
Expert Systems With Applications 224 (2023) 119883

A
0

Contents lists available at ScienceDirect

Expert Systems With Applications

journal homepage: www.elsevier.com/locate/eswa

ARLO: A framework for Automated Reinforcement Learning
Marco Mussi a,∗, Davide Lombarda b, Alberto Maria Metelli a, Francesco Trovó a,
Marcello Restelli a

a Politecnico di Milano, Milan, Italy
b ML cube, Milan, Italy

A R T I C L E I N F O

Keywords:
AutoRL
Automated Reinforcement Learning

A B S T R A C T

Automated Reinforcement Learning (AutoRL) is a relatively new area of research that is gaining increasing
attention. The objective of AutoRL consists in easing the employment of Reinforcement Learning (RL)
techniques for the broader public by alleviating some of its main challenges, including data collection,
algorithm selection, and hyper-parameter tuning. In this work, we propose a general and flexible framework,
namely ARLO: Automated Reinforcement Learning Optimizer, to construct automated pipelines for AutoRL.
Based on this, we propose a pipeline for offline and one for online RL, discussing the components, interaction,
and highlighting the difference between the two settings. Furthermore, we provide a Python implementation
of such pipelines, released as an open-source library. Our implementation is tested on an illustrative LQG
domain and on classic MuJoCo environments, showing the ability to reach competitive performances requiring
limited human intervention. We also showcase the full pipeline on a realistic dam environment, automatically
performing the feature selection and the model generation tasks.
1. Introduction

Reinforcement Learning (RL, Sutton & Barto, 2018) has recently
achieved successful results in solving several complex control prob-
lems, including autonomous driving (Wang, Jia, & Weng, 2018), robot
manipulators (Nguyen & La, 2019), and finance (Zhang, Zohren, &
Roberts, 2020). These outstanding achievements are rooted in the
employment of powerful training algorithms combined with complex
model representations, such as deep neural networks (Arulkumaran,
Deisenroth, Brundage, & Bharath, 2017). Unfortunately, empirical ex-
perience suggests that this class of approaches heavily depends on
fine-tuning, where an inaccurate choice of the hyper-parameters makes
the difference between learning the optimal policy and not learning at
all (Buşoniu, de Bruin, Tolić, Kober, & Palunko, 2018). This represents
an indubitable limitation, making this powerful tool not immediately
usable by non-expert users. While this scenario is common even in
general Machine Learning (ML, Bishop & Nasrabadi, 2006), the inher-
ent complexity of RL, due to the sequential nature of the problem,
exacerbates this issue even more.

The research effort toward the democratization of ML has reached
a mature level of development for supervised learning. Indeed, sev-
eral Automated Machine Learning (AutoML) frameworks and the cor-
responding libraries have been developed and tested, such as the

∗ Corresponding author.
E-mail addresses: marco.mussi@polimi.it (M. Mussi), davide.lombarda@mlcube.com (D. Lombarda), albertomaria.metelli@polimi.it (A.M. Metelli),

francesco1.trovo@polimi.it (F. Trovó), marcello.restelli@polimi.it (M. Restelli).

ones proposed by Feurer, Eggensperger, Falkner, Lindauer, and Hutter
(2020), Feurer et al. (2015), LeDell and Poirier (2020), Olson, Bartley,
Urbanowicz, and Moore (2016). AutoML is intended to automate the
whole ML pipeline, starting from the preliminary operations on the
data and ending with the trained and evaluated final model. This way,
the complete ML process can be regarded, by the non-expert user, as
a black box, abstracting from the unnecessary details and favoring
the adoption of ML as a production tool. For a detailed review of
the currently available AutoML frameworks, we refer the reader to
the recent survey by He, Zhao, and Chu (2021). Conversely, RL is
currently far from being a tool usable by a non-expert user since a
complete and reliable Automated Reinforcement Learning (AutoRL)
pipeline is currently missing. Indeed, this automation gap between
RL and supervised learning is even more severe from a theoretical
perspective since, to the best of our knowledge, a general and flexible
notion of AutoRL pipeline has not been formalized yet.

Recently, a surge of scientific works in the RL field (Afshar, Zhang,
Vanschoren, & Kaymak, 2022; Parker-Holder et al., 2022) attempted
to tackle either specific stages of the RL pipeline individually (e.g.,
feature construction, policy generation), or focus on specific application
scenarios. While providing a vast analysis of the available approaches
for every single stage, they review the state-of-the-art to solve single
vailable online 28 March 2023
957-4174/© 2023 Elsevier Ltd. All rights reserved.

https://doi.org/10.1016/j.eswa.2023.119883
Received 1 September 2022; Received in revised form 5 March 2023; Accepted 13
 March 2023

https://www.elsevier.com/locate/eswa
http://www.elsevier.com/locate/eswa
mailto:marco.mussi@polimi.it
mailto:davide.lombarda@mlcube.com
mailto:albertomaria.metelli@polimi.it
mailto:francesco1.trovo@polimi.it
mailto:marcello.restelli@polimi.it
https://doi.org/10.1016/j.eswa.2023.119883
https://doi.org/10.1016/j.eswa.2023.119883
http://crossmark.crossref.org/dialog/?doi=10.1016/j.eswa.2023.119883&domain=pdf

Expert Systems With Applications 224 (2023) 119883M. Mussi et al.

t
d
t
p
t

C
t
s

f
t
l

O
t
o
a
R
i
p
S
f

2

t
o
b
𝑅
a
a
i
a

t
l
a

𝜋
a
T
i

O
i
a

𝐽

w
e

E
d
u
n
i
s
(
𝜇
i
o

O
a
B
a
c
o
c
T
e

3

A

3

s
o
i
d
a
𝛹
d

3

i
b
f

o
c
a

tasks individually, do not propose a full pipeline, and do not study
the peculiarities characterizing the interaction between such stages. On
he other hand, a naïve adaptation of the existing automated pipelines
esigned for AutoML to the RL setting is not a viable approach since
hey fail to capture the unique characteristics of RL related to the
resence of an interacting environment and the sequential nature of
he learning problem.

ontributions. In this paper, we make a step toward the formaliza-
ion of an AutoRL framework. The contributions of this work can be
ynthesized as follows.

• We propose a general and flexible formalization of a pipeline for
AutoRL. Grounding on such a definition, we instantiate it for two
different scenarios: offline and online RL.1 The former assumes
that the RL process is carried out based on a fixed batch of data.
The latter takes into account the availability of an interactive
environment.

• We describe the individual stages of the two pipelines and their
respective characteristics, highlighting the interactions between
them and focusing on their inputs and outputs. Furthermore, we
discuss the corresponding units, i.e., possible implementations of
stages, and introduce a general approach to select the best-tuned
unit in a finite set.

• We provide an implementation of the framework in an open-
source Python library, called ARLO.2 The library contains the
implementation of all the stages, the two RL pipelines, and the
needed tools to run, optimize, and evaluate the pipelines.

• Finally, we test the implementation on the LQG and MuJoCo
environments, showing the ability to reach optimal performances
without requiring any manual adjustment by humans. At last,
we provide an experiment on a realistic dam environment with
a pipeline composed of the data generation, feature selection,
policy generation, and policy evaluation stages.

Given the wide variety of RL problems and solutions, we restrict our
ormalization to stationary and fully observable environments. We leave
he extension to complex settings (e.g., multi-objective, multi-agent,
ifelong) as future work.

utline. The paper is structured as follows. In Section 2, we present
he fundamental notions of Markov Decision Processes and the basics
f RL. In Section 3, we introduce a general notion of pipeline, stage,
nd unit. In Section 4, we present the online and offline pipelines for
L. In Section 5, we describe the details of the components included

n the two pipelines. In Section 6, we report the results of the tests
erformed on standard benchmarks and on a realistic environment. In
ection 7, we highlight the conclusions of our works, and we propose
uture research lines.

. Preliminaries

A Markov Decision Process (MDP, Puterman, 2014) is defined as a
uple = (,, 𝑃 , 𝑅, 𝛾, 𝜇0), where is the set of states, is the set
f actions, 𝑃 (𝑠′|𝑠, 𝑎) is the state transition model, specifying the proba-
ility to land in state 𝑠′ starting from state 𝑠 and performing action 𝑎,
(𝑠, 𝑎) is the reward function, defining the expected reward when the
gent is in state 𝑠 and performs action 𝑎, 𝛾 ∈ [0, 1] is the discount factor,
nd 𝜇0(𝑠) is the initial-state distribution. The agent’s behavior is defined
n terms of a policy 𝜋(𝑎|𝑠) representing the probability of performing
ction 𝑎 in state 𝑠.

1 The reader might be tempted to address the offline RL setting with Au-
oML, given the fixed available dataset and, thus, the similarity with supervised
earning. We stress that this choice is inappropriate as the peculiarities of RL
re still crucial, especially the sequential properties of the problem.

2 The library is available at https://github.com/arlo-lib/ARLO.
2

a

Interaction protocol. The initial state is sampled from the initial-state
distribution 𝑠0 ∼ 𝜇0, the agent selects an action based on its policy 𝑎0 ∼
(⋅|𝑠), the environment provides the agent with the reward 𝑅(𝑠0, 𝑎0),
nd the state evolves according to the transition model 𝑠1 ∼ 𝑃 (⋅|𝑠0, 𝑎0).
he process is repeated for 𝑇 steps, where 𝑇 ∈ N∪{+∞} is the (possibly

nfinite) horizon.

bjective. The goal of RL consists in learning an optimal policy 𝜋(𝑎|𝑠),
.e., a policy maximizing the expected discounted sum of the rewards,
.k.a. the expected return:

(𝜋) ∶= E𝜋
[𝑇−1
∑

𝑡=0
𝛾 𝑡𝑅(𝑠𝑡, 𝑎𝑡)

]

, (1)

here the expectation E𝜋 [⋅] is computed w.r.t. the randomness of
nvironment and of the policy (Sutton & Barto, 2018).

nvironments and datasets. We introduce the notion of environment and
ataset. Formally, an environment is a device to interact with the
nderlying MDP, that, given a state 𝑠𝑡 and an action 𝑎𝑡, it provides the
ext state 𝑠′𝑡 ∼ 𝑃 (⋅|𝑠𝑡, 𝑎𝑡) and the reward 𝑟𝑡 = 𝑅(𝑠𝑡, 𝑎𝑡). An environment
s a generative model if it allows to freely choose the state 𝑠𝑡 at each
tep, or a forward model if, instead, we can perform steps in the MDP
𝑠𝑡+1 = 𝑠′𝑡) or start again sampling 𝑠𝑡 from the initial-state distribution
0. A dataset ∶= {𝜏𝑖}𝑛𝑖=1 is a set of trajectories 𝜏𝑖, where each trajectory
s a sequence 𝜏𝑖 = (𝑠0𝑖 , 𝑎

0
𝑖 , 𝑟

1
𝑖 ,… , 𝑠𝑇𝑖−1𝑖 , 𝑎𝑇𝑖−1𝑖 , 𝑟𝑇𝑖𝑖 , 𝑠

𝑇𝑖
𝑖) and 𝑇𝑖 is the length

f the trajectory.

nline vs. offline RL. We distinguish between two main groups of RL
lgorithms: online and offline RL. The online RL algorithms (Sutton &
arto, 2018) aim at learning a policy 𝜋 by directly interacting with
n environment . Typically they employ the last available policy to
ollect data and leverage the experience to improve it. Conversely, the
ffline RL paradigm (Levine, Kumar, Tucker, & Fu, 2020) consists in
arrying out the policy learning on a dataset previously collected.3
he ability to learn a (near-)optimal policy heavily depends on the
xploration properties of the dataset .

. Framework

In this section, we present the abstract formalization of the proposed
utoRL pipeline, detailing the notions of pipeline, stage, and unit.

.1. Stages and pipelines

A stage 𝜓 represents a single component of the pipeline with a
pecific purpose. For instance, the portion of the pipeline in charge
f performing feature engineering is regarded as a stage. A stage 𝜓
nteracts with the other stages of the pipeline by means of an interface,
efining its inputs and outputs. We denote a stage’s inputs with In(𝜓)
nd its outputs with Out(𝜓). A pipeline is a sequence of 𝑚 ∈ N stages
= (𝜓1,… , 𝜓𝑚). The possibility of staking specific stages in a sequence

epends, in general, on problem-dependent constraints.

.2. Units

A unit constitutes the actual implementation of the stages correspond-
ng to algorithms that are in charge of generating the output required
y the corresponding stage.4 We define three relevant types of units:
ixed, tunable, and automatic.

3 Even in this case, we may have an environment to test the performance
f the learned policy. Commonly, it is a less costly version, e.g., in terms of
omputational or real costs, of the environment where the final policy will be
pplied.

4 From a software engineering perspective, a stage is an abstract class, while

unit a concrete class.

https://github.com/arlo-lib/ARLO

Expert Systems With Applications 224 (2023) 119883M. Mussi et al.

i
a
A

o
ℎ

T
s
A

A
p

Fig. 1. The three types of units.
e
P
o

t

s
w
P

b
w
A
t
a
i
f
t
a
o
e
p

5

l
e
t

Fixed unit. A fixed unit (Fig. 1(a)) corresponds to an algorithm 𝜓 =
A(ℎ), where A(ℎ) denotes algorithm A that generates the stage output,
instanced with hyper-parameters ℎ ∈ selected from an hyper-
parameter set .

Tunable unit. A tunable unit (Fig. 1(b)) is described by a tuple 𝜓 =
(A,,T,𝓁) where A(⋅) is an algorithm, is a hyper-parameters set, T
s a tuner (e.g., genetic algorithm, particle swarm, Bayesian optimizer),
nd 𝓁(A, ℎ) ∈ R is a tuning performance index mapping an algorithm
(⋅) and hyper-parameters ℎ ∈ pair to a real number. The tuning
ptimization problem can be formulated as finding the hyper-parameters
∗ ∈ maximizing the performance index 𝓁. Formally:

ℎ∗ ∈ arg max
ℎ∈

𝓁(A, ℎ).

his optimization is addressed by the tuner T. When the stage corre-
ponding to the tunable unit is executed, it reduces to the fixed unit
(ℎ∗), and, subsequently, it generates the block outputs.

utomatic unit. An automatic unit (Fig. 1(c)) is a set of tunable units
aired with a performance index, i.e., 𝜓 = ({𝜓𝑗}𝑘𝑗=1,𝓁), where 𝜓𝑗 =

(A𝑗 ,𝑗 ,T𝑗 ,𝓁𝑗), for 𝑗 ∈ {1,… , 𝑘}, and 𝓁(A, ℎ) ∈ R is a performance in-
dex for algorithm A with hyper-parameters ℎ. The goal of an automatic
unit consists in selecting the best-tuned algorithm among the available
ones by ranking them based on the additional performance index 𝓁. We
define the automatic optimization problem as follows:

𝑗∗ ∈ arg max
𝑗∈{1,…,𝑘}

𝓁(A𝑗 , ℎ∗𝑗),

where:

ℎ∗𝑗 ∈ arg max
ℎ∈𝑗

𝓁𝑗 (A𝑗 , ℎ), 𝑗 ∈ {1,… , 𝑘}.

When the stage corresponding to the automatic unit is executed, it
reduces the automatic unit to a fixed one A𝑗∗ (ℎ∗𝑗∗), and, subsequently,
it generates the corresponding output.

In the AutoML community, the problem of jointly finding the best
algorithm and its related hyper-parameter configuration is also called
CASH (Combined Algorithm Selection and Hyper-parameter Optimiza-
tion Problem, Thornton, Hutter, Hoos, & Leyton-Brown, 2013).

Intuitively, a fixed unit is a human hand-crafted unit in which an
algorithm is selected, and the related hyper-parameters are specified.
No automatic operations nor evaluations are performed here. Instead,
in a tunable unit, the algorithm is specified, but the task of finding the
best hyper-parameter configuration is left to the pipeline. Finally, in
an automatic unit, both the choice of the best algorithm and the best
hyper-parameter configuration are left to the pipeline.

4. AutoRL pipelines

In this section, we present the main methodological contribution of
the paper, discussing the two AutoRL pipelines: online and offline. We
focus on how to build these pipelines by describing the stages’ inter-
actions. The detailed description of each individual stage is reported
in Section 5. A graphical representation of the pipelines is provided in
3

Fig. 2. a
Online pipeline. The Online AutoRL Pipeline (Fig. 2(a)) takes as in-
put an environment that is fed to the Feature Engineering
stage, which modifies its state–action representations and the reward
to facilitate the learning performed in the next stages. It outputs a
transformed environment ′, based on the features created in this stage.
Subsequently, the environment ′ is used to learn an estimate �̂�∗ of
the optimal policy through the Policy Generation. Finally, the
Policy Evaluation phase provides an estimate of the performance
𝜂(�̂�∗), based on a performance index 𝜂.

Offline pipeline. In the Offline AutoRL Pipeline (Fig. 2(b)), differently
from the online one, two additional preliminary stages are included:
Data Generation and Data Preparation. If an environment
is provided as input, the Data Generation stage creates a dataset
. This stage is omitted if a dataset is already available, e.g., in the
case it comes from a real process. In such a case, the environment is
mployed for the evaluation of the policy performance only. The Data
reparation stage modifies the dataset , by applying corrections
ver the individual instances (i.e., the rows of the dataset) obtaining
′. Then, the environment and dataset ′ pass through the Fea-
ure Engineering stage, which, similarly to its online counterpart,

generates a dataset ′′ and an environment ′ with transformed states,
actions, and reward. After that, the dataset ′′ is used for learning an
estimate of the optimal policy �̂�∗ through the Policy Generation
tage. Differently from the online one, this stage uses the dataset ′′,
hile the environment ′ is employed for estimating 𝜂(�̂�∗) in the
olicy Evaluation stage.

Before we start discussing the stages, we remark a notable difference
etween our framework compared to AutoML. By looking at Fig. 2 only,
e may recognize similarities between our stages with the ones of an
utoML pipeline (e.g., Feature Engineering). While the names of

he blocks are the same, the implementation of the blocks are different,
s AutoML blocks are clearly non-compatible with an RL pipeline. For
nstance, feature engineering cannot be performed in RL as it is done
or supervised learning or several learning algorithms consider samples
hat are i.i.d. in AutoML, while in AutoRL, we must consider that this
ssumption does not hold in general. Furthermore, the interfaces of
ur blocks (i.e., stage inputs and outputs) include the presence of an
nvironment, which is an element not explicitly considered in AutoML
ipelines.

. Stages and units

We now provide examples of units for each of the stages, high-
ighting the differences between the online and offline pipelines. For
ach stage, we define its goal, performance index for tunable or au-
omatic units, and implementation selected from the state-of-the-art

pproaches.

Expert Systems With Applications 224 (2023) 119883M. Mussi et al.

d

b

Fig. 2. The Online (a) and Offline (b) AutoRL Pipelines.
T
m
c
o

5.1. Data generation

The Data Generation stage takes as input an environment
and returns the unaltered environment and a dataset generated
by interacting with the environment. The goal of this stage is to create
a dataset that is retrieved by exploring the state space in the most effec-
tive way. Based on the type of environment, i.e., generative or forward
model, the resulting dataset is made of transitions or trajectories.

In principle, this stage should output a dataset as ‘‘informative’’
as possible, i.e., that represents exhaustively the corresponding envi-
ronment. As performance index for evaluating the quality of a Data
Generation unit, we adopt the entropy of the state–action visitation
istribution 𝑑𝜋 (𝑠, 𝑎) generated by the policy 𝜋(𝑎|𝑠), that is proportional

to:5

−∫𝑠∈ ∫𝑎∈
𝑑𝜋 (𝑠, 𝑎) log 𝑑𝜋 (𝑠, 𝑎) d𝑎 d𝑠.

A straightforward implementation of Data Generation consists in
collecting data with the random uniform policy. However, this ap-
proach is not guaranteed to explore the state space effectively (En-
drawis, Leibovich, Jacob, Novik, & Tamar, 2021; Mutti, Pratissoli, &
Restelli, 2021). In the pipeline, we consider the state-of-the-art solu-
tions proposed by Pathak, Gandhi, and Gupta (2019), and Mutti et al.
(2021). The former employs Proximal Policy Optimization (PPO, Schul-
man, Wolski, Dhariwal, Radford, & Klimov, 2017) using the estimated
variance of the MDP dynamics as reward, as a proxy for the entropy.
Instead, the latter provides a novel policy search algorithm maximizing
a 𝐾-nearest neighbors-based estimate of the state distribution entropy.

5.2. Data preparation

This phase uses a dataset , coming either from a real-world envi-
ronment or generated in the Data Generation stage, and returns a
dataset ′ with the same state–action features and reward, but with
a possibly different number of entries. The goal of this phase is to
optimize an existing dataset to be processed better in subsequent stages.
Data Preparation includes data augmentation, data imputation,
and data scaling. Moreover, it can embed further domain-specific sub-
stages (e.g., for images, and audio data) and/or consistency checks
(e.g., filling missing values).

No single automatic unit is deemed adoptable due to the difficulty of
defining a general enough performance index for this stage. However,
domain-specific performance indexes are available, e.g., for the data
imputation sub-stages, we may rely on the indexes defined by Jadhav,
Pramod, and Ramanathan (2019).

5 In this stage, we rely on the Particle Based Entropy estimation developed
y Singh, Misra, Hnizdo, Fedorowicz, and Demchuk (2003).
4

n

Possible implementations of this stage include the techniques for
classical ML preprocessing, such as imputation from a dataset of tra-
jectories via KNN imputation or Bayesian Multiple Imputation (Lizotte,
Gunter, Laber, & Murphy, 2008). Moreover, for pixel-based observa-
tions (e.g., the Gym Atari environments) data augmentation techniques,
e.g., cropping, reflection, and scaling, were employed in Ye, Khalifa,
Bontrager, and Togelius (2020). Other approaches viable for feature-
based representations are presented in Laskin et al. (2020), where
experiments on the OpenAI Procgen Benchmark and on the MuJoCo
environments are considered.

5.3. Feature engineering

The Feature Engineering stage displays significant differ-
ences between online and offline pipelines (Fig. 3). Offline pipelines
(Fig. 3(b)) take as input an environment and a dataset ′ and return
a feature-adjusted environment ′ and dataset ′′. Conversely, online
pipelines (Fig. 3(a)) take as input an environment and return a
feature-adjusted environment ′. In both cases, this stage requires an
internal dataset for feature engineering that, for the online case, has to
be generated.

The core task of this stage is to select and generate a set of features
that properly model the state–action space of the problem and per-
form reward-shaping actions to facilitate the following learning phase.
Feature Engineering stage includes one or more of the following
sub-stages:

• Feature Generation, in charge of creating new features. This
sub-stage makes use of techniques such as radial basis functions,
tile coding, coarse coding (Sutton & Barto, 2018) or Nyström
Map (Williams & Seeger, 2000).

• Feature Selection, aimed at selecting a meaningful subset
of features, either to reduce the computation requirements or
to regularize the following policy learning phase. Viable options
are Mutual Information-based selection (Beraha, Metelli, Papini,
Tirinzoni, & Restelli, 2019), correlation-based filtering methods,
and tree-based variable selection (Castelletti, Galelli, Restelli, &
Soncini-Sessa, 2011).

• Reward Shaping, performing specific transformations on the
reward function, possibly preserving the optimal policy, to speed
up the convergence of an RL algorithm (Ng, Harada, & Rus-
sell, 1999). For instance, in presence of sparse reward func-
tions, reward shaping can be regarded as a form of curriculum
learning (Portelas, Colas, Weng, Hofmann, & Oudeyer, 2020).

hese sub-stages return a transformation that is applied to the environ-
ent through the Environment Engineering stage. In the offline

ase, the same transformation is applied to the dataset, while in the
nline case, the internal dataset is disregarded.

We consider as a performance index for the complete feature engi-
eering stage the mutual information between the current state–action

Expert Systems With Applications 224 (2023) 119883M. Mussi et al.

t

Fig. 3. The offline and online Feature Engineering stages.
p
a

t
t
o
t
r
S
o

6

o
a
t
/
i
g
P
p

w
6
p
w
i
G
m

6

l
e
i

pair (𝑠, 𝑎) features and the next-state reward (𝑠′, 𝑟) features (Gao, Kan-
nan, Oh, & Viswanath, 2017; Kraskov, Stögbauer, & Grassberger, 2004)
regularized, e.g., by the number of selected features.6

5.4. Policy generation

The Policy Generation stage is in charge of the training phase
of the RL learning algorithm. More specifically, it takes as input an
environment ′ or a dataset ′′, in the online and offline RL pipelines,
respectively, to output an estimate �̂�∗ of the optimal policy.

Among the most common choices of performance indexes for this
stage, we mention the expected return, i.e., the expected discounted
sum of the rewards, the average reward, i.e., the long-term expected
average reward, and the total reward i.e., expected cumulative sum
of the rewards (in the case the environment is episodic, Puterman,
2014). For specific applications, e.g., risk-averse setting, one may adopt
the mean–variance, mean-volatility, and CVaR (Bisi, Sabbioni, Vittori,
Papini, & Restelli, 2021; Pratt, 1978).

Many works deal with hyper-parameter optimization for RL algo-
rithms. In Franke, Köhler, Biedenkapp, and Hutter (2021) a framework
based on Population-Based Training (PBT, Jaderberg et al., 2017) is
proposed to tune off-policy RL algorithms. In Parker-Holder, Nguyen,
Desai, and Roberts (2021), a new time-varying bandit algorithm was
presented for tuning RL algorithms. Hyper-parameter tuning is a widely
researched topic, and the techniques developed by ML algorithms can
be used for RL algorithms as well. Nevertheless, the sample ineffi-
ciency of tuning techniques is a common problem, not unique to RL.
Another issue is the sensitivity to hyper-parameters configurations,
which increases the difficulty of benchmarking tuning algorithms due
to the difficulty of obtaining reproducible results. Further methods were
proposed by Falkner, Klein, and Hutter (2018), Lee, Laskin, Srinivas,
and Abbeel (2021), Saphal, Ravindran, Mudigere, Avancha, and Kaul
(2021), Team et al. (2021), Zhang et al. (2021).

The specific implementation of the Policy Generation stage de-
pends on the selected RL algorithm. For offline pipelines, we mention,
among the others, Least Squares Policy Iteration (LSPI, Lagoudakis &
Parr, 2003), Fitted Q-Iteration (FQI, Ernst, Geurts, & Wehenkel, 2005).
For online pipelines, a large surge of RL algorithms has been developed
in recent years. We mention, among the most popular ones, Trust
Region Policy Optimization (TRPO, Schulman, Levine, Abbeel, Jordan,
& Moritz, 2015), Deep Q-Networks (DQN, Schaul, Quan, Antonoglou,
& Silver, 2016), Deep Deterministic Policy Gradient (DDPG, Lillicrap
et al., 2016), Proximal Policy Optimization (PPO, Schulman et al.,

6 For instance, one may use the ratio between the mutual information and
he number of selected features.
5

c

2017), and Soft Actor Critic (SAC, Haarnoja, Zhou, Abbeel, & Levine,
2018).

5.5. Policy evaluation

The Policy Evaluation stage takes as input the policy �̂�∗

roduced by the Policy Generation phase and an environment ′,
nd produces as output an estimation of a performance index 𝜂(�̂�∗).

Regarding the performance index used in this stage, the options are
he same as the ones we mentioned for Policy Generation. Notice
hat the performance index chosen in this stage may differ from the one
f the Policy Generation one. For instance, it is a common practice
o train RL algorithms using a discounted objective and evaluate the
esulting policies using an undiscounted one (Duan, Chen, Houthooft,
chulman, & Abbeel, 2016). Notice that, due to the nature of the task,
nly fixed units are used in this stage.

. Experimental results

In this section, we employ the Python implementation of ARLO
n three RL problems. In addition to the presented stages, the library
llows creating newly defined stages, if needed, and a set of analysis
ools. The implementation of the framework is available at https:
/github.com/arlo-lib/ARLO. The implemented methods are reported
n Appendix A. The Policy Generation stages have been inte-
rated with the MushroomRL (D’Eramo, Tateo, Bonarini, Restelli, &
eters, 2021) library.7 The optimization of the tunable units has been
erformed using a genetic algorithm as described in Appendix B.

In Sections 6.1 and 6.2, we present the results of our online pipelines
hose Policy Generation stages contain tunable (Sections 6.1.1,
.2) and automatic (Section 6.1.2) units to select the best hyper-
arameters and algorithm over two simulated problems. In Section 6.3,
e apply an offline pipeline including tunable Feature Engineer-
ng and fixed (Section 6.3.1) or automatic (Section 6.3.2) Policy
eneration stages on a realistic dam control problem. The experi-
ental details are reported in Appendix B.

.1. Linear quadratic Gaussian regulator

In this experiment, we solve a Linear–Quadratic Gaussian Regu-
ator (LQG, Dorato, Cerone, & Abdallah, 1994) with state dynamics
volving as 𝑠𝑡+1 = 𝐴𝑠𝑡 + 𝐵𝑎𝑡 + 𝜎, where 𝑠𝑡 is the state at time 𝑡, 𝑎𝑡
s the action at time 𝑡, 𝐴 is the state dynamic matrix, 𝐵 is the action

7 The ARLO library includes an easy procedure to integrate algorithms
oming from other RL libraries.

https://github.com/arlo-lib/ARLO
https://github.com/arlo-lib/ARLO
https://github.com/arlo-lib/ARLO

Expert Systems With Applications 224 (2023) 119883M. Mussi et al.

𝑟
w
a

6

e
l
i
2
o
t
b
a

R
t
m
d
i
t
t
p
1
g
s
T
r
s
t
o
p

6

u
r
G
H
m
R
p

p
f

i

a

R
o
d
p
2
o

t
o
s
w
t
t
a
w
t
e

6

e

p

Table 1
Results achieved tuning SAC hyper-parameters on an LQG environment
(100 runs, mean ± std, higher is better).

Method Default Tuned

Van Dooren (1981) −7.2 (4.9)

1st Seed −59.0 (24.0) −8.6 (4.7)
2nd Seed −67.4 (16.1) −8.2 (5.1)
3rd Seed −52.4 (12.5) −8.7 (4.7)

Table 2
Comparison of the results achieved by different tuners
in selecting the SAC hyper-parameters on an LQG
environment (100 runs, mean ± std, higher is better).

Tuner Reward

Optimum (Van Dooren, 1981) −7.2 (4.9)
Genetic Algorithm −8.5 (4.8)
Bayesian Optimization (TPE) −8.6 (4.7)
Random Search −9.5 (4.9)

dynamic matrix, and 𝜎 is Gaussian white noise. The reward function is
𝑡+1 = −𝑠𝑇𝑡 𝑄𝑠𝑡 − 𝑎𝑇𝑡 𝑅𝑎𝑡, where 𝑄 and 𝑅 are the state and action cost
eight matrices, respectively.8 The discount factor is equal to 𝛾 = 0.9,
nd the time horizon is 𝑇 = 15.

.1.1. Tunable policy generation
In this experiment, we employ the Soft-Actor Critic (SAC, Haarnoja

t al., 2018) algorithm. To tune its hyper-parameters, we create an on-
ine RL pipeline, using the expected return (Eq. (1)) as the performance
ndex and a genetic algorithm (like in Sehgal, La, Louis, & Nguyen,
019) as the tuning algorithm. Then, we compare the performance
f different tuners, i.e., Bayesian Optimization, Random Search, and
he genetic algorithm mentioned above, to assert which one performs
etter. The results are obtained after 50 generations of the genetic
lgorithm, each using a population of 20 agents.

esults. We compare the results provided by the ARLO framework with
he optimal solution (Van Dooren, 1981). In Table 1, we report the esti-
ated expected return, averaged over 100 episodes (with the standard
eviation in brackets), for the default configuration and the correspond-
ng tuned policy over three different seeds. Even if the performance of
he tuned algorithms does not match the one of the optimal solution,
he default hyper-parameter configuration of SAC is notably under-
erforming (≈ 5 times worse) compared to the tuned configuration (≈
.2 times worse). This result suggests that the proposed framework can
enerate solutions compatible with the optimal one without exploiting
pecific domain knowledge about the problem. On the other hand,
able 2 presents the performances in terms of estimated expected
eturn for the genetic algorithm, Bayesian optimization, and random
earch tuner. It is worth noting how, in this scenario, we observe that
he genetic tuner reaches the best performance, comparable with the
ne of the Bayesian optimizer, while, as expected, the random tuner
erforms the worst.

.1.2. Automatic policy generation
In this experiment, differently from the previous one in which we

sed a single tunable unit for the Policy Generation stage, we
un an automatic Policy Generation unit for the Linear Quadratic
aussian Regulator, in which we tune both Soft Actor Critic (SAC,
aarnoja et al., 2018) and Proximal Policy Optimization (PPO, Schul-
an et al., 2017). To test the performance, we consider the Discounted
eward (Eq. (1)) in Policy Evaluation stage. Fig. 4 represents the
ipeline and the topology of the units used in the experiment.

8 The details about the hyper-parameters configuration space, the tuning
rocedure, and the compute requirements for the LQG experiment can be
ound in Appendix B.1.
6

b

Table 3
Performance obtained using the automatic Policy Generation unit on the
Linear Quadratic Gaussian Regulator (100 runs, mean ± std, higher is better).

Method Empirical expected return

Van Dooren (1981) −7.2 (4.9)

Best SAC Tuned Configuration −8.2 (5.1)
Best Automatic Configuration −7.4 (5.0)

Table 4
Results achieved tuning DDPG hyper-parameters on HalfCheetah-v3
environment (100 runs, mean ± std, higher is better).

Method Default Tuned

Islam et al. (2017) 3725.3 (512.8)

1st Seed 1157.7 (45.6) 3407.2 (952.1)
2nd Seed 850.8 (78.9) 4624.6 (110.9)
3rd Seed 956.2 (34.2) 3076.9 (77.9)

Results. Table 3 shows the results in terms of discounted reward. By
tuning the hyper-parameters of two different Policy Generation
tunable units, the pipeline further improved the results presented in
Section 6.1.1, reaching a level of performance in line with the one of
the optimal solution by Van Dooren (1981).

6.2. HalfCheetah

In this experiment, we apply the online RL pipeline to the Mu-
JoCo HalfCheetah-v3 environment from OpenAI Gym (Zamora, Lopez,
Vilches, & Cordero, 2016).9 As a learning algorithm for the Pol-
cy Generation, we employ the Deep Deterministic Policy Gradi-
ent (DDPG, Lillicrap et al., 2016), whose hyper-parameter tuning is
known to be a challenging task (Islam, Henderson, Gomrokchi, &
Precup, 2017).10 The hyper-parameters of DDPG have been tuned using
the undiscounted cumulative reward as a performance index and, as a
tuner, a genetic algorithm. Moreover, we employ a discount factor 𝛾 = 1
nd the time horizon to 𝑇 = 1000.

esults. In Table 4, we report the estimated total reward, averaged
ver 100 episodes, for the default and tuned configurations over three
ifferent seeds (the standard deviation is provided in brackets). The
rovided performances are in line with the literature ones (Islam et al.,
017) and show that the proposed pipeline provides an automatic way
f achieving competitive performance.

In Fig. 5, we report the different hyper-parameters selected during
he learning phase by individuals (agents) used in the genetic algorithm
ptimization procedure throughout the tuning procedure. These results
how how some of the parameters have a strong influence on the re-
ard obtained by the agents, i.e., the actor and critic learning rate and

he steps per fit (Figs. 5(a), 5(b), and 5(c), respectively), which implies
hat the value of the parameter concentrates around the optimal value
fter a few generations of the genetic algorithm. Conversely, those
hich do not influence the outcome of the optimization procedure, i.e.,

he steps (Fig. 5(d)), continue to explore the available range until the
nd of the generations.

.3. Dam

To showcase the capabilities of our framework, we propose an
xperiment with a more complex offline RL pipeline that includes

9 https://gymnasium.farama.org/environments/mujoco/half_cheetah/
10 The details about the hyper-parameters configuration space, the tuning
rocedure, and the compute requirements for the HalfCheetah experiment can
e found in Appendix B.2.

https://gymnasium.farama.org/environments/mujoco/half_cheetah/

Expert Systems With Applications 224 (2023) 119883M. Mussi et al.

p
f

Fig. 4. Types of the units adopted in the online pipeline experiment.
Fig. 5. Values of the hyper-parameters generated by the genetic optimization procedure over the 50 generations. The orange line corresponds to the best-found value.
Table 5
Results achieved tuning the hyper-parameters of a Fea-
ture Engineering stage (10 runs, mean ± std, higher
is better).

Method Discounted reward

Baseline −1649.85 (112.88)
Tuned Configuration −1224.67 (124.41)

Data Generation, Feature Engineering, Policy Genera-
tion, and Policy Evaluation stages.11 The selected environment
consists of the control of a water reservoir (dam) that models the
dynamics of a real alpine lake (Castelletti et al., 2011). The agent
observes the current level of the lake and the sequence of the most
recent 30 daily inflows. The actuation consists of the amount of daily
water released. The goal of the agent is to trade off between avoiding
floods and fulfilling the downstream water demand.

6.3.1. Feature engineering
In this experiment, the dataset is generated by a fixed Data Gen-

eration stage adopting a random uniform policy. The Feature
Engineering stage performs forward feature selection via mutual
information (as presented in Beraha et al., 2019) to identify a subset
of the available inflows features. The Policy Generation stage is
a fixed unit and uses the Fitted Q-Iteration (FQI, Ernst et al., 2005)
algorithm. The hyper-parameters of FQI are fixed to a hand-tuned
configuration as the one presented by Tirinzoni, Sessa, Pirotta, and
Restelli (2018). The objective of this experiment is to show in a
realistic environment that tuning the hyper-parameters of a Feature
Engineering stage is beneficial for the final performance.

Results. In Table 5, we report the estimated expected return averaged
over 10 episodes for the baseline configuration (standard deviation in
brackets), in which all the features have been considered, and for the
tuned configuration, in which only a subset of the features was selected

11 The details about the hyper-parameters configuration space, the tuning
rocedure, and the compute requirements for the Dam experiment can be
ound in Appendix B.3.
7

Table 6
Results obtained for the additional experiment over the full offline
pipeline (10 runs, mean ± std, higher is better).

Method Empirical expected return

Pipeline of Section 6.3.1 −1224.67 (124.41)
New configuration −1047.97 (213.37)

automatically by the pipeline. We observe that the result achieved by
the tuned agent significantly outperforms the baseline one, meaning
that the feature selection techniques select only the most informa-
tive feature for the problem, with beneficial effects on the successive
learning phase.

6.3.2. Complete offline pipeline
The objective of this experiment is to evaluate the capabilities of

using the complete offline pipeline we defined in Section 4 in the Dam
experiment described above.

The scheme of the used pipeline and the topology of the different
stages is presented in Fig. 6. We use a fixed unit to generate the
data, and a tunable one to perform the Feature Engineering
stage, similarly to what has been done in Section 6.3.1. Subsequently,
we use an automatic Policy Generation unit composed of two
tunable units using different versions of Fitted-Q Iteration, i.e., one with
XGBoost as regressor, and the other with Extremely Randomized Trees.
The two hyper-parameters configurations spaces are those presented in
Appendix B.

Results. In Table 6, we report the empirical expected return over 10
episodes (standard deviation in brackets). It is worth noting that by
adding more automation in the pipeline we can increase the perfor-
mances on the environment under analysis w.r.t. the results obtained
in Section 6.3.1.

Even though we have improved over the previously obtained result
by about 20%, we point out that obtaining a statistically significant
result would require a huge computational effort. Indeed, the entire run
took around 16 h. We leave to future experiments the test on a larger
number of samples to assess the statistical significance of this result.

Expert Systems With Applications 224 (2023) 119883M. Mussi et al.

P

D

c
i

D

Fig. 6. Types of the units adopted in the offline pipeline experiment.
7. Conclusions and limitations

This paper introduced the ARLO framework for automating rein-
forcement learning by proposing two pipelines, one for the online
setting and one for the offline setting. Moreover, we showcased the
capabilities of such a framework by creating a Python library, and we
tested its performance in both simulated and realistic settings.

While the proposed framework in its current formulation is flexible
and allows adding customized stages, the complete democratization of
RL is far from being achieved. First, the procedures to optimize the
different stages were revealed to be computationally demanding. Thus,
adding tools to predict and control the amount of computational time
required by a pipeline is of paramount importance to obtain a flexible
tool. Another interesting development, going in the opposite direction
of what we have just mentioned, consists in including a ‘‘whole pipeline
optimization’’ procedure, which jointly optimizes the entire learning
process. This direction requires a preliminary development of less
computationally demanding algorithms for each stage of the pipeline.
Finally, we focused our attention on fully-observable, stationary, single-
agent, single-objective settings. Developing a more general pipeline to
relax some or all of the above assumptions would ease the application
of RL algorithms in a wider spectrum of real-world problems.

Limitations. The goal of AutoRL is to bring RL closer to the non-
expert user. This represents a source of opportunities and risks. On
the one hand, making RL usable to a wide audience contributes to
the democratization of the field, overcoming the need for specific ed-
ucation and opening it to the large public. On the other hand, such
an abstract approach tends to compromise the transparency of the
learning process and the traceability of the resulting model. Shadowing
the underlying principles, AutoRL might pose the risk of misuse of RL
approaches, leading to results that are not in line with expectations.
Furthermore, AutoRL, even more than RL, requires huge amounts of
data and computation that might represent a limit of the framework.

CRediT authorship contribution statement

Marco Mussi: Methodology, Formal analysis, Writing – original
draft, Visualization. Davide Lombarda: Software, Data curation, Writ-
ing – original draft, Visualization. Alberto Maria Metelli: Conceptu-
alization, Investigation, Formal analysis, Writing – review & editing.
Francesco Trovó: Project administration, Investigation, Conceptualiza-
tion, Writing – review & editing. Marcello Restelli: Conceptualization,
roject administration, Supervision, Writing – review & editing.

eclaration of competing interest

The authors declare that they have no known competing finan-
ial interests or personal relationships that could have appeared to
nfluence the work reported in this paper.

ata availability
8

Data and Code available on GitHub.
Acknowledgments

This paper is supported by FAIR (Future Artificial Intelligence Re-
search) project, funded by the NextGenerationEU program within the
PNRR-PE-AI scheme (M4C2, Investment 1.3, Line on Artificial Intelli-
gence).

Appendix A. Library

ARLO is a Python library implementing the framework described in
this paper. It contains all the automation capabilities described in the
main paper. It also provides the implementation of specific stages for
each phase of the two pipelines we introduced in Section 4.

The RL algorithms present in the implementation are wrappers of
those implemented in MushroomRL (D’Eramo et al., 2021). Moreover,
we structured the library so that one has the option to implement
wrappers for any other RL library, e.g., Stable Baselines, RLLib, and
Tensorforce.

Supported units. In Table 7, we list the currently implemented units
for each stage. As mentioned before, this is a non-exhaustive list of
the possible methods that can be included in the proposed framework,
but only those which we used for experimental purposes. See Section 5
for some suggestions about the methods which are appropriate for an
extension for each stage.

Used libraries. ARLO requirements, in terms of libraries, are: catboost
(v1.0.3), gym (v0.19.0), joblib (v1.1.0), matplotlib (v3.5.0), mush-
room_rl (v1.7.0), numpy (v1.22.0), optuna (v2.10.0), plotly (v5.4.0),
scikit_learn (v1.0.2), scipy (v1.7.3), torch (v1.10.1), xgboost (v1.5.1).

Appendix B. Details on the experiments

All the experiments were run on a Linux-based server with an AMD
Ryzen 9 5950𝑋 16-Core Processor with 128 GB DDR4 RAM running
Python 3.8.8 on CentOS 8.5.2111.

Hyper-parameter tuning. The pseudo-code of the genetic tuner is de-
tailed in Algorithm 1. The hyper-parameter tuning of the genetic al-
gorithms are run for 50 generations, each one including 20 agents.
Throughout each generation, elitism is performed, i.e., the best agent
of the generation is preserved, and the new generation is created via
tournament selection. More specifically, we take the best agent, out of
a subset of 3 agents of the previous generation, and we repeat such an
operation until 19 agents are selected (as the remaining spot is reserved
for the best-performing agent in the previous generation).

Each hyper-parameter is mutated with probability 0.5, and two
different types of mutation can take place:

• for categorical hyper-parameters and for the ones having discrete
support, we sample from a uniform distribution over the possible
values;

• for numerical, i.e., continuous domains, we sample hyper-
parameters from a uniform distribution over 0.8 and 1.2 times

the current value of the hyper-parameter.

Expert Systems With Applications 224 (2023) 119883M. Mussi et al.

E

Table 7
Supported units in the current ARLO implementation.

Stage Implementations

Data Generation Random Uniform Policy
MEPOL (Mutti et al., 2021)

Data Preparation Mean Imputation
1-NN Imputation

Feature Engineering Recursive Feature Selection
Forward Feature Selection via Mutual Information (Beraha et al., 2019)
Nyström Map Feature Generation (Williams & Seeger, 2000)

Policy Generation

Fitted-Q Iteration (FQI, Ernst et al., 2005)
Double Fitted-Q Iteration (DoubleFQI, D’Eramo, Nuara, Pirotta, & Restelli, 2017)
Least Squares Policy Iteration (LSPI, Lagoudakis & Parr, 2003)
Deep Q-Network (DQN, Mnih et al., 2015)
Proximal Policy Optimization (PPO, Schulman et al., 2017)
Deep Deterministic Policy Gradient (DDPG, Lillicrap et al., 2016)
Soft Actor Critic (SAC, Haarnoja et al., 2018)
GPOMDP (Baxter & Bartlett, 2001)
Algorithm 1 Genetic Tuner
1: Randomly initialize first generation
2: for 𝑖 ∈ [0,… , 𝑛_𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠) do
3: Fit and evaluate each agent in the generation 𝑖
4: Select the best agent and add it to the new generation 𝑖 + 1
5: for 𝑗 ∈ [0,… , 𝑛_𝑎𝑔𝑒𝑛𝑡𝑠 − 1) do
6: Add best agent, out of a random subset of 3, to the new

generation 𝑖 + 1
7: end for
8: Mutate the new generation 𝑖 + 1
9: end for

Table 8
Supported environments in the current ARLO implementation.

Source Type Environment

Gym

Classic Control
Grid World
Mountain Car
Cart Pole

MuJoCo

Inverted Pendulum
Walker2d
HalfCheetah
Ant
Hopper
Humanoid
Swimmer

Other Controller LQG

ARLO implements the Genetic Algorithm presented above as well as the
hyper-parameter tuning solutions from Optuna (Akiba, Sano, Yanase,
Ohta, & Koyama, 2019).

In all the experiments, we chose reasonable hyper-parameters con-
figuration spaces so that they were neither too small, to avoid exploring
a space that was too little and thus finding solutions quite far off,
nor too large, to avoid increasing the total computational time (as
some hyper-parameters have a great impact on the training time of the
Policy Generation units).

nvironment. Whenever an environment is used for the training of
an RL algorithm, a deep copy of such an environment is provided
to each agent in the generation, while in the case a dataset is used
for the training of an RL algorithm, we provided each agent with a
bootstrapped dataset coming from the original one. The environments
currently available are presented in Table 8.

Loss function. As a loss function for guiding the tuning procedure, we
used the empirical expected return defined in Eq. (1). The specific loss
functions used in the different experiments for policy evaluation are
9

detailed in the following sections.
Table 9
Hyper-parameters configuration space for the Linear Quadratic Gaussian Regulator
experiment.

Hyper-parameter Search space

Actor Learning Rate {10−5 , 10−4 , 10−3 , 10−2}
Actor Network One layer with 16 neurons and ReLU activation
Critic Learning Rate {10−5 , 10−4 , 10−3 , 10−2}
Critic Loss MSE
Critic Optimizer Adam
Critic Network One layer with 16 neurons and ReLU activation
Batch Size {8, 16, 32, 64, 128}
Initial Replay Size {10, 100, 300, 500, 1000, 5000}
Max Replay Size {3000, 10000, 30000, 100000}
Warmup Transitions {50, 100, 500}
Tau 0.005
Alpha Learning Rate {10−5 , 10−4 , 10−3}
Log Std Min −20
Log Std Max 3
N Epochs [1, 30]
N Episodes [1, 1600]
N Episodes Per Fit [1, 500]

B.1. Linear quadratic Gaussian regulator

In this experiment, presented in Section 6.1, we consider a Linear
Quadratic Gaussian (LQG) Regulator characterized as follows:

𝐴 =
[

1 0
0 1

]

, 𝐵 =
[

1 0 0
0 0 1

]

,

𝑄 = 0.7 ⋅
[

1 0
0 1

]

, 𝑅 = 0.3 ⋅
⎡

⎢

⎢

⎣

1 0 0
0 1 0
0 0 1

⎤

⎥

⎥

⎦

.

Along each dimension, and for each time step 𝑡, the action 𝑎𝑡 can take
values in [−3.5, 3.5], while the discount factor and the time horizon
were set to 𝛾 = 0.9, and 𝑇 = 15, respectively. We used a noise standard
deviation as follows:

𝜎 = 0.1 ⋅
[

1 0
0 1

]

.

In Section 6.1.1, we perform three experiments using three different
seeds: 2, 42, 2022. We tune the hyper-parameters of SAC through the
genetic algorithm described above, using as a metric the empirical
expected return. For all the seeds we consider, we used the hyper-
parameters configuration space reported in Table 9. Notice that if only
a single value is specified for its domain, it means that the hyper-
parameter is considered fixed. The three runs performed (one for each
seed) took on average 44 (±17.2) h each.

In Fig. 7, we report the value of the performance over time of the
best agent of each generation for this experiment. It shows how the

performances are almost constant in the last ≈ 25 generations, meaning

Expert Systems With Applications 224 (2023) 119883M. Mussi et al.

a
d
u
t

t
e
t
s
e

B

o
l
i
i
p
w

e
o

B

d
a
f

u
E
b

_

Fig. 7. SAC best agent performance for each generation.

Table 10
Hyper-parameters configuration space for the HalfCheetah experiment.

Hyper-parameter Search space

Actor Learning Rate [10−5 , 10−2]
Actor Network Two layers with 128 neurons and ReLU activations
Critic Learning Rate [10−5 , 10−2]
Critic Loss MSE
Critic Optimizer Adam
Critic Network Two layers with 128 neurons and ReLU activations
Batch Size [8, 256]
Initial Replay Size [1000, 20000]
Max Replay Size [10000, 1500000]
Tau 0.001
Policy delay 1
Policy OrnsteinUhlenbeckPolicy(𝜎 = 0.2, 𝜃 = 0.15, dt = 10−2)
N Epochs [1, 50]
N Steps [1000, 15000]
N Steps Per Fit [1, 10000]

that the optimization procedure converged to a solution near to a local
minimum point. The scripts needed to run these three experiments
(each corresponding to a different seed) are available at https://gith
ub.com/arlo-lib/ARLO/tree/main/experiments/LQG.

B.2. HalfCheetah

In this second experiment, presented in Section 6.2, we used the
simulated environment of HalfCheetah to run an experiment on the
model generation stage. The MDP corresponding to this environment
is assumed to have a discount factor and a time horizon of 𝛾 = 1,
nd 𝑇 = 1000, respectively. We perform three experiments using three
ifferent seeds: 2, 42, and 2022. We tune the hyper-parameters of DDPG
sing the genetic algorithm described above, considering as a metric
he Average Reward.

For all three seeds, we consider the hyper-parameters configura-
ion space reported in Table 10. The three runs performed (one for
ach seed), took on average 124.7 (±8.8) h each. The scripts needed
o run these three experiments (each corresponding to a different
eed) are available at https://github.com/arlo-lib/ARLO/tree/main/
xperiments/HalfCheetah-v3.

.3. Dam

In this experiment, presented in Section 6.3, we consider the control
f a water reservoir (dam) that models the dynamics of a real alpine
ake, as described by Castelletti et al. (2011). The observation space
s a continuous space with 31 dimensions, each of which takes values
n R+. This state space features represent the inflow values for the
revious month. The action space is sampled to get a discrete space
10

ith 8 actions, each one corresponding to a different amount of water
Table 11
Hyper-parameters configuration space for the Fea-
ture Engineering stage of the Dam experiment.

Hyper-parameter Search space

K {1, 2, 3, 4, 5, 10, 20, 50}
N Features {1, 2, …, 31}

Table 12
Hyper-parameters used in the Policy Generation
stage of the Dam experiment (Section 6.3.1 and
Section 6.3.2).

Hyper-parameter Value

N Iterations 60
N Estimators 100
Criterion MSE
Min Samples Split 10

Table 13
Hyper-parameters configuration space of XGBoost
(Section 6.3.2).

Hyper-parameter Search space

N Iterations [2, 60]
N Estimators [5, 250]
Min Child Weight [1, 100]
Subsample [0.5, 1]
Learning Rate [10−3, 0.4]
Max Depth [4, 15]

Table 14
Hyper-parameters configuration space of Extremely
Randomized Trees (Section 6.3.2).

Hyper-parameter Search space

N Iterations [2, 60]
N Estimators [5, 250]
Criterion MSE
Min Samples Split [1, 50]

released in a day. The full description of the environment is provided
in Castelletti et al. (2011). The discount factor and the time horizon
have been set to 𝛾 = 0.999 and 𝑇 = 360, respectively. The dataset
mployed to run the experiments is constituted of 30 episodes, for an
verall amount of 10800 samples.

.3.1. Feature engineering
In this experiment, presented in Section 6.3.1, once we extract the

ataset, we perform forward feature selection via mutual information,
s described by Beraha et al. (2019). Hyper-parameters search space
or the tested tunable feature selection unit is reported in Table 11.

Once feature selection is performed, we fit a Policy Generation
nit, i.e., FQI, using an Extremely Randomized Trees Regressor (Geurts,
rnst, & Wehenkel, 2006) with the hyper-parameters present in Ta-
le 12. The entire run took around 2 h. The script needed to run

this experiment is available at https://github.com/arlo-lib/ARLO/tree/
main/experiments/Dam/dam.py.

B.3.2. Complete offline pipeline
In this experiment, presented in Section 6.3.2, we consider the

same hyper-parameters search space for Feature Engineering
tunable unit, and those presented in Tables 13 and 14 for the Policy
Generation automatic unit for FQI with XGBoost and Extremely
Randomized Trees, respectively.

The script needed to run this experiment is available at https://
github.com/arlo-lib/ARLO/blob/main/experiments/Dam/hp_tuning_fqi

dam.py.

https://github.com/arlo-lib/ARLO/tree/main/experiments/LQG
https://github.com/arlo-lib/ARLO/tree/main/experiments/LQG
https://github.com/arlo-lib/ARLO/tree/main/experiments/LQG
https://github.com/arlo-lib/ARLO/tree/main/experiments/LQG
https://github.com/arlo-lib/ARLO/tree/main/experiments/LQG
https://github.com/arlo-lib/ARLO/tree/main/experiments/LQG
https://github.com/arlo-lib/ARLO/tree/main/experiments/LQG
https://github.com/arlo-lib/ARLO/tree/main/experiments/LQG
https://github.com/arlo-lib/ARLO/tree/main/experiments/LQG
https://github.com/arlo-lib/ARLO/tree/main/experiments/LQG
https://github.com/arlo-lib/ARLO/tree/main/experiments/LQG
https://github.com/arlo-lib/ARLO/tree/main/experiments/LQG
https://github.com/arlo-lib/ARLO/tree/main/experiments/LQG
https://github.com/arlo-lib/ARLO/tree/main/experiments/LQG
https://github.com/arlo-lib/ARLO/tree/main/experiments/LQG
https://github.com/arlo-lib/ARLO/tree/main/experiments/LQG
https://github.com/arlo-lib/ARLO/tree/main/experiments/LQG
https://github.com/arlo-lib/ARLO/tree/main/experiments/LQG
https://github.com/arlo-lib/ARLO/tree/main/experiments/LQG
https://github.com/arlo-lib/ARLO/tree/main/experiments/LQG
https://github.com/arlo-lib/ARLO/tree/main/experiments/LQG
https://github.com/arlo-lib/ARLO/tree/main/experiments/LQG
https://github.com/arlo-lib/ARLO/tree/main/experiments/LQG
https://github.com/arlo-lib/ARLO/tree/main/experiments/LQG
https://github.com/arlo-lib/ARLO/tree/main/experiments/LQG
https://github.com/arlo-lib/ARLO/tree/main/experiments/LQG
https://github.com/arlo-lib/ARLO/tree/main/experiments/LQG
https://github.com/arlo-lib/ARLO/tree/main/experiments/LQG
https://github.com/arlo-lib/ARLO/tree/main/experiments/LQG
https://github.com/arlo-lib/ARLO/tree/main/experiments/LQG
https://github.com/arlo-lib/ARLO/tree/main/experiments/LQG
https://github.com/arlo-lib/ARLO/tree/main/experiments/LQG
https://github.com/arlo-lib/ARLO/tree/main/experiments/LQG
https://github.com/arlo-lib/ARLO/tree/main/experiments/LQG
https://github.com/arlo-lib/ARLO/tree/main/experiments/LQG
https://github.com/arlo-lib/ARLO/tree/main/experiments/LQG
https://github.com/arlo-lib/ARLO/tree/main/experiments/LQG
https://github.com/arlo-lib/ARLO/tree/main/experiments/LQG
https://github.com/arlo-lib/ARLO/tree/main/experiments/LQG
https://github.com/arlo-lib/ARLO/tree/main/experiments/LQG
https://github.com/arlo-lib/ARLO/tree/main/experiments/LQG
https://github.com/arlo-lib/ARLO/tree/main/experiments/LQG
https://github.com/arlo-lib/ARLO/tree/main/experiments/LQG
https://github.com/arlo-lib/ARLO/tree/main/experiments/LQG
https://github.com/arlo-lib/ARLO/tree/main/experiments/LQG
https://github.com/arlo-lib/ARLO/tree/main/experiments/LQG
https://github.com/arlo-lib/ARLO/tree/main/experiments/LQG
https://github.com/arlo-lib/ARLO/tree/main/experiments/LQG
https://github.com/arlo-lib/ARLO/tree/main/experiments/LQG
https://github.com/arlo-lib/ARLO/tree/main/experiments/LQG
https://github.com/arlo-lib/ARLO/tree/main/experiments/LQG
https://github.com/arlo-lib/ARLO/tree/main/experiments/LQG
https://github.com/arlo-lib/ARLO/tree/main/experiments/LQG
https://github.com/arlo-lib/ARLO/tree/main/experiments/LQG
https://github.com/arlo-lib/ARLO/tree/main/experiments/LQG
https://github.com/arlo-lib/ARLO/tree/main/experiments/LQG
https://github.com/arlo-lib/ARLO/tree/main/experiments/LQG
https://github.com/arlo-lib/ARLO/tree/main/experiments/LQG
https://github.com/arlo-lib/ARLO/tree/main/experiments/HalfCheetah-v3
https://github.com/arlo-lib/ARLO/tree/main/experiments/HalfCheetah-v3
https://github.com/arlo-lib/ARLO/tree/main/experiments/HalfCheetah-v3
https://github.com/arlo-lib/ARLO/tree/main/experiments/Dam/dam.py
https://github.com/arlo-lib/ARLO/tree/main/experiments/Dam/dam.py
https://github.com/arlo-lib/ARLO/tree/main/experiments/Dam/dam.py
https://github.com/arlo-lib/ARLO/blob/main/experiments/Dam/hp_tuning_fqi_dam.py
https://github.com/arlo-lib/ARLO/blob/main/experiments/Dam/hp_tuning_fqi_dam.py
https://github.com/arlo-lib/ARLO/blob/main/experiments/Dam/hp_tuning_fqi_dam.py
https://github.com/arlo-lib/ARLO/blob/main/experiments/Dam/hp_tuning_fqi_dam.py
https://github.com/arlo-lib/ARLO/blob/main/experiments/Dam/hp_tuning_fqi_dam.py

Expert Systems With Applications 224 (2023) 119883M. Mussi et al.

B

References

Afshar, R. R., Zhang, Y., Vanschoren, J., & Kaymak, U. (2022). Automated
reinforcement learning: An overview. CoRR, abs/2201.05000.

Akiba, T., Sano, S., Yanase, T., Ohta, T., & Koyama, M. (2019). Optuna: A next-
generation hyperparameter optimization framework. In Proceedings of the ACM
international conference on knowledge discovery and data mining.

Arulkumaran, K., Deisenroth, M. P., Brundage, M., & Bharath, A. A. (2017). A brief
survey of deep reinforcement learning. CoRR, abs/1708.05866.

Baxter, J., & Bartlett, P. L. (2001). Infinite-horizon policy-gradient estimation. Journal
of Artificial Intelligence Research, 15, 319–350.

eraha, M., Metelli, A. M., Papini, M., Tirinzoni, A., & Restelli, M. (2019). Feature
selection via mutual information: New theoretical insights. In Proceedings of the
international joint conference on neural networks (pp. 1–9). IEEE.

Bishop, C. M., & Nasrabadi, N. M. (2006). Pattern recognition and machine learning, vol.
4. Springer.

Bisi, L., Sabbioni, L., Vittori, E., Papini, M., & Restelli, M. (2021). Risk-averse trust
region optimization for reward-volatility reduction. In Proceedings of the twenty-
ninth international conference on international joint conferences on artificial intelligence
(pp. 4583–4589).

Buşoniu, L., de Bruin, T., Tolić, D., Kober, J., & Palunko, I. (2018). Reinforcement
learning for control: Performance, stability, and deep approximators. Annual Reviews
in Control, 46, 8–28.

Castelletti, A., Galelli, S., Restelli, M., & Soncini-Sessa, R. (2011). Tree-based variable
selection for dimensionality reduction of large-scale control systems. In Proceedings
of the IEEE symposium on adaptive dynamic programming and reinforcement learning
(pp. 62–69).

D’Eramo, C., Nuara, A., Pirotta, M., & Restelli, M. (2017). Estimating the maximum
expected value in continuous reinforcement learning problems. In Proceedings of the
conference on artificial intelligence, vol. 31.

D’Eramo, C., Tateo, D., Bonarini, A., Restelli, M., & Peters, J. (2021). MushroomRL:
Simplifying reinforcement learning research. Journal of Machine Learning Research,
22, 131:1–5.

Dorato, P., Cerone, V., & Abdallah, C. (1994). Linear-quadratic control: An introduction.
Simon & Schuster, Inc.

Duan, Y., Chen, X., Houthooft, R., Schulman, J., & Abbeel, P. (2016). Benchmark-
ing deep reinforcement learning for continuous control. In Proceedings of the
international conference on machine learning (pp. 1329–1338).

Endrawis, S., Leibovich, G., Jacob, G., Novik, G., & Tamar, A. (2021). Efficient self-
supervised data collection for offline robot learning. In Proceedings of the IEEE
international conference on robotics and automation (pp. 4650–4656).

Ernst, D., Geurts, P., & Wehenkel, L. (2005). Tree-based batch mode reinforcement
learning. Journal of Machine Learning Research, 6, 503–556.

Falkner, S., Klein, A., & Hutter, F. (2018). BOHB: Robust and efficient hyperparameter
optimization at scale. In Proceedings of the international conference on machine
learning, vol. 80 (pp. 1436–1445).

Feurer, M., Eggensperger, K., Falkner, S., Lindauer, M., & Hutter, F. (2020).
Auto-sklearn 2.0: Hands-free automl via meta-learning. CoRR, abs/2007.04074.

Feurer, M., Klein, A., Eggensperger, K., Springenberg, J. T., Blum, M., & Hutter, F.
(2015). Efficient and robust automated machine learning. In Proceedings of the
neural information processing systems (pp. 2962–2970).

Franke, J. K. H., Köhler, G., Biedenkapp, A., & Hutter, F. (2021). Sample-efficient
automated deep reinforcement learning. In Proceedings of the international conference
on learning representations (pp. 1–23).

Gao, W., Kannan, S., Oh, S., & Viswanath, P. (2017). Estimating mutual information
for discrete-continuous mixtures. In Proceedings of the neural information processing
systems, vol. 30.

Geurts, P., Ernst, D., & Wehenkel, L. (2006). Extremely randomized trees. Machine
Learning, 63(1), 3–42.

Haarnoja, T., Zhou, A., Abbeel, P., & Levine, S. (2018). Soft actor-critic: Off-policy max-
imum entropy deep reinforcement learning with a stochastic actor. In Proceedings
of the international conference on machine learning, vol. 80 (pp. 1856–1865).

He, X., Zhao, K., & Chu, X. (2021). AutoML: A survey of the state-of-the-art.
Knowledge-Based Systems, 212, Article 106622.

Islam, R., Henderson, P., Gomrokchi, M., & Precup, D. (2017). Reproducibility of
benchmarked deep reinforcement learning tasks for continuous control. CoRR,
abs/1708.04133.

Jaderberg, M., Dalibard, V., Osindero, S., Czarnecki, W. M., Donahue, J., Razavi, A., et
al. (2017). Population based training of neural networks. CoRR, abs/1711.09846.

Jadhav, A., Pramod, D., & Ramanathan, K. (2019). Comparison of performance of
data imputation methods for numeric dataset. Applied Artificial Intelligence, 33(10),
913–933.

Kraskov, A., Stögbauer, H., & Grassberger, P. (2004). Estimating mutual information.
Physical Review E, 69, Article 066138.

Lagoudakis, M. G., & Parr, R. (2003). Least-squares policy iteration. Journal of Machine
Learning Research, 4, 1107–1149.
11
Laskin, M., Lee, K., Stooke, A., Pinto, L., Abbeel, P., & Srinivas, A. (2020). Rein-
forcement learning with augmented data. In Proceedings of the neural information
processing systems.

LeDell, E., & Poirier, S. (2020). H2O AutoML: Scalable automatic machine learning. In
Proceedings of the ICML workshop on automated machine learning.

Lee, K., Laskin, M., Srinivas, A., & Abbeel, P. (2021). SUNRISE: A simple unified
framework for ensemble learning in deep reinforcement learning. In Proceedings
of the international conference on machine learning, vol. 139 (pp. 6131–6141).

Levine, S., Kumar, A., Tucker, G., & Fu, J. (2020). Offline reinforcement learning:
Tutorial, review, and perspectives on open problems. CoRR, abs/2005.01643.

Lillicrap, T. P., Hunt, J. J., Pritzel, A., Heess, N., Erez, T., Tassa, Y., et al. (2016). Con-
tinuous control with deep reinforcement learning. In Proceedings of the international
conference on learning representations.

Lizotte, D. J., Gunter, L., Laber, E., & Murphy, S. A. (2008). Missing data and
uncertainty in batch reinforcement learning. In Proceedings of the neural information
processing systems.

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bellemare, M. G.,
et al. (2015). Human-level control through deep reinforcement learning. Nature,
518(7540), 529–533.

Mutti, M., Pratissoli, L., & Restelli, M. (2021). Task-agnostic exploration via policy
gradient of a non-parametric state entropy estimate. In Proceedings of the conference
on artificial intelligence (pp. 9028–9036).

Ng, A. Y., Harada, D., & Russell, S. (1999). Policy invariance under reward transforma-
tions: Theory and application to reward shaping. In Proceedings of the international
conference on machine learning, vol. 99 (pp. 278–287).

Nguyen, H., & La, H. M. (2019). Review of deep reinforcement learning for robot
manipulation. In Proceedings of the IEEE international conference on robotic computing
(pp. 590–595).

Olson, R. S., Bartley, N., Urbanowicz, R. J., & Moore, J. H. (2016). Evaluation of a
tree-based pipeline optimization tool for automating data science. In Proceedings of
the ACM genetic and evolutionary computation conference (pp. 485–492).

Parker-Holder, J., Nguyen, V., Desai, S., & Roberts, S. J. (2021). Tuning mixed
input hyperparameters on the fly for efficient population based AutoRL. CoRR,
abs/2106.15883.

Parker-Holder, J., Rajan, R., Song, X., Biedenkapp, A., Miao, Y., Eimer, T., et al. (2022).
Automated reinforcement learning (AutoRL): A survey and open problems. Journal
of Artificial Intelligence Research, 74, 517–568.

Pathak, D., Gandhi, D., & Gupta, A. (2019). Self-supervised exploration via dis-
agreement. In Proceedings of the international conference on machine learning (pp.
5062–5071).

Portelas, R., Colas, C., Weng, L., Hofmann, K., & Oudeyer, P. (2020). Automatic
curriculum learning for deep RL: A short survey. In Proceedings of the twenty-ninth
international joint conference on artificial intelligence (pp. 4819–4825). ijcai.org.

Pratt, J. W. (1978). Risk aversion in the small and in the large. In Uncertainty in
economics (pp. 59–79). Elsevier.

Puterman, M. L. (2014). Markov decision processes: Discrete stochastic dynamic
programming. John Wiley & Sons.

Saphal, R., Ravindran, B., Mudigere, D., Avancha, S., & Kaul, B. (2021). SEERL: Sample
efficient ensemble reinforcement learning. In Proceedings of the ACM international
conference on autonomous agents and multiagent systems (pp. 1100–1108).

Schaul, T., Quan, J., Antonoglou, I., & Silver, D. (2016). Prioritized experience replay.
In Proceedings of the international conference on learning representations.

Schulman, J., Levine, S., Abbeel, P., Jordan, M. I., & Moritz, P. (2015). Trust region
policy optimization. In Proceedings of the international conference on machine learning,
vol. 37 (pp. 1889–1897).

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., & Klimov, O. (2017). Proximal
policy optimization algorithms. CoRR, abs/1707.06347.

Sehgal, A., La, H., Louis, S., & Nguyen, H. (2019). Deep reinforcement learning using
genetic algorithm for parameter optimization. In Proceedings of the IEEE international
conference on robotic computing (pp. 596–601).

Singh, H., Misra, N., Hnizdo, V., Fedorowicz, A., & Demchuk, E. (2003). Nearest
neighbor estimates of entropy. American Journal of Mathematical and Management
Sciences, 23(3–4), 301–321.

Sutton, R. S., & Barto, A. G. (2018). Reinforcement learning: An introduction. MIT Press.
Team, O. E. L., Stooke, A., Mahajan, A., Barros, C., Deck, C., Bauer, J., et al. (2021).

Open-ended learning leads to generally capable agents. CoRR, abs/2107.12808.
Thornton, C., Hutter, F., Hoos, H. H., & Leyton-Brown, K. (2013). Auto-WEKA:

Combined selection and hyperparameter optimization of classification algorithms.
In Proceedings of the 19th ACM SIGKDD international conference on knowledge
discovery and data mining (pp. 847–855).

Tirinzoni, A., Sessa, A., Pirotta, M., & Restelli, M. (2018). Importance weighted transfer
of samples in reinforcement learning. In Proceedings of the international conference
on machine learning (pp. 4936–4945).

Van Dooren, P. (1981). A generalized eigenvalue approach for solving Riccati equations.
SIAM Journal on Scientific and Statistical Computing, 2(2), 121–135.

http://arxiv.org/abs/2201.05000
http://refhub.elsevier.com/S0957-4174(23)00384-6/sb2
http://refhub.elsevier.com/S0957-4174(23)00384-6/sb2
http://refhub.elsevier.com/S0957-4174(23)00384-6/sb2
http://refhub.elsevier.com/S0957-4174(23)00384-6/sb2
http://refhub.elsevier.com/S0957-4174(23)00384-6/sb2
http://arxiv.org/abs/1708.05866
http://refhub.elsevier.com/S0957-4174(23)00384-6/sb4
http://refhub.elsevier.com/S0957-4174(23)00384-6/sb4
http://refhub.elsevier.com/S0957-4174(23)00384-6/sb4
http://refhub.elsevier.com/S0957-4174(23)00384-6/sb5
http://refhub.elsevier.com/S0957-4174(23)00384-6/sb5
http://refhub.elsevier.com/S0957-4174(23)00384-6/sb5
http://refhub.elsevier.com/S0957-4174(23)00384-6/sb5
http://refhub.elsevier.com/S0957-4174(23)00384-6/sb5
http://refhub.elsevier.com/S0957-4174(23)00384-6/sb6
http://refhub.elsevier.com/S0957-4174(23)00384-6/sb6
http://refhub.elsevier.com/S0957-4174(23)00384-6/sb6
http://refhub.elsevier.com/S0957-4174(23)00384-6/sb7
http://refhub.elsevier.com/S0957-4174(23)00384-6/sb7
http://refhub.elsevier.com/S0957-4174(23)00384-6/sb7
http://refhub.elsevier.com/S0957-4174(23)00384-6/sb7
http://refhub.elsevier.com/S0957-4174(23)00384-6/sb7
http://refhub.elsevier.com/S0957-4174(23)00384-6/sb7
http://refhub.elsevier.com/S0957-4174(23)00384-6/sb7
http://refhub.elsevier.com/S0957-4174(23)00384-6/sb8
http://refhub.elsevier.com/S0957-4174(23)00384-6/sb8
http://refhub.elsevier.com/S0957-4174(23)00384-6/sb8
http://refhub.elsevier.com/S0957-4174(23)00384-6/sb8
http://refhub.elsevier.com/S0957-4174(23)00384-6/sb8
http://refhub.elsevier.com/S0957-4174(23)00384-6/sb9
http://refhub.elsevier.com/S0957-4174(23)00384-6/sb9
http://refhub.elsevier.com/S0957-4174(23)00384-6/sb9
http://refhub.elsevier.com/S0957-4174(23)00384-6/sb9
http://refhub.elsevier.com/S0957-4174(23)00384-6/sb9
http://refhub.elsevier.com/S0957-4174(23)00384-6/sb9
http://refhub.elsevier.com/S0957-4174(23)00384-6/sb9
http://refhub.elsevier.com/S0957-4174(23)00384-6/sb10
http://refhub.elsevier.com/S0957-4174(23)00384-6/sb10
http://refhub.elsevier.com/S0957-4174(23)00384-6/sb10
http://refhub.elsevier.com/S0957-4174(23)00384-6/sb10
http://refhub.elsevier.com/S0957-4174(23)00384-6/sb10
http://refhub.elsevier.com/S0957-4174(23)00384-6/sb11
http://refhub.elsevier.com/S0957-4174(23)00384-6/sb11
http://refhub.elsevier.com/S0957-4174(23)00384-6/sb11
http://refhub.elsevier.com/S0957-4174(23)00384-6/sb11
http://refhub.elsevier.com/S0957-4174(23)00384-6/sb11
http://refhub.elsevier.com/S0957-4174(23)00384-6/sb12
http://refhub.elsevier.com/S0957-4174(23)00384-6/sb12
http://refhub.elsevier.com/S0957-4174(23)00384-6/sb12
http://refhub.elsevier.com/S0957-4174(23)00384-6/sb13
http://refhub.elsevier.com/S0957-4174(23)00384-6/sb13
http://refhub.elsevier.com/S0957-4174(23)00384-6/sb13
http://refhub.elsevier.com/S0957-4174(23)00384-6/sb13
http://refhub.elsevier.com/S0957-4174(23)00384-6/sb13
http://refhub.elsevier.com/S0957-4174(23)00384-6/sb14
http://refhub.elsevier.com/S0957-4174(23)00384-6/sb14
http://refhub.elsevier.com/S0957-4174(23)00384-6/sb14
http://refhub.elsevier.com/S0957-4174(23)00384-6/sb14
http://refhub.elsevier.com/S0957-4174(23)00384-6/sb14
http://refhub.elsevier.com/S0957-4174(23)00384-6/sb15
http://refhub.elsevier.com/S0957-4174(23)00384-6/sb15
http://refhub.elsevier.com/S0957-4174(23)00384-6/sb15
http://refhub.elsevier.com/S0957-4174(23)00384-6/sb16
http://refhub.elsevier.com/S0957-4174(23)00384-6/sb16
http://refhub.elsevier.com/S0957-4174(23)00384-6/sb16
http://refhub.elsevier.com/S0957-4174(23)00384-6/sb16
http://refhub.elsevier.com/S0957-4174(23)00384-6/sb16
http://arxiv.org/abs/2007.04074
http://refhub.elsevier.com/S0957-4174(23)00384-6/sb18
http://refhub.elsevier.com/S0957-4174(23)00384-6/sb18
http://refhub.elsevier.com/S0957-4174(23)00384-6/sb18
http://refhub.elsevier.com/S0957-4174(23)00384-6/sb18
http://refhub.elsevier.com/S0957-4174(23)00384-6/sb18
http://refhub.elsevier.com/S0957-4174(23)00384-6/sb19
http://refhub.elsevier.com/S0957-4174(23)00384-6/sb19
http://refhub.elsevier.com/S0957-4174(23)00384-6/sb19
http://refhub.elsevier.com/S0957-4174(23)00384-6/sb19
http://refhub.elsevier.com/S0957-4174(23)00384-6/sb19
http://refhub.elsevier.com/S0957-4174(23)00384-6/sb20
http://refhub.elsevier.com/S0957-4174(23)00384-6/sb20
http://refhub.elsevier.com/S0957-4174(23)00384-6/sb20
http://refhub.elsevier.com/S0957-4174(23)00384-6/sb20
http://refhub.elsevier.com/S0957-4174(23)00384-6/sb20
http://refhub.elsevier.com/S0957-4174(23)00384-6/sb21
http://refhub.elsevier.com/S0957-4174(23)00384-6/sb21
http://refhub.elsevier.com/S0957-4174(23)00384-6/sb21
http://refhub.elsevier.com/S0957-4174(23)00384-6/sb22
http://refhub.elsevier.com/S0957-4174(23)00384-6/sb22
http://refhub.elsevier.com/S0957-4174(23)00384-6/sb22
http://refhub.elsevier.com/S0957-4174(23)00384-6/sb22
http://refhub.elsevier.com/S0957-4174(23)00384-6/sb22
http://refhub.elsevier.com/S0957-4174(23)00384-6/sb23
http://refhub.elsevier.com/S0957-4174(23)00384-6/sb23
http://refhub.elsevier.com/S0957-4174(23)00384-6/sb23
http://arxiv.org/abs/1708.04133
http://arxiv.org/abs/1711.09846
http://refhub.elsevier.com/S0957-4174(23)00384-6/sb26
http://refhub.elsevier.com/S0957-4174(23)00384-6/sb26
http://refhub.elsevier.com/S0957-4174(23)00384-6/sb26
http://refhub.elsevier.com/S0957-4174(23)00384-6/sb26
http://refhub.elsevier.com/S0957-4174(23)00384-6/sb26
http://refhub.elsevier.com/S0957-4174(23)00384-6/sb27
http://refhub.elsevier.com/S0957-4174(23)00384-6/sb27
http://refhub.elsevier.com/S0957-4174(23)00384-6/sb27
http://refhub.elsevier.com/S0957-4174(23)00384-6/sb28
http://refhub.elsevier.com/S0957-4174(23)00384-6/sb28
http://refhub.elsevier.com/S0957-4174(23)00384-6/sb28
http://refhub.elsevier.com/S0957-4174(23)00384-6/sb29
http://refhub.elsevier.com/S0957-4174(23)00384-6/sb29
http://refhub.elsevier.com/S0957-4174(23)00384-6/sb29
http://refhub.elsevier.com/S0957-4174(23)00384-6/sb29
http://refhub.elsevier.com/S0957-4174(23)00384-6/sb29
http://refhub.elsevier.com/S0957-4174(23)00384-6/sb30
http://refhub.elsevier.com/S0957-4174(23)00384-6/sb30
http://refhub.elsevier.com/S0957-4174(23)00384-6/sb30
http://refhub.elsevier.com/S0957-4174(23)00384-6/sb31
http://refhub.elsevier.com/S0957-4174(23)00384-6/sb31
http://refhub.elsevier.com/S0957-4174(23)00384-6/sb31
http://refhub.elsevier.com/S0957-4174(23)00384-6/sb31
http://refhub.elsevier.com/S0957-4174(23)00384-6/sb31
http://arxiv.org/abs/2005.01643
http://refhub.elsevier.com/S0957-4174(23)00384-6/sb33
http://refhub.elsevier.com/S0957-4174(23)00384-6/sb33
http://refhub.elsevier.com/S0957-4174(23)00384-6/sb33
http://refhub.elsevier.com/S0957-4174(23)00384-6/sb33
http://refhub.elsevier.com/S0957-4174(23)00384-6/sb33
http://refhub.elsevier.com/S0957-4174(23)00384-6/sb34
http://refhub.elsevier.com/S0957-4174(23)00384-6/sb34
http://refhub.elsevier.com/S0957-4174(23)00384-6/sb34
http://refhub.elsevier.com/S0957-4174(23)00384-6/sb34
http://refhub.elsevier.com/S0957-4174(23)00384-6/sb34
http://refhub.elsevier.com/S0957-4174(23)00384-6/sb35
http://refhub.elsevier.com/S0957-4174(23)00384-6/sb35
http://refhub.elsevier.com/S0957-4174(23)00384-6/sb35
http://refhub.elsevier.com/S0957-4174(23)00384-6/sb35
http://refhub.elsevier.com/S0957-4174(23)00384-6/sb35
http://refhub.elsevier.com/S0957-4174(23)00384-6/sb36
http://refhub.elsevier.com/S0957-4174(23)00384-6/sb36
http://refhub.elsevier.com/S0957-4174(23)00384-6/sb36
http://refhub.elsevier.com/S0957-4174(23)00384-6/sb36
http://refhub.elsevier.com/S0957-4174(23)00384-6/sb36
http://refhub.elsevier.com/S0957-4174(23)00384-6/sb37
http://refhub.elsevier.com/S0957-4174(23)00384-6/sb37
http://refhub.elsevier.com/S0957-4174(23)00384-6/sb37
http://refhub.elsevier.com/S0957-4174(23)00384-6/sb37
http://refhub.elsevier.com/S0957-4174(23)00384-6/sb37
http://refhub.elsevier.com/S0957-4174(23)00384-6/sb38
http://refhub.elsevier.com/S0957-4174(23)00384-6/sb38
http://refhub.elsevier.com/S0957-4174(23)00384-6/sb38
http://refhub.elsevier.com/S0957-4174(23)00384-6/sb38
http://refhub.elsevier.com/S0957-4174(23)00384-6/sb38
http://refhub.elsevier.com/S0957-4174(23)00384-6/sb39
http://refhub.elsevier.com/S0957-4174(23)00384-6/sb39
http://refhub.elsevier.com/S0957-4174(23)00384-6/sb39
http://refhub.elsevier.com/S0957-4174(23)00384-6/sb39
http://refhub.elsevier.com/S0957-4174(23)00384-6/sb39
https://arxiv.org/abs/2106.15883
http://refhub.elsevier.com/S0957-4174(23)00384-6/sb41
http://refhub.elsevier.com/S0957-4174(23)00384-6/sb41
http://refhub.elsevier.com/S0957-4174(23)00384-6/sb41
http://refhub.elsevier.com/S0957-4174(23)00384-6/sb41
http://refhub.elsevier.com/S0957-4174(23)00384-6/sb41
http://refhub.elsevier.com/S0957-4174(23)00384-6/sb42
http://refhub.elsevier.com/S0957-4174(23)00384-6/sb42
http://refhub.elsevier.com/S0957-4174(23)00384-6/sb42
http://refhub.elsevier.com/S0957-4174(23)00384-6/sb42
http://refhub.elsevier.com/S0957-4174(23)00384-6/sb42
http://refhub.elsevier.com/S0957-4174(23)00384-6/sb43
http://refhub.elsevier.com/S0957-4174(23)00384-6/sb43
http://refhub.elsevier.com/S0957-4174(23)00384-6/sb43
http://refhub.elsevier.com/S0957-4174(23)00384-6/sb43
http://refhub.elsevier.com/S0957-4174(23)00384-6/sb43
http://refhub.elsevier.com/S0957-4174(23)00384-6/sb44
http://refhub.elsevier.com/S0957-4174(23)00384-6/sb44
http://refhub.elsevier.com/S0957-4174(23)00384-6/sb44
http://refhub.elsevier.com/S0957-4174(23)00384-6/sb45
http://refhub.elsevier.com/S0957-4174(23)00384-6/sb45
http://refhub.elsevier.com/S0957-4174(23)00384-6/sb45
http://refhub.elsevier.com/S0957-4174(23)00384-6/sb46
http://refhub.elsevier.com/S0957-4174(23)00384-6/sb46
http://refhub.elsevier.com/S0957-4174(23)00384-6/sb46
http://refhub.elsevier.com/S0957-4174(23)00384-6/sb46
http://refhub.elsevier.com/S0957-4174(23)00384-6/sb46
http://refhub.elsevier.com/S0957-4174(23)00384-6/sb47
http://refhub.elsevier.com/S0957-4174(23)00384-6/sb47
http://refhub.elsevier.com/S0957-4174(23)00384-6/sb47
http://refhub.elsevier.com/S0957-4174(23)00384-6/sb48
http://refhub.elsevier.com/S0957-4174(23)00384-6/sb48
http://refhub.elsevier.com/S0957-4174(23)00384-6/sb48
http://refhub.elsevier.com/S0957-4174(23)00384-6/sb48
http://refhub.elsevier.com/S0957-4174(23)00384-6/sb48
http://arxiv.org/abs/1707.06347
http://refhub.elsevier.com/S0957-4174(23)00384-6/sb50
http://refhub.elsevier.com/S0957-4174(23)00384-6/sb50
http://refhub.elsevier.com/S0957-4174(23)00384-6/sb50
http://refhub.elsevier.com/S0957-4174(23)00384-6/sb50
http://refhub.elsevier.com/S0957-4174(23)00384-6/sb50
http://refhub.elsevier.com/S0957-4174(23)00384-6/sb51
http://refhub.elsevier.com/S0957-4174(23)00384-6/sb51
http://refhub.elsevier.com/S0957-4174(23)00384-6/sb51
http://refhub.elsevier.com/S0957-4174(23)00384-6/sb51
http://refhub.elsevier.com/S0957-4174(23)00384-6/sb51
http://refhub.elsevier.com/S0957-4174(23)00384-6/sb52
http://arxiv.org/abs/2107.12808
http://refhub.elsevier.com/S0957-4174(23)00384-6/sb54
http://refhub.elsevier.com/S0957-4174(23)00384-6/sb54
http://refhub.elsevier.com/S0957-4174(23)00384-6/sb54
http://refhub.elsevier.com/S0957-4174(23)00384-6/sb54
http://refhub.elsevier.com/S0957-4174(23)00384-6/sb54
http://refhub.elsevier.com/S0957-4174(23)00384-6/sb54
http://refhub.elsevier.com/S0957-4174(23)00384-6/sb54
http://refhub.elsevier.com/S0957-4174(23)00384-6/sb55
http://refhub.elsevier.com/S0957-4174(23)00384-6/sb55
http://refhub.elsevier.com/S0957-4174(23)00384-6/sb55
http://refhub.elsevier.com/S0957-4174(23)00384-6/sb55
http://refhub.elsevier.com/S0957-4174(23)00384-6/sb55
http://refhub.elsevier.com/S0957-4174(23)00384-6/sb56
http://refhub.elsevier.com/S0957-4174(23)00384-6/sb56
http://refhub.elsevier.com/S0957-4174(23)00384-6/sb56

Expert Systems With Applications 224 (2023) 119883M. Mussi et al.
Wang, S., Jia, D., & Weng, X. (2018). Deep reinforcement learning for autonomous
driving. CoRR, abs/1811.11329.

Williams, C. K. I., & Seeger, M. W. (2000). Using the Nyström method to speed up
kernel machines. In Advances in neural information processing systems (pp. 682–688).
MIT Press.

Ye, C., Khalifa, A., Bontrager, P., & Togelius, J. (2020). Rotation, translation, and
cropping for zero-shot generalization. In Proceedings of the IEEE conference on games
(pp. 57–64).
12
Zamora, I., Lopez, N. G., Vilches, V. M., & Cordero, A. H. (2016). Extending the OpenAI
gym for robotics: a toolkit for reinforcement learning using ROS and Gazebo. CoRR,
abs/1608.05742.

Zhang, B., Rajan, R., Pineda, L., Lambert, N. O., Biedenkapp, A., Chua, K., et al. (2021).
On the importance of hyperparameter optimization for model-based reinforcement
learning. In Proceedings of the international conference on artificial intelligence and
statistics, vol. 130 (pp. 4015–4023).

Zhang, Z., Zohren, S., & Roberts, S. (2020). Deep reinforcement learning for trading.
The Journal of Financial Data Science, 2(2), 25–40.

http://arxiv.org/abs/1811.11329
http://refhub.elsevier.com/S0957-4174(23)00384-6/sb58
http://refhub.elsevier.com/S0957-4174(23)00384-6/sb58
http://refhub.elsevier.com/S0957-4174(23)00384-6/sb58
http://refhub.elsevier.com/S0957-4174(23)00384-6/sb58
http://refhub.elsevier.com/S0957-4174(23)00384-6/sb58
http://refhub.elsevier.com/S0957-4174(23)00384-6/sb59
http://refhub.elsevier.com/S0957-4174(23)00384-6/sb59
http://refhub.elsevier.com/S0957-4174(23)00384-6/sb59
http://refhub.elsevier.com/S0957-4174(23)00384-6/sb59
http://refhub.elsevier.com/S0957-4174(23)00384-6/sb59
http://arxiv.org/abs/1608.05742
http://refhub.elsevier.com/S0957-4174(23)00384-6/sb61
http://refhub.elsevier.com/S0957-4174(23)00384-6/sb61
http://refhub.elsevier.com/S0957-4174(23)00384-6/sb61
http://refhub.elsevier.com/S0957-4174(23)00384-6/sb61
http://refhub.elsevier.com/S0957-4174(23)00384-6/sb61
http://refhub.elsevier.com/S0957-4174(23)00384-6/sb61
http://refhub.elsevier.com/S0957-4174(23)00384-6/sb61
http://refhub.elsevier.com/S0957-4174(23)00384-6/sb62
http://refhub.elsevier.com/S0957-4174(23)00384-6/sb62
http://refhub.elsevier.com/S0957-4174(23)00384-6/sb62

	ARLO: A framework for Automated Reinforcement Learning
	Introduction
	Preliminaries
	Framework
	Stages and Pipelines
	Units

	AutoRL Pipelines
	Stages and Units
	Data Generation
	Data Preparation
	Feature Engineering
	Policy Generation
	Policy Evaluation

	Experimental Results
	Linear Quadratic Gaussian Regulator
	Tunable Policy Generation
	Automatic Policy Generation

	HalfCheetah
	Dam
	Feature Engineering
	Complete Offline Pipeline

	Conclusions and Limitations
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Data availability
	Acknowledgments
	Appendix A. Library
	Appendix B. Details on the Experiments
	Linear Quadratic Gaussian Regulator
	HalfCheetah
	Dam
	Feature Engineering
	Complete Offline Pipeline

	References

