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A B S T R A C T

Smart Grids are the evolution of traditional electric grids and allow two-way flows of electricity and
information between different actors. At the edge of this network, customers can both produce and consume
energy. Due to the intermittent nature of renewable energy sources, customers are characterized by moments
of energy surplus and deficit. To solve this problem, customers are connected to the power grid, and, usually,
they are also provided with Lithium-Ion battery packs positioned near the energy source used to store energy in
excess for later use, reducing expensive energy exchanges with the grid. On the one hand, using the battery at
its full capabilities produces significant economic savings. On the other hand, massive use of the battery leads
to degradation and consequently to a more frequent substitution of the battery. Therefore, depending on the
cost of energy and batteries, one should carefully choose when it is favorable to use it. To avoid inefficiencies,
it is common to design controllers that regulate the energy flow within the battery packs, deciding whether to
exchange energy with the network or store it in the battery. In this work, a Reinforcement Learning controller
optimizing energy flow is developed. The controller’s goal is to balance the costs of exchanges with the
power grid and those derived from the degradation due to battery usage. A synthetic experimental campaign
conducted using real-world data demonstrates that the policy learned shows an improvement in the worst-case
of 3% w.r.t. state-of-the-art baselines.
1. Introduction

In smart grids, Photovoltaic (PV) production becomes a valid and
cheap alternative to traditional sources such as fossil fuels [1]. The
modularity of this technology allows for the production of energy at
different scales, from domestic to industrial use cases. Even if solar
energy production has the advantage of being inexhaustible and almost
free, it comes with limitations. Indeed, its availability varies highly
during the hours of the day, seasons, or due to weather conditions.
Furthermore, energy production and peak user demand are often not
aligned. To avoid disruptions in the service, all consumers, even if
they are also energy producers, are connected to each other and with
the traditional power plants through the smart grid to compensate for
peaks and eventual lack of energy. The exchanges with the power grid
are economically not convenient for the consumers, as the user sells
the energy they produce in excess at a usually lower price w.r.t. to
the one paid whenever it requires energy from the same network.
To overcome this issue, battery packs are usually adopted to store
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energy surpluses and meet future demand [2,3]. The use of storage
systems enhances the possibility of lowering energy costs and increas-
ing energy independence. On the one hand, a user wants to exploit
as much as possible the battery packs to reduce the exchanges with
the network which would result in a significant economic expense.
On the other hand, extensive use (or misuse) of the battery packs
may lead to significant battery degradation, and, in turn, to a more
frequent recurring cost due to the substitution of the battery pack.
Indeed, battery packs are mainly composed of Lithium-Ions cells, a very
efficient and high-energy-density technology, which is affected by a
degradation process that lowers their capacity and efficiency over time,
caused by the natural aging that each battery incurs, environmental
factors (such as storing conditions), and the load applied by the user.
The trade-off between use and degradation of the battery is usually
addressed by classical controllers, e.g., using simple rules keeping the
battery’s remaining capacity in a safe range (20%–80%). However,
such systems are not optimized to explicitly take into account the data
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regarding the cost/price of the energy and the production provided by
PV systems, leading to possibly suboptimal strategies to manage energy
consumption/production.

Original contribution This work proposes a high-level Reinforcement
Learning controller that decides when and how to use the battery
to balance between the use of the battery and its degradation. The
goal of the controller is to maximize the economic profit from energy
production. This task presents several challenges as there are conflict-
ing objectives: a controller should be able to store energy for future
uses while avoiding too intensive battery cycling. This work handles
this multi-objective reinforcement learning problem by designing a
new objective function able to express these conflicting objectives in
a unique formulation. This new formulation exploits the data coming
from energy production and energy costs experiences in the past to
solve the problem using state-of-the-art RL solutions. The hand-crafted
MDP model makes use of a well-known degradation model, and the
state definition takes into account all the variables that affect the
degradation of the battery, as well as other external information to
allow the controller to make better usage choices over the lifespan of
the battery.1

Paper structure The paper starts in Section 2 by discussing the existing
literature on the topic and presenting in Section 3 the background on
Reinforcement Learning and Lithium-Ion batteries. Then, in Section 4,
the problem is formally described, and, in Section 5, a Reinforcement
Learning solution to learn the controller’s optimal behavior is pre-
sented. Subsequently, in Section 6, an experimental validation of the
proposed solution w.r.t. to state-of-the-art controllers using real-world
users’ consumption and production profiles is presented. Lastly, in
Section 7, a final discussion of the work is presented, drawing possible
research lines to further improve smart grid controllers.

2. Related works

In recent years, a lot of effort has been made to create and integrate
Artificial Intelligence (AI)-based methods to solve complex tasks in
smart grids. The role of AI and Reinforcement Learning (RL, [5]) in par-
ticular is becoming fundamental as smart grids scale their dimension,
also due to the challenges in adapting rule-based policies in complex
problems [6]. In this section, we present the most relevant works in the
field of battery management in smart grids, with particular attention to
the ones that make use of reinforcement learning methods.2

A line of research is focused on managing the batteries to avoid
arly degradation. A work closely related to the one presented in
his paper is the one proposed by Sui and Song [10], who study the
roblem of scheduling charge, discharge, and resting periods while
sing multiple batteries. The proposed scheduler has to keep the State
f Charge of every battery above a given level, and at the same time, it
as to minimize the degradation caused by high temperatures. It mod-
ls two different characteristics of a Lithium-Ion battery: rate capacity
effect and recovery effect. Due to the former, a battery shows a smaller
overall capacity when discharged at high currents, while the latter
influences the battery voltage recovery after a continuous discharge
process. The so-designed scheduler properly combines these two effects
to extend the battery life. This work considers fixed charge/discharge
currents, which simplifies the control problem, but it does not allow the
scheduler to choose between different charging or discharging profiles
that could achieve the same performance with lower effects in terms
of degradation. A shortcoming of this work is that State of Health
modeling is influenced only by temperature, and other essential factors
such as Depth of Discharge, State of Charge, and current rate are not

1 A preliminary version of this work first appeared in [4].
2 For a detailed discussion on this topic, we refer to Zhang et al. [7], Yu

t al. [8] and Subramanya et al. [9].
2

considered. Moreover, no economic considerations are done w.r.t. State
of Health, and the scheduler’s objective is to use a battery for as
long as possible while avoiding cycles that generate short-term high
degradation.

Another line of research is more focused on the advantages of
trading the energy on smart grids and the profit one may get by
delivering energy to other users. Huang et al. [11] use an Energy
Storage System (ESS) that manages energy produced from renewable
sources and introduces an economic criterion to store or deliver energy.
Solar and wind energy are characterized by periodic patterns that can
be predicted by taking into account meteorological data. This work
ties the decision process by predicting the implants’ energy produced.
The system should follow the energy production profile to store as
much energy as possible and sell it when the market conditions are
profitable. The controller is designed with an economic perspective:
the objective is to maximize the profit by selling energy while keeping
into account the operational constraints of the ESS. However, this work
does not make considerations about the State of Health of the battery
packs that compose the ESS and, therefore, it does not consider the
effect of battery degradation on the overall profit. Indeed, one of the
simplifying assumptions used is that the ESS has a fixed maximum
capacity over time, and the economic effects due to the substitution of
the accumulation systems are not considered. Cao et al. [12] design a
deep Reinforcement Learning controller that performs energy arbitrage.
The objective is to generate profit by storing or releasing energy from
an accumulation system, which is bought only to perform arbitration.
Indeed, none of the system components produces energy, and therefore
the controller takes only into account those exchanges with the electric
grid that do not require to produce energy. This approach exploits the
past electric market price history to make a prediction for the next
24 h. Then, based on such an estimate, the controller decides which
interaction with the grid is the most profitable. The peculiarity of this
work is that it considers the effects that battery degradation has only in
the profit estimates. The main limitation of this approach is that profit
is computed in the short-term (i.e., one week) and, therefore, does not
consider profit for long time horizons.

Other works are more focused on the design of energy storage
systems that are suitable for the specific setting. For instance, the work
by Kell et al. [13] uses a deep Reinforcement Learning controller to
regulate energy usage in homes with photovoltaic panels and an accu-
mulation system installed. This technique allows fine-grained control
of the current to which a battery is subject, allowing efficient and
precise driving. The work aims to find the correct battery size for a
given household. The technique is based on the limiting assumption
that no relevant battery degradation happens in one year, and the
controller needs to be re-trained every time a new battery is considered.
Ebell et al. [14] propose a first Multi-Agent Reinforcement Learning
approach under partial observability for promoting energy sharing
among households. Ebell et al. [15] implement a RL controller with the
goal of reducing the exchanges with the power grid for a household
equipped with photovoltaic panels and storage systems. Kwon and
Zhu [16] uses an RL approach for modeling battery degradation and
optimizing economic objectives. In their work, they propose a method
to track degradation. However, they do not design a way to keep track
of the periodic effects of photovoltaic generation.

3. Background

This section summarizes those technical notions needed to under-
stand the problem. First, in Section 3.1, the Reinforcement Learning
background required to understand the problem is presented. Then, in
Section 3.2, the background related to the lithium-ion batteries and a
commonly adopted model to estimate degradation for such batteries
are discussed.
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3.1. Reinforcement learning

Reinforcement Learning (RL, [5]) considers an agent which interacts
with an environment. The agent is the actor who chooses at each
time 𝑡 the action 𝑎𝑡 to perform, and the environment reacts to the
gent’s actions by evolving its state 𝑠𝑡+1 and providing a reward, which

represents how good it is to perform action 𝑎𝑡 in state 𝑠𝑡. The goal of
the agent is to maximize the collected rewards. The abstraction used
to map and define a Reinforcement Learning problem is the Markov
Decision Process (MDP) which allows the formalization of processes
with temporal dependencies. Formally, a Markov Decision Process 
s defined as a tuple  ∶=

(

 ,, 𝑃 (𝑠′|𝑠, 𝑎), 𝑅(𝑠, 𝑎), 𝛾
)

, where  is the set
of states,  is the set of actions the controller is allowed to perform,
𝑃 (𝑠′|𝑠, 𝑎) is the state transition probability matrix, 𝑅(𝑠, 𝑎) is the reward
unction, and 𝛾 ∈ [0, 1] is the discount factor. Given an instance of an
DP , the goal of a controller is to define a policy 𝜋(𝑎|𝑠) returning

for each state 𝑠 ∈  the action 𝑎 ∈  which maximizes the discounted
sum of future rewards ∑

𝑡=1 𝛾
𝑡−1𝑟𝑡, where 𝑟𝑡 is the reward, and  ∈ N is

the time horizon. The optimal behavior through RL techniques can be
learned in two ways. If there is a dataset available, it will be composed
of interactions of the form {(𝑠𝑡, 𝑎𝑡, 𝑟𝑡)}𝑡∈{1,…, }, where 𝑠𝑡 is the state,
𝑎𝑡 the action performed, and 𝑟𝑡 the instantaneous reward at time 𝑡,
one can choose offline Reinforcement Learning algorithms. If there is
no interactions dataset available, one needs an environment (real or
simulated) to interact with in order to actively generate a sequence of
interactions that can be used for learning. The algorithms that learn
while interacting with the environment are called online Reinforcement
Learning algorithms.

In this work, the authors will focus on Fitted-Q Iteration (FQI, [17]),
a value-based algorithm that derives a control policy from batches of
transitions previously sampled from the environment in an offline man-
ner. The transitions are sampled with a given policy, whose exploration
capabilities will affect the quality of the estimates of the 𝑄-function.
A transition is a tuple ⟨𝑠𝑡, 𝑎𝑡, 𝑟𝑡, 𝑠𝑡+1⟩, where 𝑠𝑡 is starting state of the
transition, 𝑎𝑡 is the action drawn from the exploratory policy, 𝑟𝑡 is the
reward obtained by the agent after performing the action 𝑎𝑡 in the state
𝑠𝑡, and 𝑠𝑡+1 is the next state, reached after performing the action 𝑎𝑡 in
the state 𝑠𝑡.

3.2. Lithium-Ion batteries

Lithium-ion batteries are subject to a degradation process due to
calendar and cycle aging. In stationary tasks, e.g., smart grids, the
notion of battery health, or State of Health (SoH) at time 𝑡 is defined as
𝑆𝑜𝐻𝑡 =

𝐶𝑡,𝑚𝑎𝑥
𝐶𝑁

, where 𝐶𝑡,𝑚𝑎𝑥 is the maximum capacity achievable at time

, and 𝐶𝑁 is the nominal capacity of the battery. Batteries are subject
o a degradation process that lowers their overall capacity over time,
nd the real capacity quickly moves away from their nominal value.
owever, such a quantity cannot be measured directly and must be

nferred from other measures. How to effectively estimate this quantity
s still an open research problem [18–21]. SoH evolution over time is a
ighly non-linear process caused by irreversible reactions between the
node and the electrolyte, whose dynamics are determined by a large
umber of factors. Empirical studies (e.g., [22]) showed that most of
he degradation is concentrated at the beginning and end of the battery
ife, while the degradation rate decreases during its mid-life. Fig. 1
hows a qualitative example of the relationship binding the number of
ycles and the SoH of the battery.3

egradation model Since the applications using the SoH estimate re-
uire frequent updates and high precision, in this work, the authors

3 Notice that the degradation 𝐷𝑡 can also be used to describe the battery
health, i.e., 𝐷 = 1 − 𝑆𝑜𝐻 .
3

𝑡 𝑡 t
Fig. 1. A qualitative example of the shape of the non-linear relationship that can bind
cycle number and SoH [22].

consider a synthetic model to define and keep updated the estimate
of the battery degradation. The required precision is difficult to reach
using currently available measurement instruments, so the authors
choose to keep it updated using a realistic model. In particular, the
focus is on the aging model proposed by Xu et al. [23].4 This model
combines theoretical considerations with empirical evidence. Even if
the process of the battery degradation is determined by factors such
as charging, discharging, time, temperature, and the current state of
life, the above-mentioned model assumes that the battery degradation
process can be factorized among the time and stress cycle effects. The
two factors considered for the degradation model are reflected in the
definition of two stress functions: calendar and cycling aging. Calendar
aging is the degradation stress that a battery suffers independently
from its use. It depends on the operational lifetime of the battery and
other parameters such as the mean State of Charge (SoC, [24–26]),
and the mean temperature at which it is preserved. On the other hand,
cycling aging is caused by the direct use of the battery. Every cycle is
modeled as a single stress event independent from the others, and the
accumulated degradation is the sum of the capacity reduction caused
by each cycle. The overall stress 𝑓𝑑,𝑡 is a linear combination of calendar
and cycling aging. Formally:

𝑓𝑐𝑎𝑙,𝑡 = 𝑡 𝑓𝑐𝑎𝑙,1(𝛿, �̄�, �̄� ),

𝑓𝑐𝑦𝑐,𝑡 =
𝑁𝐶
∑

𝑖
𝑛𝑖𝑓𝑐𝑦𝑐,1(𝛿𝑖, 𝜎𝑖, �̄�𝑖),

𝑓𝑑,𝑡 = 𝑓𝑐𝑎𝑙,𝑡 + 𝑓𝑐𝑦𝑐,𝑡,

where �̄� and �̄� are the average State of Charge (SoC) and temperature
at which the battery has been stored, respectively, 𝑡 is the age of the
battery, 𝑁𝐶 is the number of equivalent cycles, 𝛿𝑖, �̄�𝑖 and 𝑇𝑖 are the
Depth of Discharge, average State of Charge and Temperature of the
𝑖th cycle, respectively, and 𝑛𝑖 indicates whether cycle 𝑖 is a full (𝑛𝑖 = 1)
of half (𝑛𝑖 = 0.5) cycle.

Thanks to the above definitions, the battery degradation is com-
puted as follows:

𝐷𝑡 = 1 − 𝛼𝑠𝑒𝑖𝑒
−𝑓𝑠𝑒𝑖,𝑡 − (1 − 𝛼𝑠𝑒𝑖)𝑒𝑓𝑑,𝑡 , (1)

𝑓𝑠𝑒𝑖,𝑡 = 𝛽𝑠𝑒𝑖𝑓𝑑,𝑡. (2)

It is worth noting that Eq. (1) suggests that the degradation is non-
linear with respect to the overall stress factor 𝑓𝑑,𝑡. This model reflects
that a battery suffers from high degradation rates at the beginning of
its life, then it reaches a plateau, and, finally, the degradation increases
rapidly when it reaches the end of its life (see Fig. 1). Notice that Eq. (1)
represents the battery degradation starting from fresh batteries and
does not follow the last phase of battery aging when the capacity
rapidly falls. Typically, this latter phase starts when the SoH is proximal
to zero. This formulation also considers the fast degradation caused
by the SEI, whose formation rate decreases when a stable film has
been formed. Therefore, the equation can be seen as divided into two

4 A summary of all the quantities considered in the degradation model and
he related meaning is provided in Table 1.
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Table 1
Table of symbols for the degradation model.

Symbols Meaning

𝑡 Generic time
𝑆𝑜𝐻𝑡 State of Health (SoH) at time 𝑡
𝐷𝑡 Degradation at time 𝑡
𝐶𝑡,𝑚𝑎𝑥 Maximum capacity at time 𝑡
𝐶𝑁 Nominal capacity
𝑓𝑑,𝑡 Overall aging function at time 𝑡
𝑓𝑐𝑎𝑙,𝑡 Calendar aging function at time 𝑡
𝑓𝑐𝑦𝑐,𝑡 Cycle aging function at time 𝑡
𝑓𝑐𝑎𝑙,1 Unitary calendar aging function
𝑓𝑐𝑦𝑐,1 Unitary cycle aging function
�̄� Average (overall) State of Charge
�̄� Average (overall) temperature
𝑁𝐶 Number of equivalent cycles
𝛿𝑖 Depth of Discharge (DoD) of cycle 𝑖
𝜎𝑖 Average State of Charge of cycle 𝑖
�̄�𝑖 Average temperature of cycle 𝑖
𝑛𝑖 Cycle type indicator of cycle 𝑖
𝛼𝑠𝑒𝑖 , 𝛽𝑠𝑒𝑖 SEI coefficients

Fig. 2. Electric (a) and thermal (b) models of the battery.

components: one that takes into account the capacity loss caused by
the SEI formation, and the other considers capacity fading at a rate
proportional to the battery life. Eq. (2) indicates that the SEI formation
is proportional to the battery used.

Thermal model The degradation model presented above includes a
degradation component related to the temperature at which the current
is subject. To include such degradation, a thermal model is needed in
order to estimate how the temperature varies over time. More in detail,
a thermal model defines how the battery temperature 𝑇𝑏,𝑡 changes over
time. In this scenario, the temperature behavior is controlled by the
heat dissipated due to the Joule effect during charges or discharges:

𝑄𝑏,𝑡 = 𝐼2𝑏,𝑡𝑅𝑖𝑛𝑡, (3)

where 𝑅𝑖𝑛𝑡 is the internal electric resistance of the battery (see Fig. 2(a)).
This effect is a consequence of modeling the battery like a real gener-
ator that exhibits a resistive behavior when a current passes through
it. The temperature dynamics is modeled with the thermal circuit in
Fig. 2(b):

𝐿(𝑠) =
𝑅𝑡𝑒𝑟𝑚

𝑅𝑡𝑒𝑟𝑚𝐶𝑡𝑒𝑟𝑚𝑠 + 1
, (4a)

𝑇𝑏,𝑡 =
𝑄𝑏,𝑡𝑅𝑡𝑒𝑟𝑚𝛥𝑡 + 𝑇𝑏,𝑡−𝛥𝑡𝑅𝑡𝑒𝑟𝑚𝐶𝑡𝑒𝑟𝑚 + 𝑇𝑒𝑛𝑣,𝑡𝛥𝑡

𝑅𝑡𝑒𝑟𝑚𝐶𝑡𝑒𝑟𝑚 + 𝛥𝑡
. (4b)

ntuitively, Eq. (4a) is the Laplacian transfer function. It describes how
eat exchanges happen between the battery and the surrounding en-
ironment (in this formulation, 𝑇𝑒𝑛𝑣,𝑡 is the environment temperature).
q. (4b) is the corresponding anti-Laplacian, and it describes how the
emperature of the battery changes over time.

. Problem formulation

This work aims to design a controller optimizing the flow of power
4

n a smart grid. Consider the scheme presented in Fig. 3. The node to i
Fig. 3. A schema of the overall structure interacting with the controller. The arrows’
directions denote the convention adopted for positive values of the power exchanged
by each component.

manage consists of an energy producer 𝑃 (e.g., a photovoltaic panel)
and an energy consumer 𝐶 (e.g., a house and its users).

The producer and the consumer asynchronously release and ab-
sorb energy, respectively. Consider, for example, the case of a house
equipped with photovoltaic panels and with people consuming energy.
The panels will produce energy depending on the time of day, season,
and weather conditions. Instead, the users will consume energy accord-
ing to some pattern [27,28]. From now on, the union of producer and
consumer will be addressed as a node 𝑁 . During the different periods
of the day, the node either needs to have additional energy in input or
to manage the energy in excess. To compensate for these consumption
peaks and energy lacks, the node is connected to the power Grid 𝐺,
so it can exchange (buy or sell) energy if necessary. However, the
process of exchanging energy with the grid follows market logic that
is unknown to the node but should be considered. Indeed, energy is
bought at a given cost 𝑝𝑖𝑛, which is significantly higher than the price
𝑝𝑜𝑢𝑡 at which energy can be sold to the grid. This condition makes the
exchanges disadvantageous for the node. To overcome this problem,
batteries 𝐵, usually Lithium-ion ones, are commonly being adopted as
power storage by the nodes to collect and release energy when needed,
allowing to reduce the uneconomic exchanges with the grid. In the
following, it is assumed that the battery is freshly installed, and it has
been bought at the price 𝑝𝑛𝑒𝑤.

Every exchange between the components presented above is mea-
sured in terms of exchanged power (denoted as 𝑃𝑋,𝑡 for a generic
component 𝑋 at time 𝑡). A visual representation of the adopted ex-
change conventions is presented in Fig. 3 (positive values for the
powers-related quantities 𝑃𝑋,𝑡 are denoted by the arrows’ directions).5
Formally, for any time 𝑡, the following equations describing the power
exchanges hold:
{

𝑃𝑁,𝑡 = 𝑃𝑃 ,𝑡 − 𝑃𝐶,𝑡
𝑃𝑁,𝑡 = 𝑃𝐺,𝑡 + 𝑃𝐵,𝑡

. (5)

This work aims at creating a controller capable of optimizing its con-
trol policy, minimizing the costs due to exchanges, added to those due
to battery degradation. The controller will be designed using the data
coming from previous power usage and production profiles and will use
Reinforcement Learning techniques to generalize from such data. The
task of the controller is, given the amount of power released/absorbed
by the node (i.e., 𝑃𝑁,𝑡 ∈ R), to decide the percentage of the request
that will be satisfied using the battery 𝐵, and the those that will be
satisfied by the Grid 𝐺. The controller monitors these subsystems with
a fixed control period 𝛥𝑡 for a predetermined number of control steps  .
It is assumed that the system has access to the measurement of several
physical properties of the battery pack, such as its SoC 𝜎𝑡, the battery
temperature 𝑇𝑡, the DoD of the current cycle 𝛿𝑡, and the degradation of
the battery 𝐷𝑡. The controller can send or request power 𝑃𝐺,𝑡 from the
electric grid generating an economic transaction.

5 A summary of the quantities considered in this section is provided
n Table 2.
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Table 2
Table of relevant symbols for the formulated problem.

Symbols Meaning

𝑃𝑋,𝑡 Power for a generic component 𝑋 at time 𝑡
𝐸𝑋,𝑡 Energy for a generic component 𝑋 at time 𝑡

𝑝𝑖𝑛 Price to buy energy from the grid
𝑝𝑜𝑢𝑡 Price to sell energy to the grid
𝑝𝑛𝑒𝑤 Price of a new battery

4.1. Controlled variable

The task of the controller is, at every time 𝑡, to measure the power
oming from the node 𝑃𝑁,𝑡 (either positive or negative) and decide
hich fraction 𝑎𝑡 ∈ [0, 1] store (retrieve) in (from) the battery. The

emaining part of the power is directed to the grid. Formally:

𝑃𝐵,𝑡 = 𝑎𝑡𝑃𝑁,𝑡, (6)

𝑃𝐺,𝑡 = (1 − 𝑎𝑡)𝑃𝑁,𝑡, (7)

𝐺,𝑡 = 𝑃𝐺,𝑡𝛥𝑡, (8)

here 𝐸𝐺,𝑡 is the energy exchanged with the grid. Note that, according
o the notation in Fig. 3, if 𝑃𝐵,𝑡 is positive, the battery is discharging,
nd 𝑃𝐺,𝑡 is positive if the power is requested from the grid. Eq. (8)
omputes the actual energy exchanged with the grid, and this quantity
ill be used to compute the economic gain or loss that occurred while

nteracting with the electric grid.
While operating, the controller must comply with the batteries’

onstraints, i.e., that each battery charge level cannot be below zero or
bove the maximum capacity, formally 0 ≤ 𝜎𝑡 ≤ 1, ∀𝑡. In this setting,
second low-level controller is assumed to protect the battery from

vercharging or excessive draining by actuating controls on high-level
ctions.

.2. Objective

The objective of this work is to find the sequence of actions that
educe as much as possible the amount of money needed to maintain
he system and generate profits (reduce losses) while exchanging en-
rgy with the grid. The objective comprises two independent elements:
he battery cost and energy exchanged with the power grid. The
ormer takes into account the amount of money lost due to battery
egradation, and it grows proportionally with degradation. Instead, the
atter refers to the profits/losses made when there is an interaction
ith the electric grid. These two objectives are conflicting since a more
ggressive use of the battery could generate favorable trades with the
lectric network, but it will also increase the degradation rate of the
attery. Formally, the goal is to maximize, over the time horizon  :

ax
𝑀

𝑅𝑡𝑜𝑡𝑎𝑙, (𝑀), (9)

here 𝑀 is a strategy deciding the values of the fractions to store in
he battery (𝑎0,… , 𝑎 ) to perform over the time horizon, and:

𝑡𝑜𝑡𝑎𝑙, (𝑀) = 𝑅𝑏𝑎𝑡𝑡, (𝑀) + 𝑅𝑒𝑥𝑐, (𝑀), (10)

here:

𝑏𝑎𝑡𝑡, (𝑀) = 𝑝𝑛𝑒𝑤 𝑆𝑜𝐻 , (11)

𝑅𝑒𝑥𝑐, (𝑀) =

∑

𝑡=1

[

𝑝𝑜𝑢𝑡 ||𝐸𝐺,𝑡
|

|

1{(𝑃𝐺,𝑡)<0} − 𝑝𝑖𝑛 |

|

𝐸𝐺,𝑡
|

|

1{(𝑃𝐺,𝑡)>0}
]

, (12)

here 𝐸𝐺,𝑡 is the energy exchanged with the Grid 𝐺 at time 𝑡, and 1{𝑥}
s the indicator functions that is 1 if the condition 𝑥 is satisfied, and 0
therwise.
5

a

. Algorithm

In this section, the problem of determining the optimal action of
he controller is dealt as a sequential decision problem, where the
ontroller has to find the best sequence of actions that will maximize
he objective in Eq. (9). Since the values of the sequence of powers
𝑃 ,1∶ and 𝑃𝐶,1∶ over time are not known in advance, the stochasticity
f the environment (e.g., the energy production by PV cells, the daily
sage) must be taken into account. The application of optimization
echniques would require the full knowledge of such quantities during
he entire time horizon of the battery usage. Conversely, the control
f the battery actions should be performed before such information
s available. Given that, a suitable model for such a setting is the
arkov Decision Process (MDP), which can describe scenarios in which

he environment evolves over time according to stochastic exogenous
actors and according to the actions performed by an agent (i.e., in
his case, the controller). This model, in combination with power
onsumption and production data, will be used in the following section
o learn a controller using Reinforcement Learning techniques. In the
ollowing, the problem of controlling the power consumed/produced is
ormalized as an MDP, describing the fundamental components of the
ramework, more specifically, the states, actions, rewards, and discount
actor.

.1. State

First, a specific mapping between the current time and day of
he year to an angle on the unit circumference is defined. Indeed,
his problem is characterized by two types of periodicity: the day-
ight periodicity and the seasonal periodicity. This phenomenon can
e captured by defining a correspondence between an hour of the day
and day of the year for what concerns the seasonality) and an angle
n [0, 2𝜋]. Formally, the angular position for the time of the day is
𝑑 = 2𝜋𝜏𝑑

𝑑
, where 𝑑 is the number of seconds in a day and 𝜏𝑑 ∈ [0, 𝑑 ]

s the current second of the day. The angular position for the time of
he year is 𝜑𝑦 =

2𝜋𝜏𝑦
𝑦

, where 𝑦 is the number of seconds in a year and
𝜏𝑦 ∈ [0, 𝑦] is the current second of the year.

The state vector at time step 𝑡 is 𝑠𝑡 ∈  ⊆ R𝑄, defined as follows:

𝑠𝑡 =
(

𝜎𝑡, 𝑇𝑡, 𝛿𝑡, 𝑃
𝑟𝑎𝑡𝑒
𝑁,𝑡 , 𝑃𝑃 ,𝑡, cos(𝜑𝑑,𝑡), sin(𝜑𝑑,𝑡), cos(𝜑𝑦,𝑡), sin(𝜑𝑦,𝑡)

)

, (13)

where:

• 𝜎𝑡 is the current battery SoC;
• 𝑇𝑡 is the current battery temperature;
• 𝛿𝑡 is the current battery DoD;
• 𝑃 𝑟𝑎𝑡𝑒

𝑁,𝑡 ∶= 𝑃𝑁,𝑡
𝑃 ℎ
𝐵

is the maximum P-rate that the battery would be
subjected to if all the net power 𝑃𝑁,𝑡 would be directed to the
battery, where 𝑃 ℎ

𝐵 is the power that will discharge the battery in
one hour starting from a fully charged battery;

• 𝑃𝑃 ,𝑡 is the power generated by the producer;
• cos(𝜑𝑑,𝑡) and sin(𝜑𝑑,𝑡) are the mapping of the angular position for

the time of the day to a 2D space;
• cos(𝜑𝑦,𝑡) and sin(𝜑𝑦,𝑡) are the mapping of the angular position for

the time of the year to a 2D space.

Some remarks are in order. First, the first four elements of the state
𝑠𝑡 directly impact the computation of the degradation and therefore
impact the state of the entire node.

Second, 𝑃𝑃 ,𝑡 has been included in the MDP state as a proxy of the
future sun availability. Indeed, if during the day this value is very low,
one can assume that the day is cloudy or rainy, and, therefore, no future
power production is also expected in the next hours.6

6 The joint use of 𝑃𝑃 ,𝑡 and 𝑃 𝑟𝑎𝑡𝑒
𝑁,𝑡 is necessary. Suppose the information about

he production 𝑃𝑃 ,𝑡 is not provided. In that case, the algorithm will not be able
o discern, for example, a situation of no production and no consumption from
situation of high production and high consumption.
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Third, the last four components of the state 𝑠𝑡 have been used to map
the current time into an encoding that is able to express a similarity
measure between different periods of the day/year [29].

Finally, the SoH has not been included in the state of the MDP
even if the SoH value allows the agent to understand at which point
of the degradation curve the battery is. This can create a problem if
not correctly managed because, given a fixed behavior, different SoH
levels lead to different degradation (see Fig. 1). The value of the SoH
is not included because, even if the value of the SoH influences the
degradation, it is not relevant to evaluate the gain/loss due to an action
on the system. Instead, the SoH has been included in the choice of the
model reward, which will be described in Section 5.3.

5.2. Action

An action 𝑎𝑡 ∈  ⊆ [0, 1] at time step 𝑡 consists in the choice
(performed by the controller) of the fraction of power 𝑃𝑁,𝑡 that will
be directed to the battery. The remaining power is directed to the grid.
The action set  is either continuous or discrete, and the choice will
be influenced by the Reinforcement Learning algorithm that will be
adopted. In this work, due to the fact that Fitted-Q Iteration algorithm
requires a finite action space (see [17]), a finite action space is selected:
 ∶= {𝑎1,… , 𝑎𝑖,… , 𝑎𝐾}, with 𝑎𝑖 ∈ [0, 1].7

.3. Reward

The reward function 𝑟𝑡 at a specific time step 𝑡, defines the gain/loss
f an agent that performed action 𝑎𝑡 in state 𝑠𝑡. The reward function is
efined as follows:

𝑡 = 𝑟𝑒𝑥𝑐,𝑡 + 𝑟𝑏𝑎𝑡𝑡,𝑡, (14)

here:

𝑒𝑥𝑐,𝑡 = 𝑝𝑜𝑢𝑡 ||𝐸𝐺,𝑡
|

|

1{𝑃𝐺,𝑡 < 0} − 𝑝𝑖𝑛 |

|

𝐸𝐺,𝑡
|

|

1{𝑃𝐺,𝑡 > 0}, (15)

nd:

𝑏𝑎𝑡𝑡,𝑡 = −
𝑓𝑑,𝑡 − 𝑓𝑑,𝑡−1

𝑓𝑑,𝑚𝑎𝑥
𝑝𝑛𝑒𝑤. (16)

ome remarks are in order. First, the two macro-components of the
eward presented in Eq. (14) are the same of the objective function
o optimize (Eq. (9)). On the one hand, the component related to the
nergy exchanges with the grid 𝑟𝑒𝑥𝑐,𝑡 described in Eq. (15) is equal
o the one inside the summation in the objective function. On the
ther hand, in the reward component related to the battery 𝑟𝑏𝑎𝑡𝑡,𝑡
Eq. (16)) there are some minor changes to improve the learning phase
f the algorithm. The battery value is amortized by considering the
ariation in the overall stress 𝑓𝑑,𝑡, rather than SoH (recall that the
oH is nonlinear over time/cycles, as reported in Fig. 1). By using
he linear degradation, the reward is distributed more uniformly over
he whole time period (considering a period that ranges among all the
attery lifetime), and the agent is still able to understand how much
f an impact an action has on the degradation, allowing to agents that
aximize the long term profit and able to make a trade-off in profit,

lso at the beginning of the battery life, when the SoH decrease will
e very steep. The degradation is normalized by 𝑓𝑑,𝑚𝑎𝑥, the maximum
inear degradation value that corresponds to the maximum degradation
i.e., the value of 𝑓𝑑,𝑡 that when placed in Eq. (1) returns 𝐷𝑡 = 1).

.4. Discount factor

The discount factor 𝛾 used in this problem has been set to 1,
mplying that the controller has to be farsighted. The problem can be
earned since this formulation considers a finite number of steps  .

7 Notice that the action prescribed by the controller may differ from the
ctual one due to the interaction with the low-level controller, which might
ctuate different actions to avoid dangerous/unfeasible behavior.
6

b

5.5. Computational performances

The Computational performances of the algorithm running inside
the controller are a problem of paramount importance when one wants
to apply RL methods in real-world problems. Indeed, commonly, con-
trollers have to be embedded into computing infrastructures with lim-
ited computational performances. Therefore, the goal is to have con-
trollers that are efficient during the prediction phase. It is known that
the training phase of the RL controllers is usually costly and requires
large computing infrastructures to be performed [5]. However, such
a phase is performed only once and can be performed in a different
hardware infrastructure than the one available on the storage system.
Once the training has been performed the final controller can be moved
to the infrastructure used to control the storage system. Commonly, the
prediction required to determine the control action is computationally
lighter and requires performing operations whose cost is linear in
the number of state dimensions 𝑄 and in the number of actions 𝐾.
This allows the use of such techniques even in settings in which the
computational power is limited.

6. Experiments

This section presents an experimental campaign in a realistic envi-
ronment simulated starting from real-world power profiles. The corre-
sponding code, as well as the data used in this section are available
at https://github.com/marcomussi/SmartGridController.

6.1. Experimental setting

To test the solution proposed in Section 5, an online simulator of the
node has been developed following the OpenAI Gym framework [30].
More specifically, the controller is the agent which interacts with the
environment, and the environment models the node’s behavior and
keeps track of the degradation of the battery, provided by the model
presented in Section 3.2. Training and testing have been performed on
an Ubuntu 20.04 LTS server, equipped with 64x Single Core Intel Xeon
(Skylake IBRS) and 32 GB RAM.

The environment uses real-world power profiles for both consumers
and producers. For what concerns the producer, profiles coming from
domestic photovoltaic panels are used, while for the consumer, load
profiles of houses are selected. During the simulations, the values of
the power profiles are revealed sequentially to the agent, one sample
at each time instant. The load profiles include a pool of 398 profiles over
365 days sampled each 3600 s, with a peak consumption of 3 kWh. The
producer profile is generated from a pool of 10 over the same period
with the same frequency as the load ones, gathered from different
power plants.8 The battery capacity is 8 kWh, and the battery type is
LMO. The simulation environment matches a load and consumption
profile to have a synthetic scenario simulating both production and
consumption.9 Fig. 4 presents an example of such energy production
(blue) and consumption (orange) profiles. In this figure, it is possi-
ble to observe different producer profile patterns depending on the
weather conditions and different consumption profile patterns due to
the week/weekend alternation. The parameters adopted in the simula-
tions regarding the thermal battery model and the degradation model
for an LMO battery are reported in Table 3. For what concerns the ther-
mal model (Eq. (4b)), the environment temperature is maintained fixed
at 25 ◦C over time. Instead, the parameters chosen for the degradation
models are the ones proposed in [23]. Every episode is run for 8 years,
a time in which the battery SoH will reach 0 in the worst-case scenario.

8 Further details on the dataset are provided in [31].
9 The producer and consumer time series are rescaled to simulate a

alanced energy production and consumption system.

https://github.com/marcomussi/SmartGridController
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Fig. 4. An example of real-world power profiles (production in blue and consumption
in orange) used to generate the synthetic environment. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of
this article.)

Table 3
Parameters of the thermal and degradation model used in the experimental section.

Thermal model Degradation model

𝑅𝑡𝑒𝑟𝑚 0.37 ◦C/W 𝑎0 38.83
𝐶𝑡𝑒𝑟𝑚 1700 J/K 𝑎1 7.7
𝑅𝑖𝑛𝑡 0.005 Ω 𝑎2 −7.7
𝑇𝑒𝑛𝑣 25 ◦C 𝑎3 9.17

𝑏0 −3.51
𝑏1 −46

Table 4
Economic quantities considered in the experimental section.

Economic quantities

𝑝𝑛𝑒𝑤 375 $/kWh
𝑝𝑖𝑛 0.15 $/kWh
𝑝𝑜𝑢𝑡 0.05 $/kWh

The agent is trained using FQI [17], in the implementation pro-
ided by MushroomRL [32]. This algorithm requires the action space
o be discrete and a dataset of transitions to learn the optimal pol-
cy. Therefore, the agent was allowed to select the action in the set

∈ {0.0, 0.1,… , 1.0}. The state, reward, and discount factor are set
s prescribed in Section 5. To generate the dataset of transitions, a
andom uniform policy is used. The generated training dataset includes
ata coming from 100 episodes for a total of 7 million of sampled
ransitions. FQI is run for 200 iterations using XGBoost [33] as function
pproximator. The hyperparameters, i.e., the number of iterations, as
ell as the number of trees, the tree depth, and the minimum number
f elements present in a leaf, have been tuned using Optuna [34].
he agent adopts a control period set to 𝛥𝑡 = 3600 s, matching

the original data’s sampling frequency. Furthermore, the degradation
model requires as input the number of cycles in a standardized way,
so it requires algorithms like Rainflow [35] to quantify cycles in the
battery SoC profile. To satisfy this request, an approximated version of
Rainflow, called Streamflow, has been developed.10

The performance of the RL agent is compared with 3 baselines:

• OnlyGrid: The battery is not used, and all the energy needed (or in
excess) is exchanged with the Grid. This corresponds to maintain
action: 𝑎𝑡 = 0, ∀𝑡.11

• OnlyBattery : The battery is always employed (whenever it is
possible). Energy exchanges with the grid happen only when

10 The implementation of Streamflow is available in the repository.
11 Using this approach, only the calendar aging impacts the battery degrada-

ion. This baseline has the main advantage of preserving the battery. However,
he energy exchanges with the grid are always disadvantageous since 𝑝 < 𝑝 .
7

𝑜𝑢𝑡 𝑖𝑛
Table 5
Average reward (total, battery, and exchange) after 8 years (10 runs, higher is
better).

𝑅𝑡𝑜𝑡𝑎𝑙, 𝑅𝑏𝑎𝑡𝑡, 𝑅𝑒𝑥𝑐,

RL agent −2295.32 −1680.54 −614.78
SoC20/80 −2454.99 −2144.69 −310.30
OnlyBattery −2365.93 −2141.18 −224.74
OnlyGrid −2354.15 −1531.66 −822.49

the battery is completely empty or full. Formally, the action is
persisted as: 𝑎𝑡 = 1, ∀𝑡.12

• SoC20/80: This baseline keeps the SoC between 0.2 (20%) and 0.8
(80%). This is one of the state-of-the-art control policy [36], since
very low or high SoC values are correlated with high degradation.
Formally, ∀𝑡:

𝑎𝑡 =
{

1 if 0.2 ≤ 𝜎𝑡 ≤ 0.8
0 otherwise . (17)

The prices exposed by the electric grid to exchange energy are
stationary and fixed at 0.15 $/kWh and 0.05 $/kWh for 𝑝𝑖𝑛 and 𝑝𝑜𝑢𝑡,
respectively. The battery acquisition cost 𝑝𝑛𝑒𝑤 = 375 $ has been set such
that the expected reward provided by the OnlyGrid and OnlyBattery
olicies are comparable. The costs at which the energy exchanges are
erformed, as well as the cost to substitute a battery are summarized
n Table 4. By leveling off these two policies, the agent has to learn how
o optimize the battery’s use and energy exchanges, avoiding optimal
rivial solutions to the control problem (i.e., always using the battery
r not using it at all).13 Indeed, the choice of selecting the price 𝑝𝑛𝑒𝑤
uch that the experiments are performed in a balanced situation is made
ith the purpose of testing the RL agent in the most difficult scenario,

n order to get a measure of the worst-case performance.
The agents are evaluated over several factors to understand the

ehaviors and the effects of each policy properly. The first evaluation
etric for a generic method 𝑀 at time step 𝑡 is the total reward
𝑡𝑜𝑡𝑎𝑙,𝑡(𝑀). Moreover, two other metrics are taken into account to
nalyze the behavior of the policies:

• 𝑅𝑏𝑎𝑡𝑡,𝑡(𝑀): the component of the objective function that expresses
how much value of the battery was lost while using it (see
Eq. (11));

• 𝑅𝑒𝑥𝑐,𝑡(𝑀): the component of the objective function that sums up
the profit made by exchanging energy with the electric grid (see
Eq. (12)).

o better analyze the differences between the performances of the
gents under analysis, in the following, we report 𝑅′

𝑥,𝑡(𝑀) the difference
n terms of the reward provided by the 𝑥 component between a method

at time 𝑡 and the one provided by SoC20/80, formally:
′
𝑥,𝑡(𝑀) ∶= 𝑅𝑥,𝑡(𝑀) − 𝑅𝑥,𝑡(𝑆𝑜𝐶20∕80),

or 𝑥 ∈ {𝑡𝑜𝑡𝑎𝑙, 𝑏𝑎𝑡𝑡, 𝑒𝑥𝑐}. These metrics are collected and averaged over
0 different runs over a time horizon  corresponding to 8 years.

.2. Results

Table 5 reports the performances at the end of the time horizon
f the RL agent and the three baselines. It is worth noting how all
he policies are not able to generate a positive profit at the end of

12 This policy has a significant impact on the battery State of Health, but
stores energy for later use, significantly reducing the uneconomic exchanges
with the grid.

13 The value of the expected reward has been estimated by running the two
strategies 10 times over a time horizon of 8-years by applying the bisection

method.
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Fig. 5. Average performance in terms of profit (left), battery cost (center), and energy profit (right) over 8 years experiments, shown by fixing as 0 the results of the SoC20/80
agent (10 runs, higher is better).
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the time horizon. This is due to the energy production, which is not
able to satisfy the needs of the node, and that the prices of energy are
such that 𝑝𝑖𝑛 > 𝑝𝑜𝑢𝑡, which gives no space for economic speculation
on energy trading. As expected, the OnlyGrid and the OnlyBattery are
chieving similar results in terms of 𝑅𝑡𝑜𝑡𝑎𝑙, (𝑀). Even if they are the
est strategies in terms of use of the battery (𝑅𝑏𝑎𝑡𝑡, (𝑀)) and use of the
rid (𝑅𝑒𝑥𝑐, (𝑀)), respectively, their total performance is below the one
f RL agent . Indeed, the RL agent provides an average improvement of
bout 3% over the aforementioned strategies. Finally, in this setting,
he SoC20/80 strategy provides the worse performance, performing
orst of the RL agent for about 7%.

Fig. 5 presents the performance 𝑅′
𝑥,𝑡(𝑀) of the analyzed strategies

ver the 8 years spanning the experiment. SoC20/80 performs worse
han the other policies over almost the entire time horizon in terms
f total reward. This is due to the fact that it degrades the battery
eavily, similar to what OnlyBattery does, without taking advantage of
uch massive use of the power storage component of the node. The
L agent and the OnlyGrid agent accumulate most of the advantage
.r.t. SoC20/80 in the first 200 days of the experiment (corresponding

o the peak in Fig. 5, left), while subsequently, the RL agent is able
o limit the drawbacks of this early improvement. Indeed, looking at
ig. 5, center, we see that for 𝑡 > 200 days the RL agent starts relying
ess on the battery, which leads to an overall larger total reward at the
nd of the time horizon. Finally, the OnlyBattery approach achieves a
inear improvement over the SoC20/80 strategy, but its instantaneous
mprovements are less effective than the ones provided by RL agent and
nlyGrid. Indeed, the total reward is smaller for the entire time horizon

han the other two. We remark that comparing the behavior of the RL
gent and OnlyBattery total reward 𝑅′

𝑡𝑜𝑡𝑎𝑙,𝑡(𝑀) for 𝑡 > 1200 days they
re similar in terms of performance, i.e., the two corresponding lines
n Fig. 5, left, are parallel. However, such a performance is achieved
sing different strategies, since the RL agent uses a mix of the battery
nd grid, while the OnlyBattery does not make use of the possibility of
xchanging energy with the grid. This further strengthens the idea that
uilding a controller able to manage in an optimized way these two
omponents provides a significant improvement to the management of
he smart grid node.

. Conclusions and future works

Photovoltaic panels are used in residential environments to produce
heap and clean energy, lowering electricity costs and increasing en-
rgy independence. Profit is generated by meeting the demand, thus
voiding expensive energy exchanges with the energy grid. The main
ifficulties in managing such systems are caused by the unpredictable
ature of solar energy production and by the asynchronicity between
nergy production and consumption. To alleviate these limitations,
ccumulation systems are used to store energy in excess for later
se. However, Lithium-ion batteries, are characterized by a process
egradation influenced by environmental factors and dynamic loading.
his work presents a Reinforcement Learning controller considering a
egradation model that allows computing the instantaneous SoH loss.
he objective is to maximize the long-term profit while exchanging
8

nergy with the electric grid and by amortizing the battery cost for the
hole period according to its use. The proposed algorithm outperforms

he state-of-the-art all the baselines of 3% in the worst-case scenario
here there is the balanced situation described in Section 6. The
roblem at hand is a combination of multiple complex sub-problems,
uch as solar energy prediction, electricity prices prediction, energy
rbitration, and degradation modeling. A series of simplifying hypothe-
es are performed in this seminal work. A first future work can take
nto account non-stationary energy prices. Efficient energy arbitration
s possible to achieve when there are price fluctuations that can be
xploited to make a profit.
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