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MOTIVATION

RL objective: maximize expected reward.

Limitation: Reward maximization alone is often
insufficient in real-world, safety-critical domains.
Properties beyond pure performance are difficult to
encode in the reward.

Our idea: Enforce stability within RL, inspired by
control theory, where stability is fundamental for
systems’ robustness, safety, and reliability.

OBJECTIVE

Find a control policy that trades
off between maximizing reward
and ensuring a stable behavior.

SETTING: UNDISCOUNTED MDPS

We consider infinite-horizon undiscounted MDPs:

M := ⟨S,A,P, r,η0⟩
Assumptions:
• Finite state and action spaces.
• Ergodicity: for any π ∈ Π, the induced chain admits

a unique stationary distribution ηπ :

lim
t→∞

ηπ
t = ηπ

A MEASURE OF STABILITY

M + π ⇒ Mπ := ⟨S,Pπ,η0⟩
A policy π is more stable if the Markov Chain (MC)
Mπ induced converges faster to its stationary
distribution ηπ .

The asymptotic convergence rate is governed by the
Second Largest Eigenvalue Modulus (SLEM):

lim
t→∞

(
max
s∈S

∥∥∥pπ
t (·|s)− ηπ

∥∥∥
TV

)1/t

= µ(Pπ)

with µ(Pπ) := max
i≥2

|λi|.

SINGLE OBJECTIVE: reward AND stability

max
π∈Π

(ηπ)⊤r − µ(Pπ)

AN EXPLICIT FORM OF THE OBJECTIVE: BILINEARITY ISSUES

maximize
Π,η

η⊤ (Πr)︸ ︷︷ ︸
Bilinear in (η,Π)

−
∥∥∥D1/2

η (ΠP)D−1/2
η −√

η
√
η
⊤
∥∥∥
2︸ ︷︷ ︸

µ(Pπ), Non-convex

subject to η = (ΠP)
⊤
η︸ ︷︷ ︸

Bilinear in (η,Π)

→ Stationary constraint

The problem is not jointly-convex in (η,Π) and the stationary constraints implies fixing η once Π is fixed

A SURROGATE OBJECTIVE IN S ×A: BYPASSING BILINEARITY

(1) Introduce a New MC over S ×A

T := ⟨S × A, T, x0⟩

where:

• T = PΠ (state–action transition matrix)

• x = η⊤Π (state–action stationary distribution)

Eigenvalue relationship between PΠ and ΠP

Λ(PΠ) = Λ(ΠP) ∪ {0}|S||A|−|S|

(2) Rewrite the Objective in S ×A

η⊤(Πr) −

µ(ΠP):=︷ ︸︸ ︷∥∥∥D1/2
η (ΠP)D−1/2

η −√
η
√
η
⊤
∥∥∥
2

x⊤r −
∥∥∥D1/2

x PΠD−1/2
x −

√
x
√
x
⊤
∥∥∥
2︸ ︷︷ ︸

: =

σ2(PΠ)

= ⩾

Lifting removes the η⊤Π bilinearity in the reward term

(3) Bilinearity Resolution

• Introduce the auxiliary variable X = DxT

• Rewrite the problem in (x,X)

maximize
X,x

(X1)⊤r︸ ︷︷ ︸
Linear in (x,X)

−
∥∥∥D−1/2

x XD−1/2
x −

√
x
√
x
⊤
∥∥∥
2

subject to X1 = x → stationarity; linear but no d.o.f.,
X = f(P) → compatible with transitions of M

(4) The Final Problem

maximize
X ∈ R|S||A|×|S||A|

(X1)⊤r −
∥∥∥D−1/2

x⋆ XD
−1/2
x⋆ −

√
x⋆

√
x⋆

⊤∥∥∥
2

subject to 1⊤X1 = 1,

∥X1− x⋆∥22 ≤ δ2 → Relaxed stationary constraints

It is convex in X

x⋆: solution of the standard undiscounted MDP

RECOVERING THE POLICY

Given:
• X†: Solution to the final problem.

• x† = X†1: Stationary distribution associated to the
MC with transition T† = D−1

x† X
†.

We can compute the optimal policy:

π†(a | s) := x†(s, a)∑
a∈A x†(s, a)

Let π† ∈ Π be a solution, then it holds:(
x⋆ − x†)⊤ r ≤ δRmax

√
|S||A|,

and:

σ2(D
1/2
x⋆ PΠ†D

−1/2
x⋆ ) ≤ σ2(D

1/2
x⋆ PΠ⋆D

−1/2
x⋆ ).

MAIN LIMITATION

Improvement on the upper-bound of
the SLEM is not guaranteed:

σ2(D
1/2

x† T†D
−1/2

x† ) ≤ σ2(D
1/2
x⋆ T⋆D

−1/2
x⋆ )

FUTURE WORKS

• Guarantee monotonic improvement of
the SLEM upper-bound

• Experimental evaluation

• Consider unknown model setting

• Extend to continuous state and action spaces
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