurement biases in case of State of
Health equal to 0.5.

divergence between estimated and real SoC and keeps the error 𝜖(𝑡)
strictly below 2% of the SoC range on average on the samples {𝜏 +
𝑁,… , 𝑇 }, i.e., after the first optimization phase.

Fig. 6b shows a test to evaluate the performance in the case where
𝑓 (⋅) is estimated using the same measuring instrument of the test. In
this figure, CC behaves, as in previous experiments, as the voltage
measurement bias does not affect its performance. Conversely, MB and
VDB-SE provide smaller errors (less than 1%) than those present in
the previous cases, even if the voltage and current biases are present
with the same magnitude as before. More in detail, the performance of
VDB-SE is considerably better than the one in Fig. 6a because, being
the two biases equal, their influences cancel each other out in the
estimation process. This suggests that VDB-SE should be run with the
same measuring instruments used for the 𝑓 (⋅) estimation to provide
better estimation performance.

In summary, VDB-SE is the only algorithm capable, among those in-
vestigated, to deal (without preliminary information about the system)
with both the offset and gain biases commonly found on real-world
sensors and, therefore, represents a viable option on real-world systems.

5.2. Field experiments

The second experiment evaluates the performance of the VDB-SE
algorithm on a real battery storage system installed at the Test Facility
of RSE in Milan (see Sandroni et al. [51] for details). Typically, this
kind of system is used to improve the flexibility of the smart grid,
enabling better exploitation of the installed renewable resources and
providing grid services to the main grid. The system consists of a
rack of nine lithium-ion modules of 3.55 kWh each, connected in
series for total energy of 32 kWh. An additional module is dedicated
to the protection and management of the cells. Every module has
16 Lithium-Manganese-Oxide (LMO) cells manufactured by SAMSUNG
with a capacity of 60 Ah. The main characteristics of the battery are
listed in Table 4. Notice that the complexity of the system is still
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Fig. 7. Data used for in the real battery storage system experiment.

Table 4
Characteristics of the real-world battery.

Feature Value

Rated voltage 532.8 V
Minimum voltage 432.0 V
Maximum voltage 593.3 V
Rated capacity 60 Ah/32 kWh
Number of cells 144
Rated charging/discharging power 32 kW

captured by a single Thevenin’s model, and no information on the cell
structure, neither their connection scheme, are needed for the VDB-SE
modelling approach.

The function 𝑓 (⋅) that characterizes the relationship between 𝑆𝑜𝐶
nd 𝑉𝑂𝐶𝑉 , and the value of 𝑄max of the battery rack were inferred
ith a laboratory test, in a way comparable the one described in
ection 5.1. The data used to estimate 𝑓 (⋅) are provided in Fig. 7a
current) and Fig. 7b (voltage). The SoC estimation test was performed
n a real smart grid load profile of about 3 hours of current and voltage
ampled at 1 Hz presented in Figs. 7c–7d. The reference value of the
oC is determined through CC that, as pointed out before, has a small
umulative error over short time periods. The value of 𝑄max used by
C has been estimated using an offline discharge test. The MB model
as not applied here, since the information required to properly set its
yperparameter were not available. As in the previous cases, the model
stimation is performed using a sliding window that includes 0.4 of the
oC range, and the model update is performed as soon as a variation
f 0.2 of the SoC occurs.

Finally, the stability of the VDB-SE algorithm is tested in a setting
n which the stream of measurements is discontinued for a certain
mount of time during which the model of the battery is assumed to
e constant. This behaviour is simulated providing at time 𝑡 = 6000,
uring the prediction phase of VDB-SE, and after the estimation phase,
misspecified value of 𝑆𝑜𝐶(�̂�, 𝑡) and, hence 𝑉𝑂𝐶𝑉 (�̂�, 𝑡).

More specifically, the experiments have been conducted using val-
ues 𝑆𝑜𝐶(�̂�, 𝑘) ∈ {0.1, 0.2,… , 1} for the value of the SoC at the initial
time instant 𝑘 > 𝜏 + 𝑁 , where the true value of the initial SoC is
𝑆𝑜𝐶(𝑡) = 0.4.

Results. Fig. 8a shows the actual and estimated SoC value provided by
VDB-SE and Fig. 8b shows the corresponding SoC estimation error 𝜖(𝑡).

verall the VDB-SE algorithm provides a good approximation of the
oC, with an average error over the test set of less than 2.1%. The fact
7

hat the dataset has a current 𝐼(𝑡) > 0 when the voltage is constant c
Fig. 8. Results for the experiment on real data.

suggests the presence of an offset bias on the current input. Therefore,
even in this case, VDB-SE handles biases in the measurements, prevent-
ing the divergence of the SoC estimate from the real one (or converge
to a good approximation of the SoC value in case of divergence due
to interruption of the signals). This test also shows how the VDB-SE
algorithm can handle complex energy storage systems, even without
knowing their structure.

The time required to execute VDB-SE over the set of data considered
for this experiment on the device described above is on average lower
than 3 s. Indeed, the first training phase requires approximately 0.5 s
and a single prediction requires 2 ⋅ 10−7 s.7

Fig. 9a reports the estimation provided by VDB-SE as the values
of 𝑆𝑜𝐶(�̂�, 𝑘) varies, and Fig. 9b presents the corresponding errors 𝜖(𝑡).
The figure shows only the first 1500 time steps since the effects of the
misspecification of the initial SoC fades completely after such a period
for all the values of the initial SoC 𝑆𝑜𝐶(�̂�, 𝑘) analysed. More specifically,
the errors decrease below 5% after ≈ 1000 time steps and converges to
the one provided by the VDB-SE without misspecification of the SoC
before the end of the analysed period. As expected, the time required
for the convergence is slower if the initial misspecification error is more
evident, while for small errors, e.g., for 𝑆𝑜𝐶(�̂�, 𝑘) = 0.4, the estimation
error decreases faster.

6. Conclusions and future works

The problem of estimating the SoC of lithium-ion batteries is of
paramount importance in energy management systems. Indeed, they

7 The time required to provide a prediction by the CC and MB methods is
omparable with the one used by VDB-SE.
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Fig. 9. Results for the experiment on real data in presence of different wrong SoC
starting values. The numbers in the legends denotes intensity of the misspecification
of the initial SoC.

constitute reliable and cheap energy storage devices, and an accurate
estimate of their residual capacity allows fine-grained control of the
overall system. In this paper, a novel algorithm, namely VDB-SE, has
been presented. This method exploits the mathematical characteriza-
tion of the battery offered by Thevenin’s model to define a specifically
crafted optimization problem for the SoC estimation problem. Thanks
to this modelling approach, it is possible to estimate the equivalent
battery parameters and use them to predict the SoC during its op-
erational life without requiring a priori characteristics of the storage
system and avoiding its periodic recalibration. These characteristics
make VDB-SE a candidate for articulated storage systems, such as
smart grids and automotive applications, thanks to its ability to exploit
only the measurements coming from the battery and not requiring
preliminary tests on the storage device. Experimental results on both
synthetically generated and real-world data showed that the VDB-SE
algorithm attains high performance in the SoC estimation under various
sets of conditions. Specifically, it showed less than 0.2% degradation
in the error over the synthetic experiments w.r.t. MB, a model that
requires a priori information on the battery to properly function, and
an average error of less than 2.1% over the SoC estimation of a real
energy storage system. The same experiments showed that the proposed
algorithm can handle changes in the temperature, degradation of the
battery, and measurement biases.

Future works will consider the analysis of the battery State of
Health, to reshape what is proposed here, focusing on the estimate
of the internal resistance and its behaviour w.r.t. degradation and the
8

effect of the temperature over time, in addition to the evolution of
the maximum capacity during the ageing process. Furthermore, an
interesting study is the evaluation of the impact of VDB-SE algorithm
when integrated into microgrid controllers.

Nomenclature

The symbols used in the paper are:

𝑡 Time instant
𝑆𝑜𝐶(𝑡) State of Charge at time instant 𝑡
𝑄(𝑡) Battery capacity at time instant 𝑡
𝑄𝑚𝑎𝑥(𝑡) Maximum capacity of the battery at time instant 𝑡
𝑆𝑜𝐻(𝑡) State of Health at time instant 𝑡
𝑝 Rate of the nominal capacity for which the battery

cannot be used anymore
𝑄𝑁 Battery nominal capacity
𝑅𝑆 Internal resistance
𝑅𝑃 Polarization resistance
𝐶 Battery capacitance
𝑉𝑂𝐶𝑉 (𝑡) Voltage over the OCV source
𝐼(𝑡) Current signal measured from the battery
𝑉 (𝑡) Voltage signal measured over the battery
𝑓 (⋅) Function providing the 𝑉𝑂𝐶𝑉 (𝑡) given the current 𝑆𝑜𝐶(𝑡)
 Set of the time instant used in estimation phase
𝑉𝐶 (𝑡) Voltage over the RC group
𝑉𝑅𝑆

(𝑡) Voltage over the internal resistor
�̇�𝑂𝐶𝑉 (𝑡) Derivative over time of 𝑉𝑂𝐶𝑉 (𝑡)
�̇� (𝑡) Derivative over time of 𝑉 (𝑡)
�̇�𝑅𝑆

(𝑡) Derivative over time of 𝑉𝑅𝑆
(𝑡)

�̇�𝐶 (𝑡) Derivative over time of 𝑉𝐶 (𝑡)
�̇�(𝑡) Derivative over time of 𝐼(𝑡)
�̇�𝑆 Derivative over time of 𝑅𝑆
𝑇 Temperature
𝛥𝑡 Sampling interval
𝜗 Vector parameters of the Thevenin’s battery model
𝑆𝑜𝐶(�̂�, 𝑡) Estimates of the SoC at time instant 𝑡
𝑉 (�̂�, 𝑡) Estimates of the voltage 𝑉 (𝑡) at time instant 𝑡
𝑉𝑂𝐶𝑉 (�̂�, 𝑡) Estimates of the Open Circuit Voltage 𝑉𝑂𝐶𝑉 (𝑡) at time

instant 𝑡
𝜏 Starting time for the estimation phase
𝑁 Estimation phase length
𝑆𝑜𝐶𝜏 Battery SoC at the beginning of the time interval 
𝜗0 Initial parameter vector
�̂� Estimated optimal parameter vector
𝜖(𝑡) SoC estimation error at time instant 𝑡

The acronym used in the paper are:

𝑉 𝐷𝐵 − 𝑆𝐸 Voltage Dynamic-Based State Estimation
𝑆𝑜𝐶 State of Charge
𝑆𝑜𝐻 State of Health
𝐶𝐶 Coulomb Counting
𝑀𝐵 Model Based
𝐴𝑁𝑁 Artificial Neural Networks
𝑆𝑉𝑀 Support Vector Machines
𝐾𝐹 Kalman Filter
𝐸𝐾𝐹 Extended Kalman Filter
𝐴𝐸𝐾𝐹 Adaptive Extended Kalman Filter
𝑈𝐾𝐹 Unscented Kalman Filter
𝑂𝐶𝑉 Open Circuit Voltage
𝐵 Experiments with measurement Bias
𝑊𝐵 Experiments Without measurement Bias
𝐵𝐹 Experiments where the 𝑓 (⋅) function is affected by the

same bias as the voltage and current measurements
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