

TRADING-OFF REWARD MAXIMIZATION AND STABILITY IN SEQUENTIAL DECISION MAKING

FEDERICO CORSO, MARCO MUSSI, AND ALBERTO MARIA METELLI

{federico.corso, marco.mussi, albertomaria.metelli}@polimi.it

MOTIVATION

RL objective: maximize expected reward.

Limitation: Reward maximization alone is often *insufficient* in real-world, safety-critical domains. Properties beyond pure *performance* are difficult to encode in the reward.

Our idea: *Enforce stability within RL*, inspired by control theory, where stability is fundamental for systems' robustness, safety, and reliability.

OBJECTIVE

Find a control policy that *trades* off between maximizing reward and ensuring a stable behavior.

SETTING: UNDISCOUNTED MDPs

We consider infinite-horizon undiscounted MDPs:

$$\mathcal{M}\coloneqq \langle \mathcal{S}, \mathcal{A}, \mathbf{P}, \mathbf{r}, oldsymbol{\eta}_0
angle$$

Assumptions:

- *Finite* state and action spaces.
- *Ergodicity:* for any $\pi \in \Pi$, the induced chain admits a unique stationary distribution η^{π} :

$$\lim_{t o\infty}oldsymbol{\eta}_t^{oldsymbol{\pi}}=oldsymbol{\eta}^{oldsymbol{\pi}}$$

A MEASURE OF STABILITY

$$\mathcal{M} \, + \, oldsymbol{\pi} \ \Rightarrow \ \mathcal{M}^{oldsymbol{\pi}} \coloneqq \langle \mathcal{S}, \mathbf{P}^{oldsymbol{\pi}}, oldsymbol{\eta}_0
angle$$

A policy π is *more stable* if the Markov Chain (MC) \mathcal{M}^{π} induced converges faster to its stationary distribution η^{π} .

The asymptotic convergence rate is governed by the Second Largest Eigenvalue Modulus (SLEM):

$$\lim_{t \to \infty} \left(\max_{s \in \mathcal{S}} \left\| \mathbf{p}_t^{\boldsymbol{\pi}}(\cdot|s) - \boldsymbol{\eta}^{\boldsymbol{\pi}} \right\|_{\text{TV}} \right)^{1/t} = \mu(\mathbf{P}^{\boldsymbol{\pi}})$$

with $\mu(\mathbf{P}^{\boldsymbol{\pi}}) \coloneqq \max_{i \geq 2} |\lambda_i|$.

SINGLE OBJECTIVE: reward AND stability

$$\max_{\pi \in \Pi} \ (\boldsymbol{\eta}^{\boldsymbol{\pi}})^{\top} \mathbf{r} \ - \ \mu(\mathbf{P}^{\boldsymbol{\pi}})$$

AN EXPLICIT FORM OF THE OBJECTIVE: BILINEARITY ISSUES

maximize
$$\boldsymbol{\eta}^{\top}(\boldsymbol{\Pi}\mathbf{r}) - \left\| \mathbf{D}_{\boldsymbol{\eta}}^{1/2}(\boldsymbol{\Pi}\mathbf{P}) \mathbf{D}_{\boldsymbol{\eta}}^{-1/2} - \sqrt{\boldsymbol{\eta}}\sqrt{\boldsymbol{\eta}}^{\top} \right\|_{2}$$
subject to $\boldsymbol{\eta} = (\boldsymbol{\Pi}\mathbf{P})^{\top}\boldsymbol{\eta} \to \text{Stationary constraint}$
Bilinear in $(\boldsymbol{\eta}, \boldsymbol{\Pi})$

The problem is **not jointly-convex** in (η, Π) and the stationary constraints implies fixing η once Π is fixed

A SURROGATE OBJECTIVE IN $\mathcal{S} imes \mathcal{A}$: Bypassing Bilinearity

(1) Introduce a New MC over $S \times A$

$$\mathcal{T}\coloneqq \langle \mathcal{S} imes \mathcal{A},\, \mathbf{T},\, \mathbf{x}_0
angle$$

where:

- $T = P\Pi$ (state-action transition matrix)
- $\mathbf{x} = \boldsymbol{\eta}^{\top} \boldsymbol{\Pi}$ (state–action *stationary* distribution)

Eigenvalue relationship between $P\Pi$ and ΠP

$$\Lambda(\mathbf{P\Pi}) = \Lambda(\mathbf{\Pi}\mathbf{P}) \cup \{0\}^{|\mathcal{S}||\mathcal{A}|-|\mathcal{S}|}$$

(2) Rewrite the Objective in $S \times A$

$$\frac{\mu(\Pi \mathbf{P})}{\|\mathbf{\Pi} \mathbf{r}\|} - \left\| \mathbf{D}_{\boldsymbol{\eta}}^{1/2}(\Pi \mathbf{P}) \mathbf{D}_{\boldsymbol{\eta}}^{-1/2} - \sqrt{\boldsymbol{\eta}} \sqrt{\boldsymbol{\eta}}^{\top} \right\|_{2}$$

$$\| \mathbf{x}^{\top} \mathbf{r}\| - \left\| \mathbf{D}_{\mathbf{x}}^{1/2} \mathbf{P} \Pi \mathbf{D}_{\mathbf{x}}^{-1/2} - \sqrt{\mathbf{x}} \sqrt{\mathbf{x}}^{\top} \right\|_{2}$$

$$\| \mathbf{\sigma}_{2}(\mathbf{P} \mathbf{\Pi}) \|_{2}$$

Lifting removes the $oldsymbol{\eta}^{ op} oldsymbol{\Pi}$ bilinearity in the reward term

(3) Bilinearity Resolution

- $\bullet \;$ Introduce the auxiliary variable $\mathbf{X} = \mathbf{D_x} \mathbf{T}$
- Rewrite the problem in (x, X)

maximize
$$\mathbf{X}, \mathbf{X}$$
 \mathbf{X}, \mathbf{X} \mathbf{X}, \mathbf{X} subject to $\mathbf{X}, \mathbf{X}, \mathbf{X}$ \mathbf{X}, \mathbf{X} \mathbf{X} \mathbf{X}, \mathbf{X} \mathbf{X} \mathbf{X}

(4) The Final Problem

$$\begin{aligned} & \underset{\mathbf{X} \in \mathbb{R}^{|\mathcal{S}||\mathcal{A}| \times |\mathcal{S}||\mathcal{A}|}{\operatorname{maximize}} & (\mathbf{X}\mathbf{1})^{\top}\mathbf{r} - \left\| \mathbf{D}_{\mathbf{x}^{\star}}^{-1/2} \mathbf{X} \mathbf{D}_{\mathbf{x}^{\star}}^{-1/2} - \sqrt{\mathbf{x}^{\star}} \sqrt{\mathbf{x}^{\star}}^{\top} \right\|_{2} \\ & \text{subject to} & \mathbf{1}^{\top} \mathbf{X} \mathbf{1} = 1, \\ & \| \mathbf{X} \mathbf{1} - \mathbf{x}^{\star} \|_{2}^{2} \leq \delta^{2} \rightarrow \textit{Relaxed} \; \text{stationary constraints} \end{aligned}$$

It is **convex** in **X**

x*: solution of the standard undiscounted MDP

RECOVERING THE POLICY

Given:

- X^{\dagger} : Solution to the final problem.
- $\mathbf{x}^{\dagger} = \mathbf{X}^{\dagger}\mathbf{1}$: Stationary distribution associated to the MC with transition $\mathbf{T}^{\dagger} = \mathbf{D}_{\mathbf{x}^{\dagger}}^{-1}\mathbf{X}^{\dagger}$.

We can compute the optimal policy:

$$\pi^{\dagger}(a \mid s) \coloneqq \frac{x^{\dagger}(s, a)}{\sum_{a \in \mathcal{A}} x^{\dagger}(s, a)}$$

Let $\pi^{\dagger} \in \Pi$ be a solution, then it holds:

$$(\mathbf{x}^{\star} - \mathbf{x}^{\dagger})^{\top} \mathbf{r} \leq \delta R_{\max} \sqrt{|\mathcal{S}||\mathcal{A}|},$$

anc

$$\sigma_2(\mathbf{D}_{\mathbf{x}^{\star}}^{1/2}\mathbf{P}\mathbf{\Pi}^{\dagger}\mathbf{D}_{\mathbf{x}^{\star}}^{-1/2}) \leq \sigma_2(\mathbf{D}_{\mathbf{x}^{\star}}^{1/2}\mathbf{P}\mathbf{\Pi}^{\star}\mathbf{D}_{\mathbf{x}^{\star}}^{-1/2}).$$

MAIN LIMITATION

Improvement on the upper-bound of the SLEM is **not guaranteed**:

$$\sigma_2(\mathbf{D}_{\mathbf{x}^{\dagger}}^{1/2}\mathbf{T}^{\dagger}\mathbf{D}_{\mathbf{x}^{\dagger}}^{-1/2}) \leq \sigma_2(\mathbf{D}_{\mathbf{x}^{\star}}^{1/2}\mathbf{T}^{\star}\mathbf{D}_{\mathbf{x}^{\star}}^{-1/2})$$

FUTURE WORKS

- Guarantee monotonic improvement of the SLEM upper-bound
- Experimental evaluation
- Consider unknown model setting
- Extend to continuous state and action spaces

REFERENCES

Stephen P. Boyd, Persi Diaconis, and Lin Xiao. Fastest mixing markov chain on a graph. *SIAM Review*, 2004.

Ilse C. F. Ipsen and Teresa M. Selee. Ergodicity coefficients defined by vector norms. *SIAM Journal on Matrix Analysis and Applications*, 2011.

Mirco Mutti and Marcello Restelli. An intrinsically-motivated approach for learning highly exploring and fast mixing policies. In *AAAI Conference on Artificial Intelligence*, 2020.

Jean Tarbouriech and Alessandro Lazaric. Active exploration in markov decision processes. In *International Conference on Artificial Intelligence and Statistics (AISTATS)*, 2019