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MOTIVATION AN EXPLICIT FORM OF THE OBJECTIVE: BILINEARITY ISSUES RECOVERING THE POLICY

RL objective: maximize expected reward. Given:

maximize nT(H —HDl/2 (IIP)D 1/2 NGNG) H

Limitation: Reward maximization alone is often 11,71 ~~
. . . .. . Bilinear in (7, H) v
insufficient in real-world, safety-critical domains.

e XT': Solution to the final problem.

u(P™), Non-convex e x! = XT1: Stationary distribution associated to the

Properties beyond pure performance are difficult to subjectto n= (IIP)' n — Stationary constraint MC with transition T' = D;TlXT.

encode in the reward. Bilinear in (r7.IT) We can compute the optimal policy:

Our idea: Enforce stability within RL, inspired by z'(s,a)
control theory, where stability is fundamental for The problem is not jointly-convex in (7, II) and the stationary constraints implies fixing 1 once II is fixed mi(a]s) = > ’ (s, a)
’ acAa TS, a

systems’ robustness, safety, and reliability.

A SURROGATE OBJECTIVE IN S X A: BYPASSING BILINEARITY Let ' € II be a solution, then it holds:

OBJECTIVE

Introduce a New MC over S x A Rewrite the Objective in S x A (x* — XT)T r < 0RmaxV/ |S|| Al

Find a control policy that trades

off between maximizing reward T=(SxA T, xo) e and:

and ensuring a stable behavior. where: i

e T =PII (state-action transition matrix) [nT(Hr le/ 2 (IIP)D 1/ 2 — VTN HJ
SETTING: UNDISCOUNTED MDPS e x=n'II (state-action stationary distribution) ] A MAIN LIMITATION
We consider infinite-horizon undiscounted MDPs:
— T — \F\FT Improvement on the upper-bound of
M = <‘S‘7 AP, r, 770> Eigenvalue relationship between PII and IIP x U~ |Dx x = T VEVX H2 the SLEM is not guaranteed:

. s ~ 1/2 —1/2 1/2mxy—1/2
Assumptions: A(PII) = A(IIP) U {0}/SIAI-IS ) (°|1|5H) O'2<Dx< TTDXT / ) < aQ(DX/* T DX*/ )
» Finite state and action spaces. i
e Ergodicity: for any 7 € II, the induced chain admits

a unique Stati()nary distribution 777"; Lifting removes the ’I’]TH bilinearity in the reward term FUTURE WORKS

Guarantee monotonic improvement of
the SLEM upper-bound

Experimental evaluation

Jim o =

Bilinearity Resolution

A MEASURE OF STABILITY

Consider unknown model setting

M+7 = M" = <S, P™, 770> e Introduce the auxiliary variable X = D4T maximize (X1)'r — ’|D;1/2XD;1/2 —

X. x \ , Extend to continuous state and action spaces
A pohcy 7 is more stable if the Markov Chain (MC) o Rewrite the problem n (X, X) Linear in (x,X)
MT™ induced converges faster to its stationary subject to X1 = x — stationarity; linear but no d.o.f,,
distribution n™. X = f(P) — compatible with transitions of M REFERENCES
The asymptotic convergence rate is governed by the Stephen P. Boyd, Persi Diaconis, and Lin Xiao. Fastest mix-
Second Largest Eigenvalue Modulus (SLEM): The Final Problem ing markov chain on a graph. SIAM Review, 2004.
1/t " ) T IIse C. F. Ipsen and Teresa M. Selee. Ergodicity coefficients
lim (max | pr(-|s) —n™ H > = u(P™) maximize (X1)'r — HD PXD? - Vxrvxr || defined by vector norms. SIAM Journal on Matrix Analysis
t=oo \ s€s v X e RISIAXISIA 2 and Applications, 2011.
with u(P™) := max|\;|. subject to 1'X1 = 1, Mirco Mutti and Marcello Restelli.  An intrinsically-

122 motivated approach for learning highly exploring and

fast mixing policies. In AAAI Conference on Artificial In-
telligence, 2020.

Jean Tarbouriech and Alessandro Lazaric. Active explo-

. . , ration in markov decision processes. In International Con-
x": solution of the standard undiscounted MDP ference on Artificial Intelligence and Statistics (AISTATS),
2019.

X1 —x*||3 < 6% — Relaxed stationary constraints

SINGLE OBJECTIVE: reward AND stability It is convex in X




