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Abstract

Rested and Restless Bandits are two well-known bandit settings that are useful to model
real-world sequential decision-making problems in which the expected reward of an arm
evolves over time due to the actions we perform or due to the nature. In this work, we
propose Graph-Triggered Bandits (GTBs), a unifying framework to generalize and extend
rested and restless bandits. In this setting, the evolution of the arms’ expected rewards
is governed by a graph defined over the arms. An edge connecting a pair of arms (i, j)
represents the fact that a pull of arm i triggers the evolution of arm j, and vice versa.
Interestingly, rested and restless bandits are both special cases of our model for some suitable
(degenerated) graph. As relevant case studies for this setting, we focus on two specific types
of monotonic bandits: rising, where the expected reward of an arm grows as the number
of triggers increases, and rotting, where the opposite behavior occurs. For these cases, we
study the optimal policies. We provide suitable algorithms for all scenarios and discuss
their theoretical guarantees, highlighting the complexity of the learning problem concerning
instance-dependent terms that encode specific properties of the underlying graph structure.1
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1 Introduction

In the basic stochastic Multi-Armed Bandit (MAB, Lattimore and Szepesvári, 2020) problem,
at each round, the learner is asked to choose an action (a.k.a. arm) among a finite action
set and, then, it observes a reward drawn from an unknown probability distribution. The
simplicity of the MAB framework is both a strength and a limitation. On the one hand, the
simple nature of the framework allows for the development of elegant and efficient algorithms
that can be exactly characterized and studied from an information-theoretic perspective.
On the other hand, the basic MAB model assumes a relatively simplistic environment
that may not capture the complexities of real-world situations. As a result, traditional
MAB approaches might not be sufficient for more intricate decision-making problems where
additional factors come into play. To address these limitations, researchers extended the
MAB framework by incorporating additional structures and complexities in order to be

1. A conference version of this work (Genalti et al., 2024), studying Rising GTBs only, appeared at the
International Conference on Machine Learning.

©2024 G. Genalti, M. Mussi, N. Gatti, M. Restelli, M. Castiglioni and A. M. Metelli.

License: CC-BY 4.0, see https://creativecommons.org/licenses/by/4.0/.

https://creativecommons.org/licenses/by/4.0/


Genalti, Mussi, Gatti, Restelli, Castiglioni and MetelliGenalti, Mussi, Gatti, Restelli, Castiglioni and Metelli

2 2 2 2

3333

1 1 1 1

Restless Rested
Graph-Triggered

Figure 1: Examples of 3-armed GTBs.

able to handle realistic scenarios. Examples of that are linear (Abbasi-Yadkori et al., 2011),
continuous-action spaces (Kleinberg et al., 2008), and kernelized bandits (Chowdhury and
Gopalan, 2017), which presents structure over the arms, non-stationary bandits (Gur et al.,
2014), which allow us to consider evolving environments, delayed reward bandits (Pike-Burke
et al., 2018), allowing us to consider delayed feedback. Over the different structures available
in the literature, we focus on these two specific types of MAB structures, called restless and
rested bandits (Tekin and Liu, 2012). In the former, the expected rewards evolve following
the time (i.e., as an effect of nature); in the latter, the expected reward of an arm evolves as
a function of the pulls we perform on that specific arm.

In this paper, we propose a unified framework to generalize restless and rested bandits.
In particular, we define a novel space of MABs called Graph-Triggered Bandits (GTBs).
A GTB is represented by a bandit complemented with a graph describing the interactions
between arms. Specifically, an arm triggers the evolution of its own expected reward (as for
rested bandit) and the evolution of the “connected” arms. Figure 1 shows an example of this
scenario, where the nodes represent arms, and the edges represent interactions. Interestingly,
rested and restless bandits are two vertices in the space of GTBs. In particular, restless
bandits correspond to the case of a fully-connected graph, while rested ones correspond to
the graph with the self-loops only.

This framework is driven by both theoretical and practical considerations. Theoretically,
it offers a unified approach that generalizes both rested and restless bandits. Specifically, our
goal is to establish a framework in which the well-known rested and restless bandits emerge
as special cases, represented by appropriate (degenerated) graphs (see Figure 1). Practically,
restless and rested bandits can model a wide range of real-world situations. For example,
consider the scenario where we must choose which product to advertise (represented by
our arms), with the reward being the number of sales for that product. On the one hand,
with rested bandits, we can handle cases in which the products are all independent. On the
other hand, with restless bandits, we can handle scenarios in which all the products interact.
However, all the intermediate scenarios, e.g., where advertising a product boosts its sales and
also enhances the sales of the subset of complementary products, cannot be handled using
restless/rested solutions. Indeed, this scenario is a rested problem with elements exhibiting
restless behavior, and our generalization allows us to address such situations.
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Contributions. In this paper, we present Graph-Triggered Bandits (GTBs), a setting
aiming to generalize and extend rested and restless bandits settings by introducing a graph
structure to represent the interaction between the arms. We focus on the cases of rising and
rotting bandits, as they represent interesting case studies allowing us to obtain no-regret
algorithms. More in detail, the contributions are as follows.

• In Section 2, after having introduced the fundamental notions on the rested and restless
bandits, we introduce the novel framework of GTBs and discuss the relevant quantities
characterizing an instance, including a representation of the graph based on the con-
nectivity matrix. Then, we present the learning problem and the performance index to
evaluate algorithms in this setting.

• In Section 3, we study the Rising GTBs scenario. We discuss the optimal policy in
this setting, by first providing a negative result, showing that computing the optimal
policy is NP-hard for an arbitrary graph (Theorem 1). Then, we characterize the optimal
policy for block-diagonal connectivity matrices, which can be computed in polynomial
time (Theorem 2). Subsequently, we discuss the deterministic scenario, and we propose
two algorithms, the first, DR-BD-UB, for block-diagonal connectivity matrices and the
second, DR-G-UB, for general graphs. We analyze their regret guarantees, highlighting the
dependence on the graph structure (Theorems 3 and 4). Finally, we analyze the R-□-UCB
algorithm (Metelli et al., 2022), designed for rested and restless stochastic rising bandits
that does not require the knowledge of the graph. We characterize its regret guarantees,
focusing on the dependence on the characteristics of the underlying graph (Theorems 6
and 7).

• In Section 4, we study the Rotting GTBs scenario. As for the Rising GTBs case, we prove
that computing the optimal policy is NP-hard for arbitrary graphs (Theorem 8). Then, we
characterize the optimal policy for block-diagonal connectivity matrices, which admits a
convenient closed-form solution (Theorem 9). Then, we focus on the special case of block-
diagonal connectivity matrices, and we study how the RAW-UCB algorithm (Seznec et al.,
2020) obtains strong regret guarantees with no knowledge of the graph (Theorem 10).
Finally, we present a non-learnability result for all the Rotting GTBs problem under
general matrices (Theorem 11).

The relevant literature is discussed in Section A. The proofs of all the statements are provided
in Appendices B and C for the Rising and Rotting GTBs, respectively.2

2 Graph-Triggered Bandits

In this section, we present the framework of Graph-Triggered Bandits (GTBs). We start in
Section 2.1 by introducing the basic background notions on stochastic rested and restless
bandits. Then, in Section 2.2, we formalize the GTBs setting. Finally, in Section 2.3, we
formalize the learning problem for the GTBs setting.

2. For Rising GTBs, we report a short version of the proofs. The extended version is provided in (Genalti
et al., 2024).
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2.1 Notions on Rested and Restless Bandits

Let T ∈ N be the learning horizon. We define an instance ν = (νi)i∈[k] of a k-armed bandit
as a vector of probability distributions with support defined over R, where k ∈ N.3 The
agent interacts with the environment as follows. At every round t ∈ [T ], the agent is asked
to select an action It among the k available ones and it observes a reward XIt,t ∼ νIt . We
define Ni,t :=

∑
τ∈[t] 1{Iτ = i} as the number of pulls of the arm i ∈ [k] until round t. We

consider two specific types of MAB, namely restless and rested bandits (Tekin and Liu,
2012). In both cases, to each arm i ∈ [k] corresponds a sequence of probability distributions
ν = (νi,n)i∈[k], n∈[T ], where the expected reward µi(n) = EX∼νi,n [X] evolves following an
history-dependent quantity n ∈ N. In the rested scenario, the expected reward of a generic
arm i evolves according to the number of pulls of such an arm, i.e., n← Ni,t. Conversely, in
the restless case, the expected reward of a generic arm i evolves according to the current time
t, i.e., n← t. This means that, in rested bandits, the reward distribution of an arm evolves
only when it is pulled, while in restless bandits, it evolves at each round, no matter the
action performed. As customary in this field, we consider expected rewards µi(n) bounded
in [0, 1], for every i ∈ [k] and n ∈ [T ]. Finally, we assume distributions to be subgaussian4

for every arm i and n ∈ N, with their subgaussianity constants upper bounded by σ2.

2.2 Setting

In rested and restless bandits there exists no structure among different arms. We now present
a generalization of rested and restless bandits obtained by adding a structure allowing arms
to interact. We consider arms as connected through an undirected graph, that can be either
known or unknown to the agent.5 If we pull an arm i ∈ [k], we get its reward, and we trigger
an evolution of the expected reward of the arm i and of all the arms connected to i. We do
not get nor observe rewards from the connected arms (i.e., bandit feedback). Such a graph
can be represented by a symmetric Connectivity Matrix (CM) G ∈ {0, 1}k×k. If the matrix
contains the value 1 in row i and column j, this implies that the pull of arm i determines
the evolution of the expected reward of arm j. If the matrix contains a 0 in position (i, j),
this implies that a pull of arm i does not cause an evolution of the expected reward of arm
j. The pull of an arm i always implies the evolution of its own expected reward, formally
Gi,i = 1, ∀i ∈ [k]. For every round t ∈ [T ] and arm i ∈ [k], we define the number Ñi,t of
triggers that it has undergone as follows:

Ñi,t =
∑
τ∈[t]

1{GIτ ,i = 1} = e⊤i G
⊤Nt, (1)

where ei is a vector belonging to the canonical basis of Rk whose all components are all
zero except for the i-th and Nt := (N1,t, . . . , Nk,t)

⊤ is the vector containing the number
of pulls of each arm up to round t. In GTBs, rewards are sampled from probability
distributions whose average rewards vary with the number of triggers, i.e., n ← Ñi,t and,

3. Given k ∈ N, we define [k] := {1, 2, . . . , k}.
4. A (zero-mean) random variable X is σ2-subgaussian if it holds E [exp (λX)] ≤ exp

(
σ2λ2

2

)
for every

λ ∈ R.
5. All the results we present also hold for directed graphs.
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consequently, the expected reward of an arm i evolves as µi(Ñi,t). Furthermore, we define
ti,n :=

∑
l∈[T ] 1{Ni,l ≤ n} as the round in which arm i has been pulled for the n-th time.

With ti,t := (ti,n)n≤Ni,t we refer to the vector containing all the rounds in which the arm i

has been pulled, up to time t. Moreover, we introduce tIi,n := Ñi,ti,n , namely the internal
time of the n-th pull of arm i, which is the number of triggers of arm i at the time of
the n-th pull. We also define, given the connectivity matrix of a graph G, the notion of
k̄1 := |{i ∈ [k] : deg(i) = 1}| as the number of arms having degree of 1, where deg(i) := 1⊤k Gei
is the degree of a node, i.e., the number of edges incident to the node. We now observe the
relationship between rested and restless bandits and our setting.

Remark 1 (Inclusion of Rested and Restless bandits in GTBs) GTBs include both
rested and restless bandits (Tekin and Liu, 2012). These two settings can be recovered by
considering G = Ik and G = 1k×k for rested and restless settings, respectively.6 Indeed, a
restless bandit can be seen as a particular instance of GTB where all arms are triggered
at each round, making them change every round independently from which action has been
chosen (Ñi,t = t, for every i ∈ [k]). Instead, in a rested bandit an arm changes its expected

reward only when is directly chosen (Ñi,t = Ni,t, for every i ∈ [k]).7

Block-Diagonal Connectivity Matrix. We now discuss a particular case of GTBs that
is interesting from both the practical and analytical point of view. Until now, we considered
G ∈ {0, 1}k×k to be a general binary symmetric matrix. However, we now focus on the
specific case in which G is a block-diagonal connectivity matrix, i.e., a matrix in which the
main-diagonal blocks are square matrices of all ones, and all off-diagonal blocks are zero
matrices. Formally, let B

k̃
⊂ {0, 1}k×k be the set of block-diagonal connectivity matrices

with exactly k̃ ∈ [k] distinct blocks of 1s. We call the GTBs with block-diagonal connectivity
matrix the set of instances where it holds that G ∈ B

k̃
, for some k̃ ≤ k. We identify with

CG = {Cm,G}m∈[k̃] the partition of [k] corresponding to the diagonal blocks of G. In graph

theory, a block-diagonal connectivity matrix G ∈ B
k̃
corresponds to a cluster graph, i.e., a

graph formed from the disjoint union of complete graphs or cliques (Shamir et al., 2004).
We call CG the set of cliques and we indicate with ÑCm,t :=

∑
i∈Cm

Ni,t the number of times
an arm belonging to clique Cm ∈ CG has been pulled, namely the number of triggers of the
clique Cm.

2.3 Learning Problem

We define Ht = {(Il, XIl,l)}l∈[t] as the history of interactions at a given round t ∈ [T ]. We
define a policy π(t) as a function π(t) : Ht−1 7→ It returning the next action given the
history up to that round. For a given instance ν of a GTB, the performance of a policy π is
measured by the means of expected cumulative reward throughout T rounds, formally:

Jν,G,T (π) := E

∑
t∈[T ]

µIt(ÑIt,t)

 ,

6. We denote Ik the identity matrix of dimension k and 1k×k the square matrix of dimension k whose entries
are all equal to 1.

7. This can be easily seen by looking at Equation (1) considering G = Ik and observing that the vector ei

selects the i-th element of vector Nt.

5



Genalti, Mussi, Gatti, Restelli, Castiglioni and Metelli

where the expectation is taken over the randomness of both the environment and the
policy/algorithm. A policy is optimal for instance ν, a connectivity matrix G, and time
horizon T if it maximizes the expected cumulative reward, formally:

π∗
ν,G,T ∈ argmax

π
Jν,G,T (π).

We denote by J∗
ν,G,T = Jν,G,T (π

∗
ν,G,T ) the expected cumulative reward attained by the

optimal policy. We can now define the expected policy regret as:

Rν,G,T (π) = J∗
ν,G,T − Jν,G,T (π).

Therefore, our learning problem is to find a policy π minimizing the expected policy regret
Rν,G,T (π). Since the optimal policy depends simultaneously on ν, G, and T , from now
on, we consider an instance of the GTB problem the triple (ν,G, T ), instead of the reward
distributions ν only.

Remark 2 (On the Chosen Notion of Regret) In GTBs, we consider a notion of pol-
icy regret (Dekel et al., 2012). Indeed, in this setting, diverging from the optimal sequence
of actions influences not only instantaneous regret but also leads to a sub-optimal history,
implying future regret even when returning to an optimal policy from there on. This notion of
regret, which shares similarities with the one of reinforcement learning, is more challenging
to optimize.

3 Rising Graph-Triggered Bandits

Among the various types of restless and rested bandits available in the literature, in this
section, we focus on Rising Bandits (Heidari et al., 2016; Metelli et al., 2022). We first
introduce the assumption of the rising setting and some useful quantities. Then, we discuss
the optimality in this setting (Section 3.1). Subsequently, we discuss the regret minimization
problem for both the deterministic (Section 3.2) and stochastic (Section 3.3) scenarios.

Rising bandits are a specific class of MABs in which the expected reward of each arm
evolves in a non-decreasing and concave manner. The following assumption formalizes such
behavior.

Assumption 1 (Non-decreasing and Concave Payoffs) Let ν be an instance of a ris-
ing bandit, then, defining γi(n) :=µi(n+ 1)−µi(n) for every i ∈ [k] and n ∈ [T ], it holds:

Non-decreasing: γi(n) ≥ 0,

Concave: γi(n− 1) ≥ γi(n).

The two parts of this assumption allow us to provide theoretical guarantees in both the
restless and rested settings. Such guarantees cannot be provided without the concavity
assumption (see Theorem 4.2 of Metelli et al., 2022). We call Rising GTBs, the instances of
GTBs in which the expected rewards fulfill Assumption 1.

6
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Instance Characterization. Assumption 1 ensures sufficient structure on the problem
to allow for algorithms with provably strong theoretical guarantees. In this scenario, given
an instance ν, we define the total increment as:

Υν(M, q) :=
∑

t∈[M−1]

max
i∈[k]

γi(t)
q,

where M ∈ N and q ∈ [0, 1]. This quantity figures in the (instance-dependent) analysis of
algorithms and characterizes the difficulty of learning in instance ν.

3.1 Optimality in Rising GTBs

In this part, we discuss the notion of optimality for our learning problem. We first characterize
the complexity of finding the optimal policy followed by the clairvoyant when both the
expected values and the matrix G are known.

Theorem 1 (Complexity of finding the Optimal Policy in Rising GTBs) Compu-
ting the optimal policy in Rising GTBs with general matrices G is NP-Hard.

This theorem follows from a reduction to the NP-Hard problem of determining if a large
clique in a given graph exists (Karp, 1972). Intuitively, given a graph (V,E), we build an
instance in which the cumulative reward is maximum only if the learner plays a sequence
of arms that are associated with vertexes in a clique. Theorem 1 implies that the class of
problems of Rising GTBs is computationally harder than all restless bandits and rested rising
bandits, for which the optimal policy can be computed in polynomial time (Heidari et al.,
2016). Moreover, the optimal policy does not admit a simple closed-form representation.
Thus, in general, the optimal policy cannot be reduced to a greedy one or to a fixed-arm
policy. The result highlights how this definition of optimal policy is closer to the one of
MDPs rather than the one of standard bandit settings.

We now show how, for the special case of Rising GTBs with block-diagonal connectivity
matrices, the optimal policy can be efficiently computed and admits a closed-form solution.

Theorem 2 (Optimal Policy in Rising GTBs with Block-Diagonal CM) For any
instance (ν,G, T ) of Rising GTBs with G ∈ B

k̃
, the optimal policy π∗

ν,G,T ∈ argmaxπ Jν,G,T (π)
is given by:

π∗
ν,G,T (t) ∈ argmax

j∈C∗
ν,G,T

µj(t), ∀t ∈ [T ],

where C∗
ν,G,T is the “best” cumulative reward clique:

C∗
ν,G,T ∈ argmax

C∈CG

∑
t∈[T ]

max
j∈C

µj(t).

This result characterizes the optimal policy when the graph linking the actions is only
composed only by cliques. In particular, the clairvoyant would play a greedy policy but
always inside the same predefined subset of arms composing a clique. Naturally, the chosen
clique would be the one having the maximum cumulative reward at the end of the trial. We
point out how this policy “combines” the optimal policies from both rising rested bandits
(corresponding to always playing the arm with the highest cumulative reward), and the
optimal policy from rising restless bandits (the greedy policy, corresponding to always playing
the arm with the highest instantaneous reward).

7
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Algorithm 1: DR-BD-UB.

Input :Connectivity matrix G ∈ Bk̃
1 for t ∈ [T ] do
2 Compute µ̄i(t) as in Equation (2) , ∀i ∈ [k]
3 Select It ∈ argmaxi∈[k] µ̄i(t)

4 Play It and observe µIt(ÑIt,t)

5 end

3.2 Deterministic Rising GTBs

In this part, we propose two novel algorithms to learn in deterministic Rising GTBs, i.e.,
all instances of Rising GTBs where σ = 0. More in detail, in Section 3.2.1, we discuss
the block-diagonal CM case, while in Section 3.2.2, we discuss the general scenario. The
deterministic scenario allows for a better understanding of the complex structure of this
setting since it ignores the statistical learning problem.

We start by introducing a novel biased estimator which, for every arm i ∈ [k], propagates
its reward function to the current time t by estimating the first derivative using the last two
observations:

µ̄i(t) := µ(tIi,Ni,t−1
) + (t− tIi,Ni,t−1

)
µ(tIi,Ni,t−1

)− µ(tIi,Ni,t−1−1)

tIi,Ni,t−1
− tIi,Ni,t−1−1

. (2)

This estimator relies on the concept of internal time. Internal times are particularly useful
since they can separate the bias in two components:

t− tIi,Ni,t−1
= (t− tIi,Ni,t

)︸ ︷︷ ︸
(A)

+(tIi,Ni,t
− tIi,Ni,t−1

)︸ ︷︷ ︸
(B)

.

As we will see in Section 3.2.1, this decomposition assumes a particular meaning in instances
whereG ∈ B

k̃
, where (A) represents the rested component of the bias, since tIi,Ni,t

= ÑCm,ti,Ni,t

making it equivalent to the bias of a rested bandit where cliques are the arms; and (B)
represents the restless component of the bias, since from arm i perspective tIi,Ni,t

= Ñi,t can
be interpreted as the current time inside the clique.

3.2.1 Algorithm for Deterministic Rising GTBs with Block-Diagonal CMs

We now introduce Deterministic Rising Block-Diagonal Upper Bound (DR-BD-UB), an
optimistic anytime regret minimization algorithm for deterministic Rising GTBs with block-
diagonal connectivity matrix, whose pseudocode is provided in Algorithm 1. The algorithm
takes as input the connectivity matrixG and employs the estimator presented in Equation (2).
Then, after having initialized the counters of the number of pulls, it starts the interaction
with the environment. At each round t ∈ [T ], it estimates (line 2) the µ̄i(t) for every i ∈ [k]
as in Equation (2) and plays greedy according to it (line 4).8

The following result provides the regret bound of DR-BD-UB, highlighting the impact of
the graph topology.

8. At the beginning, the algorithm is required to play every arm 2 times in a round-robin fashion in order to
be able to compute µ̄i(t).
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Theorem 3 (DR-BD-UB Regret in Det. Rising GTBs with Block-Diagonal CMs)
Let (ν,G, T ) be an instance of Rising GTB, where G ∈ B

k̃
and σ = 0. Then, DR-BD-UB

suffers a regret bounded by:

Rν,G,T (DR-BD-UB) ≤ Õ

(
inf

q∈[0,1]

{
T q

∑
Cm∈C

|Cm|Υν

(⌈
ÑCm,T

|Cm|

⌉
, q

)
︸ ︷︷ ︸

(A) Rested Bias Contribution

+

+
∑
Cm∈C

|Cm|Ñ
q

1+q

Cm,TΥν

(⌈
ÑCm,T

|Cm|

⌉
, q

) 1
1+q

︸ ︷︷ ︸
(B) Restless Bias Contribution

})
.

In this theorem, we report the result as a function of the number of triggers ÑCm,T of the
cliques in order to better discuss the properties of the graph. However, this dependence can
be removed by simply observing ÑCm,T ≤ T . This choice allows us to have an interesting
discussion on the nature of this result w.r.t. the graph structure. First of all, we observe
that we can separate two contributions to the regret: one coming from the rested behavior
(part (A) of the bound) determined by the need for identifying the best clique, and the other
from the restless behavior needed for identifying the best arm inside the clique (part (B) of
the bound). If we compare this result to the bounds in Theorems 4.4 and 5.2 of (Metelli
et al., 2022), we can notice how the shapes of the two contributions correspond. We also
remark that, in the two corner cases, i.e., rested and restless bandits, the regret bound is
actually smaller and corresponds exactly to the bounds presented in (Metelli et al., 2022),
even though this is not immediately visible in Theorem 3 because of a mathematical artifact
of the proof.9 In the bound, the graph topology emerges by means of cliques’ sizes, that act
as multiplicative constants. The major consequence is that having fewer cliques leads, in
general, to a better bound. As intuition suggests, the rested scenario can lead to a worst-case
bound in the first component (which is, by the way, the one having the greater order in T ),
and this can be seen by a simple application of Jensen’s Inequality, and by noticing that Υν

is a concave function:∑
Cm∈C

|Cm|Υν

(⌈
ÑCm,T

|Cm|

⌉
, q

)
≤ kΥν

(⌈
T

k

⌉
, q

)
.

We remark that in the two corner cases, one of the two contributions vanishes, even though
it cannot be directly seen in Theorem 3. However, since the restless regret has a better
order than the rested one, graphs with fewer cliques may lead, in general, to better bounds.
Unfortunately, to precisely quantify this property, one would need to know the exact shape
of Υν and to solve a difficult optimization problem.

3.2.2 Algorithm for Deterministic Rising GTBs with General Matrices

After having studied the scenario of block-diagonal connectivity matrices, we now consider
the case in which G can be arbitrary. Before introducing the algorithm, we need to define
the concept of block sub-matrix.

9. More details can be found in Remark 5 (Appendix B).
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Algorithm 2: DR-G-UB.

Input :Connectivity matrix G
1 Compute maximal sub-matrix ḠL from G
2 for t ∈ [T ] do
3 Compute µ̄L

i (t) as in Equation (4), ∀i ∈ [k]

4 Select It ∈ argmaxi∈[k] µ̄
L
i (t)

5 Play It and observe µIt(ÑIt,t)

6 end

Definition 1 (Block Sub-matrix) Let G ∈ {0, 1}k×k be a general matrix, a block-diagonal
matrix GL ∈ B

k̃
is a sub-matrix of G if it satisfies:

Gi,j −GL
i,j ≥ 0, ∀i, j ∈ [k]. (3)

Moreover, we say that ḠL ∈ B
k̃
is maximal if it also satisfies:

ḠL ∈ argmin
GL satisfying Eq. (3)

|CGL | .

Informally, GL ∈ B
k̃
is a sub-matrix of G if its graph can be obtained by only removing

1s from G. Finally, a maximal sub-matrix has the least number of cliques. Note that such a
maximal sub-matrix is, in general, not unique.

For this algorithm, we need to introduce a novel estimator, based on sub-matrices, whose
definition recalls the one of Equation (2):

µ̄L
i (t) := µ(tI,Li,Ni,t−1

) + (t− tI,Li,Ni,t−1
)
µ(tI,Li,Ni,t−1

)− µ(tI,Li,Ni,t−1−1)

tI,Li,Ni,t−1
− tI,Li,Ni,t−1−1

, (4)

where tI,Li,l := e⊤i (Ḡ
L)⊤Nti,l is the internal time w.r.t. a maximal sub-matrix ḠL of the actual

matrix G. Given this new estimator, we can generalize Algorithm 1 to attain comparable
performance even for a general connectivity matrix G. We introduce a generalization of
DR-BD-UB called Deterministic Rising General Upper Bound (DR-G-UB), whose pseu-
docode is provided in Algorithm 2. The algorithm takes as input a generic matrix G and
computes ḠL. Then, the algorithm interacts with the environment as before and uses the
estimator defined in Equation (4). In other words, DR-G-UB pretends to be interacting with
a bandit with a graph defined by ḠL. The following result characterizes the performances
of DR-G-UB.

Theorem 4 (DR-G-UB Regret in Det. Rising GTBs with General Matrices) Let
(ν,G, T ) be an instance of Rising GTB, where G ∈ {0, 1}k×k and σ = 0. Then, DR-G-UB
suffers a regret bounded by:

Rν,G,T (DR-G-UB)

≤ Õ

(
min
q∈[0,1]

{
T q
∑

CL
m∈C

ḠL

|CL
m|Υν

(⌈
ÑCL

m,T

|CL
m|

⌉
, q

)
+
∑

CL
m∈C

ḠL

|CL
m|Ñ

q
1+q

CL
m,T

Υν

(⌈
ÑCL

m,T

|CL
m|

⌉
, q

) 1
1+q
})

,

where ḠL ∈ B
k̃
is a maximal sub-matrix of G.
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This result provides a formal justification to the intuition that the performance of
Algorithm 2 can be bounded with the upper bound attained in a less favorable scenario, i.e.,
a block-diagonal instance that is “closer” to the worst-case instance of a rested bandit. The
regret bound of DR-G-UB can be found by applying Theorem 3 using the matrix ḠL.

Remark 3 (Computational Complexity) Note that, even if the optimal policy in this
setting for a general G is NP-hard to be retrieved, with DR-G-UB, we achieve sublinear regret
w.r.t. the optimal policy with a polynomial-time algorithm. This is possible thanks to the
ability of DR-G-UB to identify a convenient matrix ḠL that is subsequently adopted as a
proxy of the real environment in order to play in a computationally efficient manner.

3.3 Stochastic Rising GTBs

In this part, we focus on the stochastic Rising GTBs scenario. We characterize the perfor-
mances of R-□-UCB (Metelli et al., 2022), designed for rising rested and restless bandits, in
the Rising GTBs setting for both the block-diagonal CMs (Section 3.3.1) and the general case
(Section 3.3.2). We show that such an algorithm achieves good performances for a general
G. In particular, we develop a new proof strategy for the regret upper bound that makes
graph-dependent terms explicit. We aim at obtaining a computationally efficient algorithm
enjoying sublinear regret guarantees. Surprisingly, our analysis shows that R-□-UCB not only
enjoys sublinear regret for any connectivity matrix G, but also that the graph-dependent
quantities actually interpolate the regret between the two corner cases. Moreover, we
show that there is no need to solve any additional NP-Hard problem before or during the
algorithm’s executions, letting R-□-UCB keep it affordable computational costs, as in the
two corner settings. Furthermore, in this case, the algorithm is completely unaware of the
graph structure.

The algorithm employs a biased estimator which, for every arm i, propagates its reward
function to the current round t by estimating the first derivative over the last 2h samples:

µ̂h
i (t) :=

1

h

Ni,t−1∑
l=Ni,t−1−h+1

(
Xi,ti,l+(t− l)

Xi,ti,l −Xi,ti,l−h

h

)
, (5)

where h ∈ N is the window size. We report the estimator’s concentration rate, which is
a function of the window size h. The proof of this result originally appeared in (Metelli
et al., 2022). However, it can be extended to Rising GTBs (more details are provided in
Appendix B.1).

Lemma 5 (Concentration of Estimator, adapted from Metelli et al. 2022) For

every arm i ∈ [k], every round t ∈ [T ], and window width 1 ≤ h ≤
⌊
Ni,t−1

2

⌋
, let:

βh
i (t, δ) := σ(t−Ni,t−1 + h− 1)

√
10 log 1

δ

h3
.

Then, if the window size depends on the number of pulls only hi,t = h(Ni,t−1) and if δt = t−α

for some α > 2, it holds for every round t ∈ [T ] that:

P
(∣∣∣µ̂hi,t

i (t)− µ̃
hi,t

i (t)
∣∣∣ > β

hi,t

i (t, δt)
)
≤ 2t1−α.
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Algorithm 3: R-□-UCB.
Input : Subgaussianity proxy σ, confidence levels {δt}t∈[T ], window size ϵ ∈ (0, 1/2).

1 for t ∈ [T ] do

2 Compute µ̂
hi,t

i (t) as in Equation (5), ∀i ∈ [k]

3 Select It ∈ argmaxi∈[k] µ̂
hi,t

i (t) + β
hi,t

i (t, δt)

4 Play It and observe XIt,t

5 end

Algorithm. The algorithm, whose pseudocode is reported in Algorithm 3, takes as
input the subgaussianity proxy σ, the sliding window size parameter ϵ, and a sequence
of properly selected confidence levels δt, where t ∈ [T ]. R-□-UCB relies on the previously
defined biased estimator and uses its confidence interval to make decisions in an optimistic
manner. R-□-UCB does not require the time horizon T as an input, making it an anytime
algorithm. Moreover, the algorithm exploits the sliding window mechanism to deal with
the environment’s uncertainty while controlling the confidence degree by means of {δt}t∈[T ].
In particular, the window size employed by the algorithm is proportional to parameter
ϵ ∈ (0, 1/2), in the form of hi,t = ⌊ϵNi,t−1⌋. As we show below, ϵ controls the bias-variance
trade-off, where low values for ϵ result in less bias but higher variance, and vice versa.

Remark 4 (Computational Complexity) At each round, R-□-UCB only needs to update
the estimator and the related confidence bounds for every arm, which can be done in a time
linear in the number of arms at every step. For an efficient update, we refer the reader
to (Mussi et al., 2024, Appendix C).

3.3.1 Regret for Stochastic Rising GTBs with Block-Diagonal CMs

We now analyze the performances of R-□-UCB in the block-diagonal CMs case.

Theorem 6 (R-□-UCB Regret in Rising GTBs with Block-Diagonal CMs) Let
(ν,G, T ) be an instance of Rising GTB, where G ∈ B

k̃
. Let hi,t = ⌊ϵNi,t−1⌋ for ϵ ∈ (0, 1/2)

and δt = t−α for α > 2. Then, R-□-UCB suffers an expected regret bounded by:

Rν,G,T (R-□-UCB)

≤ Õ

(
min
q∈[0,1]

{∣∣∣∣(σT ) 2
3

∣∣∣∣︸ ︷︷ ︸
(A) Variance
Contribution

+ k̄1T
qΥν

(⌈
T

k̄1

⌉
, q

)
︸ ︷︷ ︸

(B) Rested Bias
Contribution

+ T
2q
1+q

∑
Cm∈CG:|Cm|>1

|Cm|Υν

(⌈
T

|Cm|

⌉
, q

) 1
1+q

︸ ︷︷ ︸
(C) Restless Bias
Contribution

})
,

where k̄1 is the number of cliques in G containing only one action.

Existence of a Bias-Variance Trade-off. In the regret upper bound, we can observe
three distinct contributions. First, (A) represents the variance contribution, which is the
regret suffered by the algorithm due to the stochastic nature of the environment. This
contribution is due to the estimator’s concentration properties and sets a minimum order of
regret to Õ((σT )2/3). This term is independent of the total increment Υν but, differently from
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the others, is the only contribution depending on σ. The contribution due to the estimator’s
bias is split into two distinct parts. The term (B) represents the rested contribution, which
scales with the number of blocks containing only one arm. The term (C), instead, represents
the restless contribution that scales with the number and the sizes of cliques. The bias
contributions depend explicitly on the shape of average reward functions by total increment
Υν . The only term common to variance and bias contributions is ϵ. Indeed, ϵ regulates
such a trade-off between bias and variance, and this effect can be observed in the complete
expression of the regret upper bound in Appendix B. The variance contribution depends
linearly on ϵ−1; thus, a smaller window size implies a higher variance in the estimate. On
the contrary, the bias tends to increase with ϵ: this is expected since a larger window means
including older samples in the estimate.

Dependence on Graph Topology. In the regret upper bound of Theorem 6, the only
contributions depending on graph topology are the bias ones (terms (B) and (C)). Indeed,
the environment’s randomness contribution has been decoupled from the estimation bias to
get a tractable stochastic structure. We observe how the different behaviors of arms not
connected with the others (size-1 cliques, corresponding to rested arms) and arms belonging
to larger cliques. The regret scales as T q in rested arms, but the dependence on the total

increment Υν is linear. Instead, for cliques with size greater than 1, regret scales as T
2q
1+q ,

which is greater than in rested contribution, but scales with Υν to the power of 1
1+q , that is

indeed a better dependence. Moreover, each clique contributes differently, based on its size.
Overall, the higher the size, the higher the contribution is, since the linear term is dominant
w.r.t. the inverse term inside the total increment Υν . Another interesting dependence is the
one on ϵ−1 for the restless contribution, which can be observed in the complete form of the
bound in Appendix B. For connected arms, stochasticity and graph topology produce an
interaction. Indeed, if one could design an estimator with strong concentration properties
for connected arms, this would simplify the analysis of the restless contribution, eliminating
the bad dependence on stochasticity. With such an estimator, we conjecture we could reduce

the dependence up to T
q

1+q , matching the deterministic setting bound.10

Comparison with Known Results from Literature. Given that rested and restless
rising bandits are special instances of Rising GTBs, we now comment on how the presented
bound links to existing results when Algorithm 3 is run over one of those instances. We
start from the rested scenario, i.e., when G = Ik. Then, we would have k̄1 = k and an empty
summation in the restless bias contribution. The bound of Theorem 6 would thus assume
the following form:

Rν,Ik,T (R-□-UCB) ≤ Õ

(
min
q∈[0,1]

{
(σT )

2
3 + kT qΥν

(⌈
T

k

⌉
, q

)})
.

The only other existing result for the rested rising bandits setting is the one of Theorem 4.4
of (Metelli et al., 2022), which is matched up to constants by ours. In the restless scenario,
i.e., when G = 1k×k, we have a unique clique of size k, and k̄1 = 0. Thus, the bound we

10. The lower bounds for rising rested and restless bandits are still an open problem.
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presented in Theorem 6 becomes:

Rν,1k×k,T (R-□-UCB) ≤ Õ

(
min
q∈[0,1]

{
(σT )

2
3 + kT

2q
1+qΥν

(⌈
T

k

⌉
, q

) 1
1+q

})
.

Once again, this result matches (up to constants) the result from Theorem 5.3 of (Metelli
et al., 2022), the current state-of-the-art for the restless rising bandits problem. To conclude,
we generalize the stochastic rising rested/restless bandit setting, with regret bounds that
are tight w.r.t. the known results for the two corner scenarios.

3.3.2 Regret for Stochastic Rising GTBs with General Matrices

We are now ready to generalize the result of Theorem 6 to general matrices in G ∈ {0, 1}k×k.
Before that, we have to first introduce the notion of block super-matrix.

Definition 2 (Block Super-matrix) Let G ∈ {0, 1}k×k be a general matrix, a block-
diagonal matrix GU ∈ B

k̃
is a super-matrix of G if it satisfies:

Gi,j −GU
i,j ≤ 0, ∀i, j ∈ [k]. (6)

Moreover, we say that ḠU ∈ B
k̃
is minimal if it also satisfies:

ḠU ∈ argmax
GU satisfying Eq. (6)

|CGU | .

This concept of minimal super-matrix plays an analogous role as the maximal sub-matrix
in Theorem 4. We now have all the elements to present the upper bound on the regret for
the stochastic Rising GTBs case and general matrices.

Theorem 7 (R-□-UCB Regret in Rising GTBs with General Matrices) Let (ν,G, T )
be an instance of Rising GTB, where G ∈ {0, 1}k×k. Let hi,t = ⌊ϵNi,t−1⌋ for ϵ ∈ (0, 1/2)
and δt = t−α for α > 2. Then, R-□-UCB suffers an expected regret bounded by:

Rν,G,T (R-□-UCB)≤Õ

(
min
q∈[0,1]

{
(σT )

2
3 +T qk̄1Υν

(
T

k̄1
, q

)
+T

2q
1+q

∑
CU

m

|CU
m|Υν

(
T

|CU
m|

, q

) 1
1+q

})
,

where ḠU is the minimal super-matrix of G.

This result is obtained by bounding ÑCU
m,T ≤ T for every CU

m ∈ CḠU to remove any
stochastic quantity from the regret, but a more precise bound can be provided by finding
the worst-case allocation of the triggers among the cliques (as discussed for the similar result
in Theorem 4). However, this would require solving a challenging optimization problem
that does not admit any closed-form solution. This result is similar to the one presented in
Theorem 4, with the only difference being that the dependence on graph topology is linked
to the minimal super-matrix. In principle, the result holds for any super-matrix of G. Still,
in the stochastic setting, the upper bound for the rested scenario is better than the one for
the restless scenario. Hence, a block-diagonal CM with as many cliques as possible will, in
most cases, lead to better bounds.
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About the Knowledge of G. In the stochastic scenario, we avoid extracting the super-
matrix structure from the graph before executing the algorithm, as it always plays the
same policy, regardless of the graph structure. Indeed, Algorithm 3 does not require the
knowledge on the graph: the algorithm plays as if the true matrix is the identity one (i.e., a
rested instance). To justify this behavior in an intuitive way, have to look at Theorems 4.4
and 5.3 of (Metelli et al., 2022): in stochastic scenarios, the rested contribution to regret’s
upper bound has a better dependence on T w.r.t. the restless one. Moreover, our optimistic
estimator computed by assuming a less connected graph will always be higher than the
one computed from any more densely connected graph. Thus, by playing a purely rested
policy, we are always sure to over-estimate the true reward (i.e., optimism holds) and we
are guaranteed that the rested contribution to the regret is maximized w.r.t. the restless
contribution. The final form of the regret bound is obtained by including the minimal
super-matrix as a pessimistic proxy of the effect of connected arms (informally, the minimal
super-matrix represents the maximum possible contribution to the regret that is due to the
arms connections). We point out that Algorithm 3 does not require the minimal super-matrix
as an input, as it is needed only in the analysis. For this reason, one could reformulate the
following result by removing the dependence on the minimal super-matrix and including a
minimization over the set of all super-matrices. As a side effect, this dramatically reduces
the computational burden w.r.t. the deterministic setting at the cost of a slightly higher
regret bound.

Comparison with Deterministic Regret Bounds. In deterministic scenario (Theo-
rems 3 and 4), the restless contributions are always of smaller order compared to the rested
one, which is the contrary of what we observe in stochastic settings (Theorems 6 and 7).
Due to this reason, in Algorithm 2, the regret bound scales with the maximal sub-matrix
instead of the minimal super-matrix. In the deterministic setting, the maximal sub-matrix
represents the maximum possible contribution to the regret that is due to the absence of
arms connections. In principle, we could remove the necessity for graph knowledge also in
the deterministic setting by simply playing as in a rested scenario (i.e., run Algorithm 1 by
setting G = Ik). This would be sensibly sub-optimal since any graph connection can be
used to obtain a strictly better regret bound. This is not the case for the stochastic setting,
where over-estimating the number of connections (e.g., by playing as in a restless scenario)
may result in a non-optimistic estimator, compromising the theoretical soundness of our
algorithms.

4 Rotting Graph-Triggered Bandits

Rotting bandits (Levine et al., 2017) are an important family of evolving rewards bandits
where, contrary to what happens in rising bandits, the reward functions are not allowed to
grow. In this section, we explore how the graph-triggering mechanism interacts with the
non-increasing reward function assumption. We characterize the optimal policies and the
challenges in finding them (Section 4.1). Then, we study the regret minimization problem
for this setting in the presence of stochastic noise (Section 4.2).11 Before that, we start

11. For Rotting GTBs, we skip the deterministic case, as all the interesting results we want to show are
visible also in the presence of noise.
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by stating the main setting assumption and presenting the quantities characterizing this
specific kind of bandits.

Assumption 2 (Non-increasing Payoffs) Let ν be an instance of a rotting bandit, then,
defining γi(n) :=µi(n+ 1)−µi(n) for every i ∈ [k] and n ∈ [T ], it holds:

Non-increasing: γi(n) ≤ 0.

This assumption allows for strong theoretical guarantees in both the restless and rested
settings, as it has been shown in the literature (see, e.g., Heidari et al., 2016; Levine et al.,
2017; Seznec et al., 2019, 2020). Notably, for rotting bandits, we are not required to have a
concavity/convexity assumption.

Instance Characterization. In this scenario, given an instance ν, we define the total
decrement as:

Vν(M) :=
∑

n∈[M−1]

max
i∈[k]

γi(n),

where M ∈ N. Moreover, we define the maximum per-round variation as:

L := max
i∈[k]

max
n∈[T ]

|γi(n)|,

with µi(−1) := maxi∈[k] µi(0). These quantities figure in the instance-dependent guarantees
of algorithms operating in this setting and characterize the difficulty of learning for the
instance ν. In particular, Vν(T ) is required to properly bound the regret in restless rotting
bandits (see, e.g., Seznec et al. 2020), while L appears in the minimax regret bound of rested
rotting bandits, as shown in the setting’s lower bound of Ω(kL) by Heidari et al. (2016).

4.1 Optimality in Rotting GTBs

Under the standard literature’s assumptions, we are now ready to characterize our optimal
policies. We first show, as for Rising GTBs, a negative result on the complexity of finding
the optimal policy for a clairvoyant who knows all about our Rotting GTBs instance.

Theorem 8 (Complexity of finding the Optimal Policy in Rotting GTBs) Com-
puting the optimal policy in Rotting GTBs with general matrices G is NP-Hard.

The proof of this result follows a similar logic to the one of Theorem 1. Given this
result, we now proceed by studying the block-diagonal connectivity matrices scenario, which
composes an interesting class of Rotting GTBs. We now characterize the optimal policy in
the block-diagonal connectivity scenario and the total cumulative reward that it obtains.

Theorem 9 (Optimal Policy in Rotting GTBs with Block-Diagonal CM) For any
instance (ν,G, T ) of Rotting GTBs s.t. G ∈ B

k̃
, the optimal policy π∗

ν,G,T ∈ argmaxπ Jν,G,T (π)
is given by:

π∗
ν,G,T (t) ∈ argmax

j∈[k]
µj(Ñ

∗
j,t), ∀t ∈ [T ],
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Algorithm 4: RAW-UCB (Seznec et al., 2020)

Input : Subgaussianity proxy σ, confidence levels {δt}t∈[T ].
1 for t ∈ [T ] do
2 Compute µ̂h

i (t) as in Equation (8), ∀i ∈ [k], h ∈ [Ni,t]

3 Select It ∈ argmaxi∈[k] minh≤Ni,t
µ̂h
i (t) + c(h, δt)

4 Play It and observe XIt,t

5 end

where Ñ∗
j,t is the number of times arm j has been triggered by the optimal policy up to time

t. Moreover, we have:

J∗
ν,G,T =

∑
Cm∈CG

N∗
Cm,T∑
n=1

max
i∈Cm

µi(n), (7)

where N∗
Cm,T is the number of times the optimal policy pulls an action belonging to clique

Cm before T , i.e., N∗
Cm,T = Ñ∗

i,T , for every i ∈ Cm.

Interestingly, the optimal policy is greedy in every rotting bandit with block-diagonal CM:
this extends known results for rested and restless rotting bandits, where the optimal policy
was already be proven to be greedy (Heidari et al., 2016; Levine et al., 2017). Equation (7)
provides a closed form of the total reward obtained by the optimal policy, which will come
in handy in the next part.

4.2 Stochastic Rotting GTBs

In this part, we discuss the regret minimization problem for the stochastic Rotting GTBs.
We first study an algorithm, namely RAW-UCB (Seznec et al., 2020), which is able to achieve
sublinear regret in the block-diagonal connectivity scenario (Section 4.2.1). Then, we show
that, under the literature’s standard assumptions, we cannot learn for general matrices
(Section 4.2.2).

4.2.1 Algorithm for Stochastic Rotting GTBs with Block-Diagonal CMs

We now show that the RAW-UCB algorithm (Seznec et al., 2020), whose pseudocode is provided
in Algorithm 4, provides sublinear regret guarantees in the Rotting GTB setting with block-
diagonal connectivity matrices. RAW-UCB does not require any knowledge on G and allows
for efficient computation.12

The behavior of RAW-UCB is characterized as follows. At each round t ∈ [T ], the algorithm
computes a family of estimators for every action (line 2). In particular, for every action
i ∈ [k] and for every window size hi,t ∈ [Nπ

i,t−1], it computes:

µ̂h
i (t) :=

1

h

t−1∑
s=1

1{It=i ∧ Ni,s>Ni,t−1−h}Xi,s. (8)

12. More details on the computationally efficient version of RAW-UCB, namely EFF-RAW-UCB, can be found
in (Seznec et al., 2020).
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Then, for every action, the chosen window size is the one minimizing the upper confidence

bound µ̂h
i (t)+c(h, δt) where c(h, δt) :=

√
2σ2 log(2δ−1

t )/h (line 3).13 Proving the algorithm’s
guarantees in the rested and restless setting requires characterizing how it concentrates,
as has been done for the base case in Lemma 2 of (Seznec et al., 2020). We extend this
result to the Rotting GTBs setting, devising a concentration bound involving the number of
triggers of an action. the result can be found in Lemma 21 (Appendix C). This result will
play a key role in the regret analysis of RAW-UCB in the Rotting GTBs setting. We are now
ready to state the regret upper bound of RAW-UCB in the Rotting GTBs for block-diagonal
connectivity matrices.

Theorem 10 (RAW-UCB Regret in Rotting GTBs with Block-Diagonal CM) Let
(ν,G, T ) be an instance of the Rotting GTBs, where G ∈ B

k̃
. Let δt = t−α for α ≥ 5. Then,

RAW-UCB suffers an expected regret bounded as:

Rν,G,T (RAW-UCB) ≤ Õ

(
k
(
σ
√
log T + Vν(T )

)
︸ ︷︷ ︸
(A) Variance Contribution

+L
∑

Cm∈CG

|Cm|2+ kL+ σ
∑

Cm∈CG

(√
|Cm|
k

T

)
︸ ︷︷ ︸

(B) Rested Contribution

+

+ (ασ)
2
3

∑
Cm∈CG

(
V π
T

|Cm|
k

T 2

) 1
3

︸ ︷︷ ︸
(C) Restless Contribution

)
.

Dependence on Graph Topology. In Theorem 10, we observe the same phenomenon of
Theorem 6. Indeed, we have three components: (A) representing the fixed regret contribution
that comes from the noise, (B) representing the contribution to the regret coming from the
rested nature of the problem (i.e., the sub-optimality accrued by choosing an action in the
wrong clique), and (C) representing the contribution coming from the restless nature of
the problem, instead (i.e., the sub-optimality accrued by not choosing the best action in a
clique). The separation between the latter two components becomes clear in the proof of
the result:

E[Rν,G,T (RAW-UCB)] =
T∑
t=1

µi∗t
(Ñ∗

i∗t ,t
)− µIt(Ñ

π
It,t)± max

i∈CIt

µi(Ñ
π
It,t)

=
T∑
t=1

(µi∗t
(Ñ∗

i∗t ,t
)− max

i∈CIt

µi(Ñ
π
It,t))︸ ︷︷ ︸

≤ (B)+ kσ
√
log T

+
T∑
t=1

(max
i∈CIt

µi(Ñ
π
It,t)− µIt(Ñ

π
It,t))︸ ︷︷ ︸

≤ (C)+ kVν(T )

.

In rotting bandits, there is a clear hierarchy between the difficulties of statistical learning
in the rested and the restless settings. Rested rotting bandits are easier than their restless
counterpart, and this is reflected also in our bound: when the number of cliques is higher,
and the GTB is closer to a rested instance, the regret bound is lower since the weight of (A)
is higher.

13. At the beginning of the execution, we need a round-robin pull of the arms to initialize the estimators.
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Comparison with Known Results from Literature. RAW-UCB has already been proven
to be nearly optimal in both the rested and the restless scenario (Seznec et al., 2020). However,
as an artifact of the analysis, we cannot retrieve the exact same bounds by plugging G = Ik,
or G = 1k×k in our expression. A similar consideration to the one of Remark 5 can also
be done for rotting bandits. We conjecture that RAW-UCB is actually nearly-optimal also
in the intermediate Rotting GTB instances with block-diagonal connectivity matrices, and
this claim is supported by the fact that there is no room for improvement in neither of
the two contributions in the corner cases. We also conjecture that the dependence on
L
∑

Cm∈CG |Cm|2 may be an artifact of the analysis, being the output of a delicate pigeonhole
principle argument used to prove Theorem 10 (see Appendix C). We leave the task of finding
a graph-dependent lower bound for this setting as a fascinating open problem.

4.2.2 Non-learnability for Stochastic Rotting GTBs with General Matrices

We now move to the scenario of stochastic Rotting GTBs for general connectivity matrices,
and we present an impossibility result for this case.

Theorem 11 (Regret Lower Bound for Rotting GTBs with General Matrices)
For every G ∈ {0, 1}k×k that is not block-diagonal, there exists an instance of Rotting GTB
(ν,G, T ) s.t., for every policy π, it holds:

Rν,G,T (π) ≥
T

12
.

This negative result poses a several limitation to what can be obtained from Rotting
GTBs in the general scenario since, if we do not consider additional assumptions on the
reward functions, no algorithm can obtain sublinear regret.

5 Discussion and Conclusions

In this paper, we proposed graph-triggered bandits (GTBs), a generalization of the rested
and restless bandit settings, where the expected rewards of the different arms evolve by
means of a graph. We focused and compared two special families of bandits, namely rising
and rotting bandits, where the expected rewards of an arm evolve in a monotonic fashion
with the number of triggers the specific arm received. We showed that computing the
optimal policy without additional assumptions on the matrix is NP-Hard in both the rising
and rotting scenarios. Then, for both these classes, we showed how, instead, for block-
diagonal connectivity matrices, we can find the optimal policy in polynomial time and have
a convenient closed-form expression. From the algorithmic perspective, we showed how it
is possible to achieve sublinear regret for both of these special instances of MABs with
block-diagonal connectivity matrices. On the other hand, for general matrices, we have an
interesting distinction. Indeed, for Rising GTBs we were able to achieve sublinear regret,
while for Rotting GTBs (in the standard scenario, without additional assumption on the
behavior of expected rewards, e.g., on second-order derivatives), we proved that we cannot
learn. This work aspires to be a first step in the study of GTBs and should be integrated by
studying the statistical complexity of learning through lower bounds, and by considering
more general models, e.g., smoothly evolving bandits.
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Appendix A. Related Works

In this appendix, we discuss the relevant literature for the GTB setting. We divide this
appendix into two parts. First, we discuss the relevant works concerning graph structures.
Then, we discuss the literature related to restless and rested bandits, with particular attention
to rotting and rising bandits.

Graph Relationships in Bandits. The graph-triggered bandits setting has been in-
troduced in this work. Thus, no prior literature is available on this setting. However, we
mention similar settings that appeared in the last years. Herlihy and Dickerson (2023)
propose the networked restless bandit setting. Despite some similarities with our setting,
e.g., the presence of a graph among arms, their action space and learning objectives radically
differ from ours, and thus the two settings are not comparable. In (Jhunjhunwala et al.,
2018), a restless bandit setting is proposed in which the graph structure is not explicit in
the formulation; however, the authors develop a graph representation of the policies in the
deterministic scenario. Their algorithm builds and exploits a graph in an online fashion.
Once again, we cannot properly compare this setting to ours, despite some sparse similarities.
Finally, we mention bandits with graph feedback (Alon et al., 2015). Despite this setting
being conceptually different from ours since arms do not interact, we report it here just
because it features graph topology-dependent bounds. We remark that in this case, the
graph has not to be intended as a structure for arms interactions but rather as a feedback
structure for the learner, in GTBs the feedback is purely bandit.

Rested and Restless Bandits. Restless and rested bandits are a well-established research
field. Starting from the seminal paper by Whittle (1988) on restless bandits, several
approaches have been proposed over the years to deal with non-stationary bandits (Tekin
and Liu, 2012; Raj and Kalyani, 2017). Then, specialization of these settings such as
rising (Metelli et al., 2022; Mussi et al., 2024) and rotting (Levine et al., 2017) has been
introduced. Over the last years, several works tackled rotting bandits (Levine et al., 2017;
Seznec et al., 2019). Remarkably, (Seznec et al., 2020) provide a single algorithm for dealing
with both rested and restless rotting bandits but show that in the rotting setting, achieving
sub-linear regret is not possible when there are both rested and restless arms in the same
instance. We remark that for any two-armed rotting bandit where one arm is rested and the
other is restless, we can construct an (asymmetric) matrix G such that the instance can be
mapped to a graph-triggered rotting bandit instance. This highlights a crucial difference
between rotting and rising bandits for what concerns graph-triggering. Recently, literature
studied a broader class of restless bandits called smooth bandits, which generalizes both
rotting and rising bandits (Manegueu et al., 2021; Jia et al., 2023).
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Appendix B. Proofs on Rising Bandits

In this appendix, we report a short version of the proofs of Rising GTBs. The extended
version is provided in (Genalti et al., 2024).

Theorem 1 (Complexity of finding the Optimal Policy in Rising GTBs) Compu-
ting the optimal policy in Rising GTBs with general matrices G is NP-Hard.

Proof We reduce from a decision problem related to finding cliques in graphs. In particular,
given a graph (V,E) and M̃ ∈ N, it is NP-Hard to determine if there exists a clique of

size M̃ (Karp, 1972). In the following, we design an instance of our problem such that the
reward of the optimal policy is at least

∑T
t=1(1 +

t
T 2 ) if and only if there exists a clique of

size M̃ = T .
Construction. Given a graph (V,E), we build an instance such that the horizon is T .

Our set of actions can be constructed by assigning an action to every node and time step
couple, i.e., A = {av,t}v∈V, t∈[T ]. We define the matrix G̃ is such that for any v, v′ ∈ V and
t, t′ ∈ [T ], it holds Gav,t,av′,t′ = 1 if (v, v′) ∈ E, and Gav,t,av′,t′ = 0 otherwise. Finally, for each
arm av,t ∈ A, the reward is deterministic and evolves as µav,t(n) = min{1 + ηt, nt (1 + ηt)},
where η = T−2. We call ν̃ the set of these functions. It is easy to see that the GTB instance
(ν̃, G̃, T ) satisfies Assumption 1.

if. We show that if there exists a clique C⋆ = {v1, . . . , vT } of size T , then there exists
a policy with a cumulative reward of at least

∑T
t=1(1 + ηt). Consider the policy π̃ s.t.

π̃(t) = avt,t. It is easy to see that Ñavt,t,t
= t for every t ∈ [T ]. Hence, the reward of the

policy π̃ at time t is

µavt,t
(Ñavt,t,t

) = min{1 + ηt,
t

t
(1 + ηt)} = 1 + ηt.

Thus, J
µ̃,G̃,T

(π̃) =
∑T

t=1(1 + ηt) and the claim is proven.

only if. We show that if there is a policy π̃ s.t. J
µ̃,G̃,T

(π̃) ≥
∑T

t=1(1 + ηt), then there
exists a clique of size T .

First, we observe that for each t′, t ∈ [T ] it holds that

max
t′∈[T ]

min{1 + ηt′,
t

t′
(1 + ηt′)} = 1 + ηt. (9)

This implies that, at any round t, the best obtainable reward is

max
t′∈[T ]

max
v∈V

max
l≤t

µav,t′ (l) = max
t′∈[T ]

max
v∈V

µ̃av,t′ (t)

= max
t′∈[T ]

min

{
1 + ηt′,

t

t′
(1 + ηt′)

}
= min

{
1 + ηt,

t

t
(1 + ηt)

}
= 1 + ηt.

Since by assumption there is a policy with reward at least
∑T

t=1(1 + ηt), then there is a
policy such that at each round t ∈ [T ] the reward is exactly 1 + ηt.
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Consider a round t ∈ [T ]. Let av,t′ be the arm played by the policy at this round. It
must be the case that: i) t′ = t, otherwise

µav,t′ (Ñav,t′ ,t) ≤ µav,t′ (t) < 1 + ηt

by Equation (9), and ii) Ñav,t′ ,t = t, otherwise

µav,t′ (Ñav,t′ ,t) ≤
t− 1

t
(1 + ηt) < 1 + ηt.

Let avt,t be the arm chosen at round t. Then, each arm in {avt,t}t∈[T ], is chosen while

having exactly t− 1 triggers. By the definition of G̃ this directly implies that {vt}Tt=1 is a
clique of size T .

Theorem 2 (Optimal Policy in Rising GTBs with Block-Diagonal CM) For any
instance (ν,G, T ) of Rising GTBs with G ∈ B

k̃
, the optimal policy π∗

ν,G,T ∈ argmaxπ Jν,G,T (π)
is given by:

π∗
ν,G,T (t) ∈ argmax

j∈C∗
ν,G,T

µj(t), ∀t ∈ [T ],

where C∗
ν,G,T is the “best” cumulative reward clique:

C∗
ν,G,T ∈ argmax

C∈CG

∑
t∈[T ]

max
j∈C

µj(t).

Proof For each clique Cm ∈ CG, we substitute the reward function of every arm i ∈ Cm

with µ∗
i (t) = maxi∈Cm µi(t), for every t ∈ [T ]. Now, since all arms sharing the same clique

have the same reward function, our instance is equivalent to a k̃-armed bandit problem,
where k̃ is the number of cliques. Since arms in different cliques are not connected, this
corresponds to a rested bandit problem, and we use Proposition 1 of (Heidari et al., 2016)
to get that the optimal policy would only pull the best action in terms of cumulative reward
at the end of the time horizon T . To conclude the proof, we remark that playing greedily
inside a clique corresponds exactly to play on the reward function defined above, which
dominates the initial problem, and so the maximum cumulative reward is exactly the one
attained in the problem with k̃ arms.

Lemma 12 (DR-BD-UB Estimator’s Instantaneous Bias) For every arm i ∈ [k], every
round t > 1, let us define:

µ̄i(t) := µi(t
I
i,Ni,t−1

) + (t− tIi,Ni,t−1
)
µi(t

I
i,Ni,t−1

)− µi(t
I
i,Ni,t−1−1)

tIi,Ni,t−1
− tIi,Ni,t−1−1

,

then, µ̄i(t) ≥ µi(t
I
i,Ni,t−1

) and, if Ni,t−1 ≥ 2 it holds that:

µ̄i(t)− µi(Ñi,t) ≤ (t− tIi,Ni,t−1)γi(t
I
i,Ni,t−1−1).
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Proof Let us start by observing the following equality holding:

µi(Ñi,t) = µi(t
I
i,Ni,t−1

) +

Ñi,t−1∑
j=tIi,Ni,t−1

γi(j).

We have:

µi(Ñi,t) = µi(t
I
i,Ni,t−1

) +

Ñi,t−1∑
j=tIi,Ni,t−1

γi(j)

≤ µi(t
I
i,Ni,t−1

) + (Ñi,t − tIi,Ni,t−1
)γi(t

I
i,Ni,t−1−1) (10)

≤ µi(t
I
i,Ni,t−1

) + (t− tIi,Ni,t−1
)γi(t

I
i,Ni,t−1−1), (11)

where line (10) follows from Assumption 1, and line (11) is obtained from observing that
Ñi,t ≤ t. Concerning the bias, when Ni,t−1 ≥ 2, we have:

µ̄i(t)− µi(Ñi,t) ≤ µi(t
I
i,Ni,t−1

)− µi(Ñi,t) + (t− tIi,Ni,t−1
)
µi(t

I
i,Ni,t−1

)− µi(t
I
i,Ni,t−1−1)

tIi,Ni,t−1
− tIi,Ni,t−1−1

(12)

≤ (t− tIi,Ni,t−1
)
µi(t

I
i,Ni,t−1

)− µi(t
I
i,Ni,t−1−1)

tIi,Ni,t−1
− tIi,Ni,t−1−1

(13)

≤ (t− tIi,Ni,t−1
)γi(t

I
i,Ni,t−1−1), (14)

where line (13) follows from observing that µi(t
I
i,Ni,t−1

) ≤ µi(Ñi,t), and line (14) derives from

bounding
µi(t

I
i,Ni,t−1

)−µi(t
I
i,Ni,t−1−1)

tIi,Ni,t−1
−tIi,Ni,t−1−1

≤ γi(t
I
i,Ni,t−1−1) thanks to Assumption 1.

Theorem 3 (DR-BD-UB Regret in Det. Rising GTBs with Block-Diagonal CMs)
Let (ν,G, T ) be an instance of Rising GTB, where G ∈ B

k̃
and σ = 0. Then, DR-BD-UB

suffers a regret bounded by:

Rν,G,T (DR-BD-UB) ≤ Õ

(
inf

q∈[0,1]

{
T q

∑
Cm∈C

|Cm|Υν

(⌈
ÑCm,T

|Cm|

⌉
, q

)
︸ ︷︷ ︸

(A) Rested Bias Contribution

+

+
∑
Cm∈C

|Cm|Ñ
q

1+q

Cm,TΥν

(⌈
ÑCm,T

|Cm|

⌉
, q

) 1
1+q

︸ ︷︷ ︸
(B) Restless Bias Contribution

})
.

Proof Let C∗
ν,G,T ∈ CG be the optimal clique of the instance. We analyze the following

expression:

Rν,G,T (DR-BD-UB) =

T∑
t=1

µi∗t
(t)− µIt(ÑIt,t),
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where i∗t ∈ argmaxi∈C∗
ν,G,T

µi(t) for all t ∈ [T ]. Then, we can decompose the regret in two

meaningful components:

Rν,G,T (DR-BD-UB) =

T∑
t=1

µi∗t
(t)± µ̄It(t)− µIt(ÑIt,t)

≤
T∑
t=1

min{1, µ̄It(t)− µIt(ÑIt,t)} (15)

≤
T∑
t=1

min{1, (t− tIIt,NIt,t−1
)γIt(t

I
It,NIt,t−1−1)} (16)

=

T∑
t=1

min{1, (t± tIIt,NIt,t
− tIIt,NIt,t−1

)γIt(t
I
It,NIt,t−1−1)}

≤
T∑
t=1

min{1, (t− tIIt,NIt,t
)γIt(t

I
It,NIt,t−1−1)}+ (17)

+
∑
t=1

min{1, (tIIt,NIt,t
− tIIt,NIt,t−1

)γIt(t
I
It,NIt,t−1−1)} (18)

= 4k +
∑

Cm∈CG

∑
i∈Cm

Nj,T∑
j=3

min{1, (t− tIi,j)γ(t
I
i,j−2)}︸ ︷︷ ︸

(a)

+

+
∑

Cm∈CG

∑
i∈Cm

Nj,T∑
j=3

min{1, (tIi,j − tIi,j−1)γ(t
I
i,j−2)}︸ ︷︷ ︸

(b)

,

where lines (15) and (16) follow from Lemma 12, line (18) from the fact that min{1, x+y} ≤
min{1, x}+min{1, y} for any x, y ≥ 0.

These two terms represent the rested and the restless contribution to the regret, and we
can bound them using similar techniques as in (Metelli et al., 2022).

Remark 5 (Regret Bound in Rested and Restless Rising Bandits) When we are
in a purely rested (resp. restless) scenario, the contribution term associated to the rest-
less (resp. rested) scenario vanish, and we get the same regret orders from (Metelli et al.,
2022). In particular, we can avoid splitting the minimum in Equation (18) and instead
notice that in a rested setting we have t− tIIt,NIt,t−1

= t−NIt,t−1, and thus we can bound

the cumulative regret as we bound the term (a). Instead, in a restless setting we have
t− tIIt,NIt,t−1

= t− tIt,NIt,t−1
, and thus we can bound the cumulative regret as we bound the

term (b).

Theorem 4 (DR-G-UB Regret in Det. Rising GTBs with General Matrices) Let
(ν,G, T ) be an instance of Rising GTB, where G ∈ {0, 1}k×k and σ = 0. Then, DR-G-UB
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suffers a regret bounded by:

Rν,G,T (DR-G-UB)

≤ Õ

(
min
q∈[0,1]

{
T q
∑

CL
m∈C

ḠL

|CL
m|Υν

(⌈
ÑCL

m,T

|CL
m|

⌉
, q

)
+
∑

CL
m∈C

ḠL

|CL
m|Ñ

q
1+q

CL
m,T

Υν

(⌈
ÑCL

m,T

|CL
m|

⌉
, q

) 1
1+q
})

,

where ḠL ∈ B
k̃
is a maximal sub-matrix of G.

Proof The theorem can be proved by showing that estimator’s bias is always larger when
internal times are decreased. For every arm i ∈ [k] we define:

fi(t; x, y) = µi(x) + (t− x)
µi(x)− µi(y)

x− y
, (19)

for every triplet of natural numbers y ≤ x ≤ t ≤ T . Note that µ̄i(t) = fi(t; t
I
i,Ni,t−1

, tIi,Ni,t−1−1),
so if we can show that fi is decreasing in both x and y, we can prove the claim. We start
with the second argument: fix t and x, then for any y:

fi(t;x, y)− fi(t;x, y − 1) = (t− x)

(∑x−1
j=y γi(j)

x− y
−
∑x−1

j=y−1 γi(j)

x− y + 1

)

=

∑x−1
j=y γi(j)− (x− y)γi(y − 1)

(x− y)(x− y + 1)
≤ 0, (20)

where line (20) follows from Assumption 1. With slightly more calculations we show that fi
is also decreasing in the first argument, fix t and y, then for any x:

fi(t; x, y)−fi(t; x− 1, y) ≤ 0. (21)

Now we observe that, for every i ∈ [k] and every t ∈ [T ], we have tIi,Ni,t
≥ tI,Li,Ni,t

. This is
a consequence of Definition 1, since:

tIi,Ni,t
− tI,Li,Ni,t

=

t∑
j=1

(GIt,i − ḠL
It,i) ≥ 0.

As a consequence of this, we have:

fi(t; tIi,Ni,t−1
, tIi,Ni,t−1) ≤ fi(t; tI,Li,Ni,t−1

, tI,Li,Ni,t−1), (22)

and

µi(t
I
i,Ni,t

) ≥ µi(t
I,L
i,Ni,t

). (23)

The proof can be concluded in the same way as for Theorem 3.
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Lemma 13 (Estimator’s Instantaneous Bias) For every arm i ∈ [k], every round t ∈
[T ], and window width 1 ≤ h ≤

⌊
Ni,t−1

2

⌋
, let us define:

µ̃h
i (t) :=

1

h

Ni,t−1∑
l=Ni,t−1−h+1

(
µi(t

I
i,l) + (t− l)

µi(t
I
i,l)− µi(t

I
i,l−h)

h

)
,

otherwise if h = 0, we set µ̃h
i (t) := +∞. Then, µ̃h

i (t) ≥ µi(ti,Ni,t−1) and, if Ni,t−1 ≥ 2 it
holds that:

µ̃h
i (t)− µi(Ñi,t) ≤

(2t− 2Ni,t−1 + h− 1)(tIi,Ni,t−1
− tIi,Ni,t−1−2h+1)

2h
γi(t

I
i,Ni,t−1−2h+1).

Proof Let us start by observing the following equality holding for every l ∈ {2, . . . , Ni,t−1}:

µi(Ñi,t) = µi(t
I
i,l) +

Ñi,t−1∑
j=tIi,l

γi(j).

By averaging over a window of length h, we obtain:

µi(Ñi,t) =
1

h

Ni,t−1∑
l=Ni,t−1−h+1

µi(t
I
i,l) +

Ñi,t−1∑
j=tIi,l

γi(j)


≤ 1

h

Ni,t−1∑
l=Ni,t−1−h+1

(
µi(t

I
i,l) + (Ñi,t − tIi,l)γi(t

I
i,l − 1)

)
(24)

≤ 1

h

Ni,t−1∑
l=Ni,t−1−h+1

µi(t
I
i,l) +

Ñi,t − tIi,l

tIi,l − tIi,l−h

tIi,l−1∑
j=tIi,l−h

γi(j)

 (25)

≤ 1

h

Ni,t−1∑
l=Ni,t−1−h+1

(
µi(t

I
i,l) + (t− l)

µi(t
I
i,l)− µi(t

I
i,l−h)

h

)
=: µ̃h

i (t), (26)

where lines (24) and (25) follow from Assumption 1, and line (26) is obtained from observing
that tIi,l ≥ l, Ñi,t ≤ t and tIi,l − tIi,l−h ≥ h.

Concerning the bias, when Ni,t−1 ≥ 2, we have:

µ̃h
i (t)− µi(Ñi,t) =

1

h

Ni,t−1∑
l=Ni,t−1−h+1

(
µi(t

I
i,l) + (t− l)

µi(t
I
i,l)− µi(t

I
i,l−h)

h

)
− µi(Ñi,t)

≤ 1

h

Ni,t−1∑
l=Ni,t−1−h+1

(t− l)
µi(t

I
i,l)− µi(t

I
i,l−h)

h
(27)

=
1

h

Ni,t−1∑
l=Ni,t−1−h+1

(t− l)
µi(t

I
i,l)− µi(t

I
i,l−h)

tIi,l − tIi,l−h

tIi,l − tIi,l−h

h
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≤ 1

h

Ni,t−1∑
l=Ni,t−1−h+1

(t− l)γi(t
I
i,l−h)

tIi,l − tIi,l−h

h
(28)

≤
tIi,Ni,t−1

− tIi,Ni,t−1−2h+1

h2
γi(t

I
i,Ni,t−1−2h+1)

Ni,t−1∑
l=Ni,t−1−h+1

(t− l) (29)

=
(2t− 2Ni,t−1 + h− 1)(tIi,Ni,t−1

− tIi,Ni,t−1−2h+1)

2h
γi(t

I
i,Ni,t−1−2h+1), (30)

where line (27) follows from observing that µi(t
I
i,l) ≤ µi(Ñi,t), line (28) derives from As-

sumption 1 and bounding
µi(t

I
i,l)−µi(t

I
i,l−h)

tIi,l−tIi,l−h

≤ γi(t
I
i,l−h), line (29) is obtained by bounding

tIi,l − tIi,l−h ≤ tIi,Ni,t−1
− tIi,Ni,t−1−2h+1 and γi(t

I
i,l−h) ≤ γi(t

I
i,Ni,t−1−2h+1), and line (30) follows

from computing the summation.

Lemma 14 (Bound on Estimator’s Cumulative Bias for Block-Diagonal CMs)
Let (It)t=1 be a sequence of actions. For every action i ∈ [k], every round t ∈ [T ], let window
width hi,t = ⌊ϵNi,t−1⌋. Let G ∈ B

k̃
be a block diagonal matrix, then for every q ∈ [0, 1], we

have:

T∑
t=1

min
{
1, µ̃

hIt,t

It
(t)− µIt(ÑIt,t)

}
≤

≤ 2k + k̄1T
q

⌈
1

1− 2ϵ

⌉
Υν

(⌈
(1− 2ϵ)

T

k̄1

⌉
, q

)
+

+ T
2q
1+q (1 + log(ϵT ))

q
1+q

⌈
1

ϵ

⌉⌈
1

1− 2ϵ

⌉ ∑
Cm∈CG:|Cm|>1

|Cm|Υν

(⌈
(1− 2ϵ)

T

|Cm|

⌉
, q

) 1
1+q

,

where C is the set of blocks of matrix G, and k̄1 ≤ k is the number of blocks of size 1.

Proof The statement can be proven by decomposing over the cliques and then over the
arms, splitting cliques with only one arm from the others:

T∑
t=1

min
{
1, µ̃

hIt,t

It
(t)− µIt(ÑIt,t)

}
≤ 2k +

∑
Cm∈CG:|Cm|=1

Cm={i}

Ni,T∑
j=3

min
{
1, µ̃

hi,ti,j

i (ti,j)− µi(j)
}

︸ ︷︷ ︸
(a)

+

+
∑

Cm∈CG:|Cm|>1

∑
i∈Cm

Ni,T∑
j=3

min
{
1, µ̃

hi,ti,j

i (ti,j)− µi(t
I
i,j)
}

︸ ︷︷ ︸
(b)

.
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The two terms can be bound in a similar way as in (Metelli et al., 2022), as the rested and
the restless component, respectively.

Theorem 6 (R-□-UCB Regret in Rising GTBs with Block-Diagonal CMs) Let
(ν,G, T ) be an instance of Rising GTB, where G ∈ B

k̃
. Let hi,t = ⌊ϵNi,t−1⌋ for ϵ ∈ (0, 1/2)

and δt = t−α for α > 2. Then, R-□-UCB suffers an expected regret bounded by:

Rν,G,T (R-□-UCB)

≤ Õ

(
min
q∈[0,1]

{∣∣∣∣(σT ) 2
3

∣∣∣∣︸ ︷︷ ︸
(A) Variance
Contribution

+ k̄1T
qΥν

(⌈
T

k̄1

⌉
, q

)
︸ ︷︷ ︸

(B) Rested Bias
Contribution

+ T
2q
1+q

∑
Cm∈CG:|Cm|>1

|Cm|Υν

(⌈
T

|Cm|

⌉
, q

) 1
1+q

︸ ︷︷ ︸
(C) Restless Bias
Contribution

})
,

where k̄1 is the number of cliques in G containing only one action.

Proof Let us define the good events Et =
⋂

i∈[k] Ei,t that correspond to the event in which
all confidence intervals hold:

Ei,t :=
{∣∣∣µ̂hi,t

i (t)− µ̃
hi,t

i (t)
∣∣∣ ≤ β

hi,t

i (t)
}

∀i ∈ [T ], i ∈ [k].

We have to analyze the following expression:

Rν,G,T (DR-BD-UB) = E

[
T∑
t=1

µi∗t
(t)− µIt(t)

]
,

where i∗t ∈ argmaxi∈C∗
ν,G,T

µi(t) for all t = 1. We decompose according to the good events

Et:

Rν,G,T (π
DR-BD-UB) =

T∑
t=1

E
[(
µi∗t

(t)− µIt(t)
)
1{Et}

]
+

T∑
t=1

E
[(
µi∗t

(t)− µIt(t)
)
1{¬Et}

]
≤

T∑
t=1

E
[(
µi∗t

(t)− µIt(t)
)
1{Et}

]
+

T∑
t=1

E [1{¬Et}] ,

where we exploited µi∗t
(t) − µIt(t) ≤ 1 in the inequality. The second summation can be

bounded using standard arguments, recalling that α > 2:

T∑
t=1

E [1{¬Et}] ≤ 1 +
∑
i∈[k]

T∑
t=2

P (¬Ei,t)

≤ 1 +
2k

α− 2
.

where the first inequality is obtained with P(¬E1) ≤ 1 and a union bound over [k]. Recalling
P(¬Ei,t) was bounded in Lemma 5, we bound the summation with the integral and obtain
the second inequality.
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The rest of the analysis can be conducted under the good event Et, recalling that

Bi(t) ≡ µ̂
hi,t

i (t) + β
hi,t

i (t). Let t ∈ [T ], and we exploit the optimism, i.e., Bi∗t
(t) ≤ BIt(t):

µi∗(t)− µIt(t) +BIt(t)−BIt(t) ≤ min

1, µi∗t
(t)−Bi∗t

(t)︸ ︷︷ ︸
≤0

+BIt(t)− µIt(t)


≤ min {1, BIt(t)− µIt(t)} .

Now, we work on the term inside the minimum:

BIt(t)− µIt(t) = µ̂
hIt,t

It
(t) + β

hIt,t

It
(t)− µIt(t) (31)

≤ µ̃
hIt,t

It
(t)− µIt(t)︸ ︷︷ ︸

(a)

+2β
hIt,t

It
(t)︸ ︷︷ ︸

(b)

, (32)

where line (31) follows from the definition of Bi(t) and line (32) from the good event Et.
We make use of Lemma 14 and Lemma 18 to bound the summations over t of (a) and (b),
respectively.

Putting all together, we obtain:

Rν,G,T (R-□-UCB)

≤ 1 +
2k

α− 2
+ 5k +

k

ϵ
+

3k

ϵ
(2σT )

2
3 (10α log T )

1
3 +

+ T
2q
1+q (1 + log(ϵT ))

q
1+q

⌈
1

ϵ

⌉⌈
1

1− 2ϵ

⌉
kΥµ

(⌈
(1− 2ϵ)

T

k

⌉
, q

) 1
1+q

+

+ 2k + k̄1T
q

⌈
1

1− 2ϵ

⌉
Υν

(⌈
(1− 2ϵ)

T

k̄1

⌉
, q

)
+

+ T
2q
1+q (1 + log(ϵT ))

q
1+q

⌈
1

ϵ

⌉⌈
1

1− 2ϵ

⌉ ∑
Cm∈CG:|Cm|>1

|Cm|Υν

(⌈
(1− 2ϵ)

T

|Cm|

⌉
, q

) 1
1+q

.

Lemma 15 (Bound on Estimator’s Cumulative Bias for General Matrices) Let
{It}t=1 be a sequence of actions. For every action i ∈ [k], every round t ∈ [T ], let window
width hi,t = ⌊ϵNi,t−1⌋. Let G ∈ {0, 1}k×k, then for every q ∈ [0, 1], we have

T∑
t=1

min
{
1, µ̃

hIt ,t

It
(t)− µIt(ÑIt,t)

}
≤

≤ 2k + k̄1T
q

⌈
1

1− 2ϵ

⌉
Υν

(⌈
(1− 2ϵ)

T

k̄1

⌉
, q

)
+

+ T
2q
1+q (1 + log(ϵT ))

q
1+q

⌈
1

ϵ

⌉⌈
1

1− 2ϵ

⌉
(k − k̄1)Υν

(⌈
(1− 2ϵ)

T

k − k̄1

⌉
, q

) 1
1+q

,

(33)
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where k̄1 ≤ k is the number of arms having degree of 1, i.e., k̄1 := |{i ∈ [k] : deg(i) = 1}|.

Proof The proof follows similar steps as Lemma 14. We decided to split arms based on
their degree; in particular, we bound separately the bias due to arms having a degree of 1
(i.e., they are only triggered by themselves).

T∑
t=1

min
{
1, µ̃

hIt,t

It
(t)− µIt(ÑIt,t)

}

≤ 2k +
∑
i∈[k]

deg−(i)=1

Ni,T∑
j=3

min
{
1, µ̃

hi,ti,j

i (ti,j)− µi(j)
}

︸ ︷︷ ︸
(a)

+
∑
i∈[k]

deg−(i)>1

Ni,T∑
j=3

min
{
1, µ̃

hi,ti,j

i (ti,j)− µi(t
I
i,j)
}

︸ ︷︷ ︸
(b)

.

As a consequence of Definition 1, we observe that:

tIi,Ni,t
− tI,Ui,Ni,t

=
t∑

j=1

(GIt,i − ḠU
It,i) ≤ 0.

As a consequence of this, we have that, for every i ∈ [k] and for every t ∈ [T ]:

Ñi,t ≤ ÑU
i,t, (34)

where ÑU
i,t := e⊤i (Ḡ

U )⊤Nt. Then, following similar steps as in (Metelli et al., 2022), we can
bound the two components separately and make the dependency on the upper block-diagonal
matrix explicit.

Theorem 7 (R-□-UCB Regret in Rising GTBs with General Matrices) Let (ν,G, T )
be an instance of Rising GTB, where G ∈ {0, 1}k×k. Let hi,t = ⌊ϵNi,t−1⌋ for ϵ ∈ (0, 1/2)
and δt = t−α for α > 2. Then, R-□-UCB suffers an expected regret bounded by:

Rν,G,T (R-□-UCB)≤Õ

(
min
q∈[0,1]

{
(σT )

2
3 +T qk̄1Υν

(
T

k̄1
, q

)
+T

2q
1+q

∑
CU

m

|CU
m|Υν

(
T

|CU
m|

, q

) 1
1+q

})
,

where ḠU is the minimal super-matrix of G.

Proof The proof follows similar steps of the proof of Theorem 6, but uses Lemma 15 (instead
of Lemma 14) to bound cumulative estimator’s bias.

As in Theorem 6, we decompose the regret in two components and instead make use
of Lemma 15 and Lemma 18 to bound the summations over t of the two components,
respectively. Putting all together, we obtain:

Rν,G,T (R-□-UCB) ≤ 1 +
2k

α− 2
+ 5k +

k

ϵ
+

3k

ϵ
(2σT )

2
3 (10α log T )

1
3 +
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+ 2k + k̄1T
q

⌈
1

1− 2ϵ

⌉
Υν

(⌈
(1− 2ϵ)

T

k̄1

⌉
, q

)
+

+ T
2q
1+q (1 + log(ϵT ))

q
1+q

⌈
1

ϵ

⌉⌈
1

1− 2ϵ

⌉
·
∑

CU
m∈C

ḠU

|CU
m|>1

|Cm|Υν

(⌈
(1− 2ϵ)

T

|Cm|

⌉
, q

) 1
1+q

.

B.1 Technical Lemmas

Lemma 16 (Lemma C.1 of Metelli et al. 2022) Let M ≥ 3, and let f : N → R, and
β ∈ (0, 1). Then it holds that:

M∑
j=3

f(⌊βj⌋) ≤
⌈
1

β

⌉ ⌊βM⌋∑
l=⌊3β⌋

f(l).

Lemma 17 (Lemma C.2 of Metelli et al. 2022) Under Assumption 1, it holds that:

max
(Ni,T )i∈[k]

Ni,T≥0,
∑

i∈[k] Ni,T=T

∑
i∈[k]

Ni,T−1∑
l=1

γi(l)
q ≤ kΥν

(⌈
T

k

⌉
, q

)
.

Lemma 5 (Concentration of Estimator, adapted from Metelli et al. 2022) For

every arm i ∈ [k], every round t ∈ [T ], and window width 1 ≤ h ≤
⌊
Ni,t−1

2

⌋
, let:

βh
i (t, δ) := σ(t−Ni,t−1 + h− 1)

√
10 log 1

δ

h3
.

Then, if the window size depends on the number of pulls only hi,t = h(Ni,t−1) and if δt = t−α

for some α > 2, it holds for every round t ∈ [T ] that:

P
(∣∣∣µ̂hi,t

i (t)− µ̃
hi,t

i (t)
∣∣∣ > β

hi,t

i (t, δt)
)
≤ 2t1−α.

Proof Using a Doob’s optional skipping argument (Doob, 1953; Bubeck et al., 2008), and
noting that, at round t, tIi,l is a stopping time for every arm i ∈ [k] and pull number
l ∈ {1, . . . , Ni,t−1} w.r.t. the filtration Fτ−1 = σ(I1, X1, . . . , Iτ−1, Xτ−1, Iτ ), we can proceed
to prove this lemma as in (Metelli et al., 2022) also for GTB.

Lemma 18 (Bound on Estimator’s Variance, Theorem 4.4 of Metelli et al. 2022)
Let (It)t∈[T ] be a sequence of actions such that:∣∣∣µ̂hIt,t

It
(t)− µ̃

hIt,t

It
(t)
∣∣∣ ≤ β

hIt,t

It
(t, t−α), ∀t ∈ [T ], (35)
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where α > 2. For every action i ∈ [k], every round t ∈ [T ], let window width hi,t = ⌊ϵNi,t−1⌋,
then, we have:

T∑
t=1

min
{
1, 2β

hIt,t

It
(t, t−α)

}
≤ k

(
3 +

1

ϵ

)
+

3k

ϵ
(2σT )

2
3 (10α log T )

1
3 . (36)

Appendix C. Proofs on Rotting Bandits

Theorem 8 (Complexity of finding the Optimal Policy in Rotting GTBs) Com-
puting the optimal policy in Rotting GTBs with general matrices G is NP-Hard.

Proof We reduce from a decision problem related to finding independent sets in graphs.
In particular, given a graph (V,E) and M̃ ∈ N, it is NP-Hard to determine if there exists

an independent set of size M̃ (Karp, 1972). In the following, we design an instance of our
problem such that the reward of the optimal policy is at least T if and only if there exists
an independent set of size M̃ = T .

Construction. Given a graph (V,E), we build an instance such that the horizon is T .
Our set of actions can be constructed by assigning an action to every node, i.e., A = {av}v∈V .
We define the matrix G̃ is such that for any v, v′ ∈ V , it holds Gav ,av′ = 1 if (v, v′) ∈ E, and
Gav ,av′ = 0 otherwise. Finally, for each arm av ∈ A, the reward is deterministic and evolves
as µav,t(n) = max{2− n, 0}. We call ν̃ the set of these functions. It is easy to see that the

GTB instance (ν̃, G̃, T ) satisfies Assumption 2.
if. We show that if there exists an independent set I⋆ = {v1, . . . , vT } of size T , then

there exists a policy with a cumulative reward of at least T . Consider the policy π̃ s.t.
π̃(t) = avt . It is easy to see that Ñavt ,t

= 1 for every t ∈ [T ]. Hence, the reward of the policy
π̃ at time t is

µavt
(Ñavt ,t

) = 1.

Thus, J
µ̃,G̃,T

(π̃) = T and the claim is proven.

only if. We show that if there is a policy π̃ s.t. J
µ̃,G̃,T

(π̃) ≥ T , then there exists an
independent set of size T . First, we observe that at any round t the best obtainable reward
is 1. Since, by assumption, there is a policy with a reward of at least T ; then there is a
policy such that at each round t ∈ [T ], the reward is exactly 1.

Let avt be the arm played by the policy at round t ∈ [T ]. Then, consider a round t ∈ [T ].
Since the reward of the arm avt must be 1, it must be the case that µavt

(Ñavt ,t
) = 1 and

Ñavt ,t
= 1. By the definition of G̃ this directly implies that {vt} is not connected to any

vt′ , t
′ < t, and that vt′ ̸= vt for any t′ < t. Hence, {vt}t∈[T ] is an independent set of size T ,

proving the claim.

Lemma 19 Let Gn = (Vn, En) be a graph. Then, either the graph possesses block-diagonal
connectivity and the nodes can be partitioned in M disjoint clique, i.e., V =

⋃M
m=1Cm, or

there exist three nodes v1, v2 and v3 s.t. ev1,v2, ev2,v3 ∈ E and ev1,v3 /∈ E.

Proof We proceed by induction. The statement holds for n ≤ 3. We assume that Gn
is an arbitrary graph satisfying the statement. Then we add one node vn+1 and obtain
Gn+1 = (Vn+1, En+1).
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3

2

1

(a) Graph considered
for both ν and ν′.

T/2 T n

µi(n)

1

2/3
µ2(n)=µ3(n)

µ1(n)

(b) Expected values µi(·) for ν.

T/2 T n

µi(n)

1

2/3
µ2(n)=µ3(n)

µ1(n)

(c) Expected values µi(·) for ν′.

Figure 2: Instances used in the proof of Theorem 11.

If Gn is block-diagonal connected. We list all the possible scenarios:

• If evn+1,i /∈ En+1 for every i ∈ Vn then the node vn+1 is a single-element clique and
the new graph is block-diagonal.

• If evn+1,i ∈ En+1 for every i ∈ Cm, and evn+1,j /∈ En+1 for every j ∈ Vn \Cm, then the
node vn+1 is added to the clique Cm and the new graph is block-diagonal.

• If evn+1,i ∈ En+1 for some i ∈ Cm and evn+1,j /∈ En+1 for some j ∈ Cm, then evn+1,i,
ei,j ∈ E and evn+1,j /∈ E.

• If evn+1,i ∈ En+1 for some i ∈ Cm and evn+1,j ∈ En+1 for some j ∈ Cm′ , then evn+1,i,
evn+1,j ∈ E and ei,j /∈ E.

If there exists three nodes v1, v2 and v3 s.t. ev1,v2, ev2,v3 ∈ E and ev1,v3 /∈ E. There
is no way to connect v1 and v3 by adding a node, thus the statement still holds for Gn+1.

Theorem 11 (Regret Lower Bound for Rotting GTBs with General Matrices)
For every G ∈ {0, 1}k×k that is not block-diagonal, there exists an instance of Rotting GTB
(ν,G, T ) s.t., for every policy π, it holds:

Rν,G,T (π) ≥
T

12
.

Proof Consider the deterministic rotting scenario, i.e., where σ = 0. Consider two instances
ν and ν ′ of 3-armed rotting bandit with graph structure as depicted in Figure 2. The graph
which represents the connection of the arms is represented in Figure 2a. The expected
rewards at the different number of triggers n is depicted in Figure 2b for instance ν and
in Figure 2c for instance ν ′. For both instances, arms 2 and 3 present an expected reward
equal to 2/3 for the first T/2 triggers, and then the expected reward becomes 0. On the
other hand, the two instances differ in the behavior of the expected reward of arm 1. Indeed,
such reward is 1 until we trigger the arm T/2 times for instance ν and for all the T triggers
for instance ν ′.
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We recall that the clairvoyant is aware of both the graph G and the expected values
µi(n), for every i ∈ [k] and n ∈ [T ]. We can easily compute the total reward for the best
policy possible π∗ for instance ν:

Jν,G,T (π
∗) =

2

3
T, (37)

which corresponds to pull arms 2 and 3 only (both for T/2 times), and for instance ν ′:

Jν′,G,T (π
∗) = T, (38)

which corresponds to pull always pull arm 1 for T times. We highlight that optimal policy
π∗ is different for the two instances.

We now need to introduce some additional notations that will be used in the proof. We
call Eν

[
NR

i (n)
]
the expected number of pulls for arm i generating reward (i.e., for which

the expected reward is different from 0) up to time n for instance ν. We now start by
observing that, up to the round T/2, the two instances are exactly the same, so every policy
π will have the same behavior in expectation. Given that, we observe that for both the
instances we have the same reward, equal to:

Jν,G,T/2(π) = Jν′,G,T/2(π) = Eν

[
NR

1

(
T

2

)]
+

2

3
Eν

[
NR

2

(
T

2

)]
+

2

3
Eν

[
NR

3

(
T

2

)]
=

T

2
− 1

3
Eν

[
NR

2

(
T

2

)]
− 1

3
Eν

[
NR

3

(
T

2

)]
,

where the last equality follows from Eν

[
NR

1

(
T
2

)]
+ Eν

[
NR

2

(
T
2

)]
+ Eν

[
NR

3

(
T
2

)]
= T/2.

This result is valid for both ν and ν ′, as the policy will behave in the same way, and so
Eν

[
NR

i

(
T
2

)]
= Eν′

[
NR

i

(
T
2

)]
, for every i ∈ [3], as the policy on the two instances ν and ν ′

are not distinguishable the first T/2 rounds.
We now have to understand what will happen from T/2 to T in the best case possible.

Instance ν We can easily see how for arm 1 we have terminated the pulls which generate
reward, so we have to pull arms 2 and 3. We can now compute the remaining triggers
generating reward for arm 2 in the second half of the rounds:

Eν

[
NR

2 (T )
]
− Eν

[
NR

2

(
T

2

)]
≤ T

2︸︷︷︸
Triggers
initially
available

−Eν

[
NR

2

(
T

2

)]
︸ ︷︷ ︸

Already
used

−
(
T

2
− Eν

[
NR

2

(
T

2

)]
− Eν

[
NR

3

(
T

2

)])
︸ ︷︷ ︸

Triggers used
from arm 1

≤ Eν

[
NR

3

(
T

2

)]
We can do the same reasoning for arm 3 and, for symmetry, we get:

Eν

[
NR

3 (T )
]
− Eν

[
NR

3

(
T

2

)]
≤ Eν

[
NR

2

(
T

2

)]
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We now consider a policy using all these triggers, and we compute the expected cumulative
reward:

Jν,G,T (π) ≤ Jν,G,T/2(π) +
2

3
Eν

[
NR

2

(
T

2

)]
+

2

3
Eν

[
NR

3

(
T

2

)]
≤ T

2
− 1

3
Eν

[
NR

2

(
T

2

)]
− 1

3
Eν

[
NR

3

(
T

2

)]
+

2

3
Eν

[
NR

2

(
T

2

)]
+

2

3
Eν

[
NR

3

(
T

2

)]
≤ T

2
+

1

3
Eν

[
NR

2

(
T

2

)]
+

1

3
Eν

[
NR

3

(
T

2

)]
.

Instance ν ′ Instead, for instance ν ′, we can easily see that the best choice from T/2 to
T is to always pull arm 1 for all the T/2 rounds, receiving a reward of 1 each time. Given
that, we have:

Jν′,G,T (π) ≤ Jν′,G,T/2(π) +
T

2

= T − 1

3
Eν

[
NR

2

(
T

2

)]
− 1

3
Eν

[
NR

3

(
T

2

)]
.

Regret Moving to the regret, we have for instance ν:

Rν,G,T (π) = Jν,G,T (π
∗)− Jν,G,T (π)

≥ 2

3
T − T

2
− 1

3
Eν

[
NR

2

(
T

2

)]
− 1

3
Eν

[
NR

3

(
T

2

)]
≥ T

6
− 1

3
Eν

[
NR

2

(
T

2

)]
− 1

3
Eν

[
NR

3

(
T

2

)]
,

while for instance ν ′:

Rν′,G,T (π) = Jν′,G,T (π
∗)− Jν′,G,T (π)

≥ 1

3
Eν

[
NR

2

(
T

2

)]
+

1

3
Eν

[
NR

3

(
T

2

)]
.

We can now compute a lower bound on the regret:

RT (A) = max
{
Rν,G,T (π), Rν′,G,T (π)

}
≥ 1

2

(
Rν,G,T (π) +Rν′,G,T (π)

)
=

1

2

(
T

6
− 1

3
Eν

[
NR

2

(
T

2

)]
− 1

3
Eν

[
NR

3

(
T

2

)]
+

1

3
Eν

[
NR

2

(
T

2

)]
+

1

3
Eν

[
NR

3

(
T

2

)])
=

T

12
.

This proof holds for the specific graph structure we discussed here. However, by joining this
result with the one of Lemma 19, we can generalize this result for every non-block-diagonal
connectivity matrix.
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Theorem 9 (Optimal Policy in Rotting GTBs with Block-Diagonal CM) For any
instance (ν,G, T ) of Rotting GTBs s.t. G ∈ B

k̃
, the optimal policy π∗

ν,G,T ∈ argmaxπ Jν,G,T (π)
is given by:

π∗
ν,G,T (t) ∈ argmax

j∈[k]
µj(Ñ

∗
j,t), ∀t ∈ [T ],

where Ñ∗
j,t is the number of times arm j has been triggered by the optimal policy up to time

t. Moreover, we have:

J∗
ν,G,T =

∑
Cm∈CG

N∗
Cm,T∑
n=1

max
i∈Cm

µi(n), (7)

where N∗
Cm,T is the number of times the optimal policy pulls an action belonging to clique

Cm before T , i.e., N∗
Cm,T = Ñ∗

i,T , for every i ∈ Cm.

Proof For every Rotting GTB instance, we create an alternative instance which is better,
in terms of total cumulative reward, than the original instance. Then we show that playing
greedy in the original instance yields the same cumulative reward of the optimal policy from
the alternative instance.

For each clique Cm ∈ CG, we substitute the reward function of every arm i ∈ Cm with
µ∗
i (n) = maxi∈Cm µi(n) for every n ∈ [T ]. This way, whenever an action is chosen it is

guaranteed to always yield the same reward as any other possible action inside the same
clique. We create an alternative instance (ν̃, G̃, T ) by collapsing all the actions inside the
same clique into a single meta-action, resulting in a k̃-armed rested rotting bandit problem,
where the set of actions corresponds the set of cliques of the original instance. We use
Proposition 2 of (Heidari et al., 2016) to get that the optimal policy in the alternative
instance is to play, at every round, the action with the highest instantaneous reward. Such
policy achieves a total reward, in the alternative instance, of:

J∗
ν̃,G̃,T

=
∑

Cm∈CG

N∗
Cm,T∑
n=1

max
i∈Cm

µi(n),

We now show that playing the greedy policy in the original instance yields an equal total
cumulative reward. Playing greedily in the original instance we get:

J∗
ν,G,T =

T∑
t=1

max
i∈[k]

µi(Ñ
∗
i,t)

=
∑

CmCG

T∑
t=1

1{I∗t ∈Cm}max
i∈[k]

µi(Ñ
∗
i,t)

=
∑

CmCG

T∑
t=1

1{I∗t ∈Cm} max
i∈Cm

µi(Ñ
∗
i,t)

=
∑

Cm∈CG

N∗
Cm,T∑
n=1

max
i∈Cm

µi(n)
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= J∗
ν̃,G̃,T

≥ Jν,G,T (π) ∀π.

The performance of the optimal policy in the alternative instance is matched by the greedy
policy played in the original instance. The proof is concluded by observing that the optimal
total cumulative reward of the alternative instance cannot be lower than the total reward
of any policy π in the original instance, since the alternative instance has pointwise higher
reward functions for every action.

C.1 Upper Bounding the Regret of RAW-UCB

We start by defining the expectation version of the estimator defined in Equation (8) as
µ̄h
i (t) :=

1
h

∑t−1
s=1 1{It=i ∧ Ni,s>Ni,t−1−h}µi(Ñi,s). Before moving on, we recall the following

result, which also introduces the notion of good event ξαt .

Proposition 20 (Bound on the Probability of Bad Event, Seznec et al. 2020) Let
δt = 2t−α, and

ξαt :=
{
∀i ∈ [k], ∀n ≤ t− 1, ∀h ≤ n, |µ̂h

i (t)− µ̄h
i (t)| ≤ c(h, δt)

}
,

for c(h, δt) :=
√
2σ2 log(2δ−1

t )/h. Then

P
(
ξ̄αt
)
≤ Kt2−α. (39)

Lemma 21 (Overestimation under the Good Event) Under ξαt , if action It is se-
lected by Algorithm 4, for every h ∈ [Ni,t−1] we have:

µ̄h
It ≥ max

i∈[k]
µi(Ñ

π
i,t−1)− 2c(h, δt), (40)

where Ñπ
i,t−1 is the number of triggers of action i provoked by playing with Algorithm 4 up

until time t.

Proof This proof is adapted from the one of Lemma 1 of (Seznec et al., 2020). Let
hmin
i,t ∈ argminh≤Ni,t−1

µ̂h
i (t) + c(h, δt).

Let iπt ∈ argmaxi∈[k] µi(Ñ
π
i,t−1) be the best available action at time t. From the rotting

assumption, we know that:

max
i∈[k]

µi(Ñ
π
i,t−1) = µiπt

(Ñπ
i,t−1) ≤ µ̄1

iπt
(t) ≤ . . . ≤ µ̄

hmin
iπt ,t

iπt
(t).

Under ξαt , we have:

µ̄
hmin
iπt ,t

iπt
(t) ≤ µ̂

hmin
It,t

It
(t) + c(hmin

It,t , δt).

We now use the definition of hmin
It,t

:

µ̂
hmin
It,t

It
(t) + c(hmin

It,t , δt) ≤ µ̂h
It(t) + c(h, δt).
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Again, we use ξαt :

µ̂h
It(t) + c(h, δt) ≤ µ̄h

It(t) + 2c(h, δt).

Putting all together, we obtain the statement.

Theorem 10 (RAW-UCB Regret in Rotting GTBs with Block-Diagonal CM) Let
(ν,G, T ) be an instance of the Rotting GTBs, where G ∈ B

k̃
. Let δt = t−α for α ≥ 5. Then,

RAW-UCB suffers an expected regret bounded as:

Rν,G,T (RAW-UCB) ≤ Õ

(
k
(
σ
√
log T + Vν(T )

)
︸ ︷︷ ︸
(A) Variance Contribution

+L
∑

Cm∈CG

|Cm|2+ kL+ σ
∑

Cm∈CG

(√
|Cm|
k

T

)
︸ ︷︷ ︸

(B) Rested Contribution

+

+ (ασ)
2
3

∑
Cm∈CG

(
V π
T

|Cm|
k

T 2

) 1
3

︸ ︷︷ ︸
(C) Restless Contribution

)
.

Proof Let us proceed to decompose the regret:

Rν,G,T (RAW-UCB) =

T∑
t=1

(
µi∗t

(Ñ∗
i∗t ,t

)− µIt(Ñ
π
It,t)
)

=
T∑
t=1

(
µi∗t

(Ñ∗
i∗t ,t

)− µIt(Ñ
π
It,t)± max

i∈CIt

µi(Ñ
π
It,t)

)

=
T∑
t=1

(µi∗t
(Ñ∗

i∗t ,t
)− max

i∈CIt

µi(Ñ
π
It,t))︸ ︷︷ ︸

(b)

+
T∑
t=1

(max
i∈CIt

µi(Ñ
π
It,t)− µIt(Ñ

π
It,t))︸ ︷︷ ︸

(c)

Before bounding the two terms, we observe the following:

T∑
t=1

max
i∈CIt

µi(Ñ
π
It,t) =

∑
Cm∈CG

Nπ
Cm,T∑
n=1

max
i∈C

µi(n). (41)

Equation (41) is a consequence of Equation (7) (Theorem 9), when applied to the restless
bandit problems obtained by each clique when considered alone. We have for (c):

(c) =

T∑
t=1

max
i∈CIt

(
µi(Ñ

π
It,t)− µIt(Ñ

π
It,t)
)

Eq. (41)
=

∑
Cm∈CG

Nπ
Cm,T∑
n=1

(
max
i∈C

µi(n)− µItC,n
(n)

)
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(♢)
≤ 6kVν(T ) + 4(8ασ)

2
3

∑
Cm∈CG

(
Vν(T )|Cm|(Nπ

Cm,T )
2 log T

) 1
3+

+ 2(2
√
2ασ)

1
3

∑
Cm∈CG

(
Vν(T )

2|Cm|2Nπ
Cm,T

√
log T

) 1
3

The last inequality is obtained by observing that, fixing the number of times a pull is selected,
we have a nested restless bandit problem having as the time horizon the number of times
the clique is pulled Nπ

Cm,T . RAW-UCB plays greedily in each clique independently. Thus,
when an action belonging to clique C is selected, it is the same action that an instance
of RAW-UCB would have played in a restless rotting bandit composed only by the actions
belonging to C.14 In the step marked with (♢), this equivalence allows us to bound (c) with
the summation of regret bounds of the algorithm for smaller restless bandits defined for the
cliques, by using Theorem 1 from (Seznec et al., 2020) and bounding logNπ

Cm,T ≤ log T and
Vν(N

π
Cm,T ) ≤ Vν(T ) for every Cm ∈ CG. The last term is dominated by the other two in

every quantity, and is thus omitted in the final bound.

We now focus on (b):

(b) =
T∑
t=1

(µi∗t
(Ñ∗

i∗t ,t
)− max

i∈CIt

µi(Ñ
π
It,t))

(40)
=

∑
Cm∈CG

N∗
Cm,T∑
n=1

max
i∈C

µi(n)−
T∑
t=1

max
i∈CIt

µi(Ñ
π
It,t)

(41)
=

∑
Cm∈CG

N∗
Cm,T∑
n=1

max
i∈C

µi(n)−
∑

Cm∈CG

Nπ
Cm,T∑
n=1

max
i∈C

µi(n)

The term (b) only depends on the difference between the allocation of pulls among the
cliques between the optimal policy and the algorithm’s policy. Thus, it makes sense to split
the cliques into two sets, namely OP and UP: the first will contain the OverPulled cliques,
the second the UnderPulled cliques, which are cliques pulled by RAW-UCB more than the
optimal policy and the cliques pulled less, respectively.

∑
Cm∈CG

N∗
Cm,T∑
n=1

max
i∈C

µi(n)−
∑

Cm∈CG

Nπ
Cm,T∑
n=1

max
i∈C

µi(n)

=
∑

Cm∈UP

N∗
Cm,T∑

n=Nπ
Cm,T+1

max
i∈C

µi(n)−
∑

Cm∈OP

Nπ
Cm,T∑

n=N∗
Cm,T+1

max
i∈C

µi(n)

We now introduce the auxiliary quantity µ+
T (π) := maxi∈[k] µi(Ñ

π
i,T ). We also observe that

the two terms in the RHS have the same number of addends, since the number of overpulls

14. The UCB is different since the clique-specific instance of RAW-UCB would have used internal times instead
of the external time t, however, the order is preserved and the decision is the same.
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must be equal to the number of underpulls. Finally, we define hC,T as the number of overpulls
of clique C.

∑
Cm∈UP

N∗
Cm,T−1∑

n=Nπ
Cm,T

max
i∈C

µi(n)−
∑

Cm∈OP

Nπ
Cm,T−1∑

n=N∗
Cm,T

max
i∈C

µi(n)

≤
∑

Cm∈UP

N∗
Cm,T−1∑

n=Nπ
Cm,T

µ+
T (π)−

∑
Cm∈OP

Nπ
Cm,T−1∑

n=N∗
Cm,T

max
i∈C

µi(n)

=
∑

Cm∈OP

Nπ
Cm,T−1∑

n=N∗
Cm,T

(µ+
T (π)−max

i∈C
µi(n))

=
∑

Cm∈OP

hC,T−1∑
h=0

(µ+
T (π)−max

i∈C
µi(N

∗
Cm,T + h)).

We can now decompose the last summation by the means of events {ξαt }t:

(bξ) ≤
∑

Cm∈OP

hC,T−1∑
h=0

1{ξαtπ
C,N∗

Cm,T
+h
}(µ+

T (π)−max
i∈C

µi(N
∗
Cm,T + h))

≤
∑

Cm∈OPξ

hξ
C,T∑
h=0

(µ+
T (π)−max

i∈C
µi(N

∗
Cm,T + h)),

where hξC,T := max{h ≤ hC,T : ξtπ
C,N∗

Cm,T
+h
} is the largest number of overpulls a clique

undergoes before time tπC,N∗
Cm,T+h ≤ T under the events ξαt , and OPξ := {Cm ∈ OP : hξC,T ≥

1}. We call, for short, t̃C,h the time at which clique C is overpulled for the h-th time i.e.,
tπC,N∗

Cm,T+h, and observe that

hξ
C,T∑
h=0

max
i∈C

µi(N
∗
Cm,T + h)

=

hξ
C,T∑
h=0

1{h ̸= hC,tj,Nπ
j,T
∀j ∈ [k]}max

i∈C
µi(N

∗
Cm,T + h) +

∑
j∈C

max
i∈C

µi(N
∗
Cm,T + hC,tj,Nπ

j,T
)

=
∑
i∈C

hξ
i,T−1∑
h=0

µi(N
π
C,t̃C,h

) +
∑
j∈C

max
i∈C

µi(Ñ
π
j,tj,Nπ

j,T

)

(8)
=
∑
i∈C

(hξi,T − 1)µ̄
hξ
i,T−1

i (t̃
C,hξ

i,T
) +

∑
j∈C

max
i∈C

µi(Ñ
π
j,tj,Nπ

j,T

)

(40)

≥
∑
i∈C

(hξi,T − 1)

(
max
i∈[k]

µi(Ñ
π
i,T )− 2c(hξi,T − 1, δt̃

C,h
ξ
i,T

)

)
+
∑
j∈C

max
i∈C

µi(Ñ
π
j,tj,Nπ

j,T

)
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≥ (hξC,T − |Cm|)max
i∈[k]

µi(Ñ
π
i,T )− 2

∑
i∈C

(hξi,T − 1)c(hξi,T − 1, δT ) +
∑
j∈C

max
i∈C

µi(Ñ
π
j,tj,Nπ

j,T

)

= (hξC,T − |Cm|)µ+
T (π)− 2

∑
i∈C

(hξi,T − 1)c(hξi,T − 1, δT ) +
∑
j∈C

max
i∈C

µi(Ñ
π
j,tj,Nπ

j,T

).

Plugging this observation into the previous, we get:

(bξ) ≤
∑

Cm∈OPξ

|Cm|µ+
T (π)−

∑
j∈C

max
i∈C

µi(Ñ
π
j,tj,Nπ

j,T

) + 2
∑
i∈C

(hξi,T − 1)c(hξi,T − 1, δT )


=

∑
Cm∈OPξ

(∑
i∈C

(µ+
T (π)−max

j∈C
µj(Ñ

π
i,ti,Nπ

i,T

)) + 2
∑
i∈C

(hξi,T − 1)c(hξi,T − 1, δT )

)
(⋆)

≤ 2kσ
√

log T + L
∑

Cm∈CG

|Cm|2 + 2
∑

Cm∈OPξ

(∑
i∈C

(hξi,T − 1)c(hξi,T − 1, δT )

)

≤ 2kσ
√
log T + L

∑
Cm∈CG

|Cm|2 + 2
∑

Cm∈OPξ

(
σ
∑
i∈C

√
(hξi,T − 1) log T

)

≤ 2kσ
√
log T + L

∑
Cm∈CG

|Cm|2 + 2
∑

Cm∈OP

(
σ
√
log T

∑
i∈C

√
(hi,T − 1)

)
(J)

≤ 2kσ
√
log T + L

∑
Cm∈CG

|Cm|2 + 2
∑

Cm∈CG

(
σ
√
|Cm|Nπ

Cm,T log T
)
.

The step marked with (⋆) is justified by the following considerations. Let i ∈ C, we shorten
the notation for the time at which clique C is triggered for the (Ñπ

i,ti,Nπ
i,T

−m)-th time as

ti,−m := t
C,Ñπ

i,ti,Nπ
i,T

−m
. In other words, after this time the clique C is only chosen m times

before the action i ∈ C is pulled for the last time. Consider the |Cm| times the clique C
is chosen before pulling i for the last time: then, due to the pigeonhole principle, at least
one action belonging to the clique should appear at least two times before the last pull.
Without loss of generality, we assume that only one action appears exactly two times, and
call the first appearance time ti,−m and the second ti,−m′ (note that m′ ≤ m ≤ |Cm|). We
now observe that:∑
i∈C

(
µ+
T (π)−max

j∈C
µj(Ñ

π
i,ti,Nπ

i,T

)

)
=
∑
i∈C

(
µ+
T (π)−max

j∈C

{
µj(Ñ

π
i,ti,Nπ

i,T

)± µj(Ñ
π
i,ti,Nπ

i,T

−m)

})
≤
∑
i∈C

(
µ+
T (π)−max

j∈C
µj(Ñ

π
i,ti,Nπ

i,T

−m) +mL

)
≤
∑
i∈C

(
µ+
T (π)−max

j∈C
µj(Ñ

π
i,ti,Nπ

i,T

−m)

)
+ |Cm|2L,

We can now prove the step (⋆) by bounding∑
i∈C

max
j∈C

µj(Ñ
π
i,ti,Nπ

i,T

−m) ≥
∑
i∈C

µIti,−m
(Ñπ

i,ti,Nπ
i,T

−m)
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=
∑
i∈C

µ̄1
Iti,−m

(ti,−m′)

(40)

≥
∑
i∈C

(
max
j∈[k]

µj(Ñ
π
j,ti,−m′ )− 2c(1, δti,−m′ )

)
(†)
≥
∑
i∈C

(
µ+
T (π)− 2c(1, δT )

)
,

where (†) is a consequence of Ñπ
j,ti,−m′ ≤ Ñπ

j,T for every j ∈ [k].

Finally, in the step marked with (J) we used Jensen inequality to find the worst
allocation of overpull among the actions in the same clique, which is the uniform one, i.e.,
hi,T ≤ Nπ

Cm,T /|Cm|.
To conclude the proof, we need to find out what happens under ξ̄t

α
:

(bξ̄) ≤
∑

Cm∈OP

hC,T−1∑
h=0

1{ξ̄αtπ
C,N∗

Cm,T
+h
}(µ+

T (π)−max
i∈C

µi(N
∗
Cm,T + h))

=
∑

Cm∈OP

hC,T−1∑
h=0

T∑
t=1

1{ξ̄αtπ
C,N∗

Cm,T
+h
∧ tπC,N∗

Cm,T+h = t}(µ+
T (π)−max

i∈C
µi(N

∗
Cm,T + h))

(∗)
≤

T∑
t=1

1{ξ̄αtπ
C,N∗

Cm,T
+h
}Lt

 ∑
Cm∈OP

hC,T−1∑
h=0

1{tπC,N∗
Cm,T+h = t}


≤

T∑
t=1

1{ξ̄αtπ
C,N∗

Cm,T
+h
}Lt.

In the step marked with (⋆), we use the fact that at time t overpulling a clique can yield at
most Lt regret. The last step is a consequence that for each round t we can have at most 1
overpull. We conclude the bound by using Proposition 20:

E[(bξ̄)] ≤
T∑
t=1

P
(
ξ̄αt
)
Lt

(39)

≤
T∑
t=1

kLt3−α
(α≥5)

≤ 2kL.

We then observe that, given an arbitrary concave function g, we have∑
Cm∈CG

g(|Cm|Nπ
Cm,T ) ≤

∑
Cm∈CG

g

(
|Cm|
k

T

)
.

This can be applied to component (b) with g(·) =
√
· and to component (c) with g(·) = (·)

2
3 .

The statement of the theorem can be obtained by summing up all the components, i.e.,

E[RT (π)] ≤ E
[
(bξ) + (bξ̄) + (c)

]
.
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