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Abstract
According to the main international reports, more pervasive
industrial and business-process automation, thanks to ma-
chine learning and advanced analytic tools, will unlock more
than 14 trillion USD worldwide annually by 2030. In the spe-
cific case of pricing problems—which constitute the class of
problems we investigate in this paper—, the estimated un-
locked value will be about 0.5 trillion USD per year. In par-
ticular, this paper focuses on pricing in e-commerce when the
objective function is profit maximization and only transaction
data are available. This setting is one of the most common in
real-world applications. Our work aims to find a pricing strat-
egy that allows defining optimal prices at different volume
thresholds to serve different classes of users. Furthermore, we
face the major challenge, common in real-world settings, of
dealing with limited data available. We design a two-phase
online learning algorithm, namely PVD-B, capable of ex-
ploiting the data incrementally in an online fashion. The algo-
rithm first estimates the demand curve and retrieves the opti-
mal average price, and subsequently it offers discounts to dif-
ferentiate the prices for each volume threshold. We ran a real-
world 4-month-long A/B testing experiment in collaboration
with an Italian e-commerce company, in which our algorithm
PVD-B—corresponding to A configuration—has been com-
pared with human pricing specialists—corresponding to B
configuration. At the end of the experiment, our algorithm
produced a total turnover of about 300 KEuros, outperform-
ing the B configuration performance by about 55%. The Ital-
ian company we collaborated with decided to adopt our algo-
rithm for more than 1,200 products since January 2022.

Introduction
Most international economic forecasts agree that nearly
50% of the annual value unlocked by the adoption of Ar-
tificial Intelligence (AI) from 2030 on will be in market-
ing&sales (Chui et al. 2018). Examples of activities in which
AI tools can play a central role for marketing&sales include
attracting and acquiring new customers, suggesting and rec-
ommending products, and optimizing customers’ retention
and loyalty. In particular, AI can effectively automate these
processes so as to increase their efficiency dramatically.

This paper focuses on pricing for e-commerce when, as
it is usual, the objective is profit maximization and only
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transaction data are available. In particular, we focus on
settings in which an e-commerce website sells goods other
than luxury, Veblen, and Giffen. Thus, we can assume, with-
out loss of generality, that the demand curve is monotoni-
cally decreasing in price. Furthermore, we assume that the e-
commerce website works with different classes of customers
both in B2B and B2C scenarios. However, at the stage the
price of the product is chosen and displayed to a user, the
seller does not know whether the user comes from the for-
mer or latter scenario. Usually, volume discount is used to
deal with multiple classes of users when it is not possible to
distinguish the classes at the price formation stage. In par-
ticular, the rationale is to propose different prices for dif-
ferent volume thresholds thanks to the introduction of dis-
counts. This approach allows showing the same thresholds
and prices to all incoming users and, at the same time, it
introduces price discrimination to provide a different pric-
ing strategy for different classes of users. To the best of our
knowledge, even if the problem of learning the price that
maximizes the seller’s revenue has been extensively stud-
ied in the economic (Klenow and Malin 2010), game the-
ory (Kopalle and Shumsky 2010) and learning (Den Boer
2015) fields, no dynamic pricing algorithm in the literature
deals with volume discounts in a data-driven way.

Original Contribution In this work, we design an online-
learning pricing algorithm, namely the Pricing with Volume
Discounts Bandit (PVD-B) algorithm. We face the problem
of assigning different prices to different volume thresholds
using transaction data (coming from historical purchases
and during the operational life of the e-commerce website).
Given the complex dynamics of the problem, we decompose
the algorithm into two phases: an optimal average price es-
timation and, based on the above estimation, a price adapta-
tion method to provide different prices for the given volume
discount thresholds. The adoption of tools from online learn-
ing guarantees convergence to optimal prices.

In collaboration with an Italian e-commerce website, we
ran a real-world 4-month-long A/B testing experiment over
a set of ≈ 300 products, in which our algorithm PVD-B—
corresponding to A configuration—has been compared with
human pricing specialists—corresponding to B configura-
tion. At the beginning of the test, the available data con-
cerned the purchases occurred in the previous 2 years. At
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the end of the experiment, the total turnover of A configu-
ration was more than 300 KEuro and our algorithm PVD-B
performed better than the B configuration in terms of the ob-
jective function (i.e., total profit) for about 55%. The com-
pany we collaborated with decided to adopt our algorithm
for more than 1,200 products since January 2022.

Related Works
A comprehensive analysis of the dynamic pricing literature
is provided in Narahari et al. (2005); Bertsimas and Perakis
(2006); Den Boer (2015). In particular, Multi-Armed Ban-
dits (MAB) techniques have been extensively employed for
dynamic pricing when the available information concerned
the interactions between the e-commerce website and cus-
tomers.

Rothschild (1974) presents one of the seminal works on
the adoption of MAB algorithms for dynamic pricing. This
algorithm has been subsequently extended in several direc-
tions to capture the characteristics of different pricing set-
tings. Kleinberg and Leighton (2003) study the problem of
dealing with continuous-demand functions and proposes a
discretization of the price values to provide theoretical guar-
antees on the regret of the algorithm. This approach suf-
fers from the drawback that the reward is assumed to have
a unique maximum in the price. Such an assumption is
hard to be verified in practice. Instead, Trovò et al. (2015,
2018) relaxed this assumption, assuming that the demand
function is monotonically decreasing and exploiting this as-
sumption in the learning algorithm to provide uncertainty
bounds tighter than those of classical frequentist MAB algo-
rithms. However, the model formulation explicitly imposes
neither monotonicity nor weak monotonicity on the esti-
mated demand functions, so decisions that violate business
logic can be allowed during the learning process. The au-
thors show how the monotonicity assumption does not im-
prove the asymptotic bound of regret provided by the MAB
theory. On the other hand, exploiting monotonicity allows
for an empirical improvement in performance (Mussi et al.
2022). The same argument also holds for the work proposed
by Misra, Schwartz, and Abernethy (2019), where the mono-
tonicity property of the demand function is used to ensure
faster convergence. However, monotonicity is not forced as
a model-specific feature. Besbes and Zeevi (2015) show that
linear models are a suitable and efficient tool for modeling
a demand function. In their work, downward monotonicity
is forced on a model-wise level, but it is only analyzed in a
stationary environment. Other works that adopt a parametric
formulation of the demand function are by Besbes and Zeevi
(2009); Broder and Rusmevichientong (2012). These works
assume stationary customer behavior. Bauer and Jannach
(2018); Cope (2007) are two of the main works on Bayesian
inference applied to dynamic pricing. They both fail to
impose monotonic constraints on the model. Interestingly,
Bauer and Jannach (2018) take into account non-stationary
features (e.g., competitors’ prices). Araman and Caldentey
(2009) use a Bayesian approach to dynamic pricing using
a prior belief on the parameters to capture market-related
information and force the model to be monotonic. Wang,
Chen, and Simchi-Levi (2021) investigates non-parametric
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Figure 1: Units per basket and basket values for different
classes of users.

models for demand function estimation. In this case, the au-
thors assume that the demand function is smooth. Finally,
Nambiar, Simchi-Levi, and Wang (2019) propose a model to
deal with both the non-stationarity data and the model mis-
specification. However, the required contextual knowledge
at a product-wise level is not usually available in practice.

To the best of our knowledge, the literature lacks a data-
driven methodology for finding an optimal volume discount
pricing schedule to maximize retailers’ profits and revenues
in a B2C environment. The works from Hilmola (2021); Ru-
bin and Benton (2003) focus on the Economic Order Quan-
tity (EOQ) model that requires demand size over an annual
budget and stock size. Sadrian and Yoon (1992) relax the
EOQ hypothesis and provide a rational and straightforward
pricing strategy that forces a lower bound on the company’s
expected profit by calculating volume thresholds and cor-
responding discounts afterward. The authors show the im-
portance of volume discounts when increasing higher-priced
products sales.

Problem Formulation
We study the scenario in which an e-commerce website sells
non-perishable products with unlimited availability. The as-
sumption of independence among the products allows us to
focus singularly on every product. The extension to the case
with a set of products is straightforward.

Commonly, the behavior of the users purchasing items
from the e-commerce website is fragmented into multiple
classes. For instance, Figure 1 provides the shopping bas-
kets cardinality (in terms of units and economic value) for
the e-commerce under analysis in this work, distinct classes
of users: privates and businesses. The figure highlights how
the privates purchase smaller amounts of products while
the business is transacting with larger amounts. This fact
suggests that an optimal seller strategy may include differ-
ent pricing for the two. However, the user classes are not
disclosed until payment is made, and, therefore, a pricing
scheme that explicitly uses such a feature is not a viable op-
tion. In this work, we circumvent the issue of lack of cus-
tomer information by using a discount threshold scheme that
differentiates the per-unit price of the items by using the
number of items purchased in a single transaction as a proxy
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Figure 2: Effect on the basket value given a volume dis-
counts scheme.

to distinguish the two classes.12 In addition, further benefits
of such a pricing scheme have been shown in the economic
literature, e.g., in Monahan (1984). Indeed, this model has
been shown to anticipate buyer behavior and increase aver-
age order size, allowing the retailer to access the supplier’s
rebate on large restocks, reduce processing costs, and antic-
ipate cash flows through the fiscal year.

Formally, for a given time t, let us define a vector of vol-
ume thresholds ωt := [ω1t, . . . , ωηt] ∈ Nη , with ωit > ωht,
for each i > h and ω1t = 1. The corresponding price vector
will be pt := [p1t, . . . , pηt] ∈ Pη , with p1t > . . . > pηt >
0. P is the set of feasible prices, and η ∈ N is the number
of thresholds. The i-th element pit of pt denotes the price
proposed for each product when a user wishes to purchase
a number of them in {ωi, . . . , ωi+1 − 1}.3 Figure 2 exem-
plifies the mechanism of the thresholded volume discounts
when η = 3. The seller’s objective is to maximize the per-
round profit, defined as:

Rt(pt,ωt) :=

η∑
i=1

(pit − c) · vi(pt,ωt, t), (1)

where c ∈ R+ is the unit cost of an item (assumed constant)
and vi(pt,ωt, t) ∈ N is the number of items sold at time
t and at price pit, when the purchase consists of a number
of item in {ωi, . . . , ωi+1 − 1} and the overall seller strategy
consists of prices pt and thresholds ωt.4

However, in a real-world scenario, the functions
{vi(·, ·, ·)}i=1:η are unknown to the seller and, therefore,
need to be estimated using the transactions collected over

1Notice that for the sake of presentation, the example presented
two classes, but multiple (> 2) behaviors may exist, requiring mul-
tiple prices and thresholds.

2We remark that all the different prices (and related quantity
thresholds) are displayed to any customer visiting the product web
page.

3For instance, if ωt = [1, 3, 5] and pt = [6, 5, 4], a customer
purchasing 2 units will pay 2 · 6 = 12, and a customer purchasing
4 units will pay them 4 · 5 = 20.

4Let us remark that this formulation can be extended in a
straightforward way if the seller’s goal also concerns the turnover,
i.e., by defining Rt(pt,ωt) as a convex combination of turnover
and per-round profit.

time. Notice that the volumes vi(pt,ωt, t) for the i-th vol-
ume interval also depend on the choices of the other prices
and thresholds, as users might be more prone to purchase
more items if there is a significant difference in price than
buying fewer products in a single round. In this way, the
problem can naturally be cast as a Multi-Armed Bandit
(MAB) problem (see, e.g., Lattimore and Szepesvári (2020)
for a comprehensive review of MAB methods) where the
goal is to properly balance the acquisition of information on
the functions vi(·, ·, ·), while maximizing the cumulative re-
ward, a.k.a. exploration/exploitation dilemma. Formally, in
a MAB problem, we are given a set of available options
(a.k.a. arms), and we choose an arm at each time t. In our
case, the arms are all the possible prices pt and thresholds
ωt, and the goal is to maximize the reward (in our setting
profit) over a time horizon of T round. A policy U is an al-
gorithm that returns at each time t a pair (pt,ωt) based on
the information, i.e., volumes ṽit and corresponding prices
pit, we collected in the previous t − 1 rounds. A policy is
evaluated in terms of average total reward, i.e., our goal is
to design policies that maximize:

RT (U) :=

T∑
t=1

η∑
i=1

(pit − c) · vi(pt,ωt, t). (2)

It is common in the MAB literature to use regret instead of
reward as a performance metric. However, the minimization
of the former corresponds to the maximization of the latter;
therefore, our goal is the standard in MAB settings. Here, the
total reward has been selected as a performance metric since
it does not require knowledge of the optimum price strategy,
which is unknown in the real world.

Algorithm
The problem presented before is computationally heavy (i.e.,
exponential in the number of thresholds η) and cannot be
addressed effectively in the presence of scarce data. Indeed,
estimating the volume functions vi(pt,ωt, t), each of which
has 2η + 1 input parameters, would take a long time due to
the requirement of collecting a large amount of transaction
data. In what follows, we approximate the original problem
in two different directions to allow learning the volume func-
tions in a short time.

We assume that the i-th volume function depends only
on the price pit selected for the i-th interval and on time
t, or, formally, vi(pt,ωt, t) = vi(pit, t). Let us define the
function of the total volumes provided by a pricing strategy
(pt,ωt) as:

v̄(p̄t, t) :=

η∑
i=1

vi(pit, t), (3)

where p̄t is a weighted average value of the prices vector pt,
formally:

p̄t =

η∑
i=1

αit · pit, (4)

where αi ∈ [0, 1], ∀i ∈ {1, . . . , η} must be estimated
guaranteeing that on average a threshold pricing strategy
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Figure 3: General overview of the PVD-B algorithm.

{ωit, pit}ηi=1 yields a reward greater than or equal to the the-
oretical one formulated as follows:

R̄t(p̄t) := (p̄t − c) · v̄(p̄t, t). (5)

Thanks to the previous definitions, we can reformulate the
optimization problem into two consecutive steps:
• Finding a single optimal price p∗t that maximizes the rev-

enue provided by the total volume function defined as
R∗

t (p
∗
t ) := (p∗t − c) · v(p∗t , t);

• Given p∗t , find a pricing strategy (p∗
t ,ω

∗
t ) whose

weighted average (see Equation 4) to the optimal price
p∗t .

Notice that the second step allows the algorithm to use all the
data available for estimating the function v(·, ·), instead of
partitioning them into η disjoint sets and independently esti-
mating the vi(·, ·) functions. This allows us to speed up the
learning process. In what follows, we detail the two phases
of the PVD-Balgorithm, which corresponds to the solution
of the above problem, i.e., the Optimal Price Estimation and
Volume Discounts Learning phases. The overall procedure
is depicted in Figure 3. More specifically, the former phase
aims to estimate the optimal price p∗t for the total volumes
relying on the transaction data. Instead, the latter phase com-
bines the previous estimate of the optimal price p∗t with the
parameters extracted from the transaction data to compute
the optimal thresholds ω∗

t and the pricing strategy p∗
t .

Optimal Price Estimation As a first step, we estimate
the optimal average price p∗t . The algorithm takes as input
the records of past orders, i.e., tuples (p̃it, ṽit, t) with the
price, volume and time of each user purchase occurred in
the past time instants. For each time t, it computes the tu-
ple (p̄t, v̄t, t), where the average price p̄t and the total vol-
ume v̄t is computed as described in Equations (4) and (3),
respectively, relying on the above-mentioned collected data.

These data are used to compute an estimate v̂(·, ·) of
the total volume function v(·, ·). The PVD-B algorithm re-
sorts to a Bayesian Linear Regression (BLR, Tipping 2001)

model to approximate the function v(·, ·). Formally, the es-
timates of the total volume for price p at time τ is equal to:

v̂(p, τ) =
U∑

u=1

θuϕu(p) +
D∑

d=1

θdϕd(τ), (6)

where ϕ1(p), . . . , ϕU (p) are the basis functions constructed
over the price p having as prior a Lognormal distribution and
ϕ1(τ), . . . ϕD(τ) are the basis functions constructed over the
time τ having as prior a Gaussian distribution. Two remarks
are necessary. First, the basis ϕd(·) has been introduced to
consider the seasonality that affects the selling process of
the e-commerce website. Second, the choice of Lognormal
prior for the price basis ϕu(·) forces such distributions to be
non-negative, which in turn induces the monotonicity of the
approximating function w.r.t. the price p (see Wilson et al.
(2020) for more details). As discussed before, this property
is also commonly reflected by real demand functions and
allows for fast learning of such curves.

The output of the BLR regression model provides a dis-
tribution v̂(p, τ) for each p, allowing the use of MAB algo-
rithms and, in particular, the use of a Thompson Sampling
(TS)-like (Kaufmann, Korda, and Munos 2012; Agrawal and
Goyal 2012) approach, as a strategy to find a value for the
optimal price p∗τ balancing exploration and exploitation. The
corresponding procedure is summarized in Figure 4. More
specifically, from the distribution v̂(·, τ) (Left, represented
as expected values and uncertainty bounds), we sample a
function v̂TS(·, τ) (Center, represented in green), and, fi-
nally, we perform the optimization (Right) of the profit as
follows:

p∗τ ∈ argmax
p∈P

(p− c) · v̂TS(p, τ). (7)

Volume Discounts Learning Let η be the number of vol-
ume thresholds to show to customers, along with the corre-
sponding prices.5 Let βz , with z ∈ N, be the proportion of

5Here, we assume the e-commerce experts provide this value. If
not provided, clustering techniques over historical data can be used
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baskets containing the product with a volume of z. The aver-
age volume for the product in each basket is V̄ =

∑∞
i=1 βi·i.

Given the threshold ωk, the total proportion of baskets in-
side that range is given by:

β̄k =

ωk+1−1∑
i=ωk

βi. (8)

The average volume of products for the baskets in a given
threshold ωk is consequently defined as:

V̄k =

∑ωk+1−1
i=ωk

βi · i∑ωk+1−1
i=ωk

βi

. (9)

Suppose a customer needs N units of the given product.
This need can be fulfilled by dividing his/her order across
any number of time steps, i.e., performing a purchase of
units (or a volume) in a range {ωk, . . . , ωk+1 − 1} for a
specific k and repeating such a purchase until the required
amount of units is reached. After the customer bought the
product, he/she has a probability γ of returning to the same
retailer buying another batch of the same size. This kind
of modeling of the user’s behavior is reflecting accurately
those customers buying goods with a short lifespan and, in
general, the ones for which a customer is led to schedule
periodic purchases (i.e., toilet paper, consumable office sup-
plies). With probability 1 − γ, the customer will not return
the next time. We consider γ a property of the system, so
we assume that the price does not affect the buyback proba-
bility. In what follows, we use historical transaction data to
estimate the value of γ for a given product.

Let m̄ denote the desired margin when a single unit is pur-
chased. It follows that the expected margin µ̄ coming from
a customer with a need of N units and who performs only
single-unit orders is:

µ̄ =
N∑

τ=1

γτ−1m̄ =
1− γN

1− γ
m̄, (10)

where the last equality comes from the truncated geometric
series identity. A customer with the same need, but whose
orders contain a number of units in {ωk, . . . , ωk+1 − 1},
which are associated with a margin m̄k, will generate the

to determine the optimal number of groups in the user distribution,
e.g., Pelleg, Moore et al. (2000).

following expected margin:

µ̄k =

⌈
N
V̄k

⌉∑
τ=1

γτ−1m̄kV̄k =
1− γ

⌈
N
V̄k

⌉
1− γ

(1− δk)m̄ V̄k, (11)

where δk is the discount applied to the single-unit margin m̄,
namely:

m̄k = m̄(1− δk), k ∈ {1, . . . , η}, (12)

where δ1 = 0. By imposing µ̄k ≥ µ̄1, we get:

δk ≤ 1− 1− γN

V̄k

(
1− γ

⌈
N
V̄k

⌉) . (13)

Given the desired margin m∗
t = p∗t − c derived in the pre-

vious section, the expected profit without any discount can
be computed as m∗

t V̄ . Suppose we are applying a volume
discount policy: we expect it will not decrease the total ex-
pected margin given without it. Unit-volume margin m̄ can
be computed by imposing that the expected margin without
any discount policy coincides with the one including them:

η∑
k=1

V̄km̄k = m∗
t V̄ . (14)

Substituting Eq. 12 into Eq. 14, we get:

m̄ =
m∗

t V̄∑η
k=1(1− δk)V̄k

. (15)

Finally, the margins m̄1, . . . , m̄η for the different volume
thresholds are determined as m̄k = m̄(1 − δk), for k ∈
{1, . . . , η}, where δ1 = 0. The complete algorithm, includ-
ing both optimal average price estimation and volume dis-
counts, is summarized in Figure 3.

Data-Driven Buyback Probability Estimation Even if
estimating γ in an online fashion would be a natural ap-
proach, it is prohibitive due to our environment’s strong
seasonality and non-stationary nature. Indeed, studying cus-
tomers’ churn usually requires a large amount of contextual
data and is a challenging task for many fields (Kamalraj and
Malathi 2013). Instead, we propose a methodology purely
based on the available transaction data (where the customers
are uniquely identified) to estimate γ in an offline fashion.
We define two time-intervals: a “measure” period TM ∈ T̄
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Figure 5: Seasonality over a single week (mean ± std).

and a “control” one TC ∈ T̄ , where TM ∩ TC = ∅ and
T̄ is the set of time periods i.e., contiguous sequences of
times. Intuitively, we observe which customers buy during
the “measure” period and compute what percentage of them
come back in the subsequent period, the “control” one. For-
mally, given a set of customers G := {g1, . . . , gL}, we de-
fine a function H : G×T̄ → N that associates a customer to
the number of purchases made in a specific period. We also
introduce h : T̄ → P(G), which maps a period of time into
the subset of unique customers who made at least one pur-
chase in that period.6 Thus, we are able to compute the total
number of returns R and non-returning customers A, for-
mally R =

∑
g∈G [H(g, TM )]−|h(TM )|+|h(TM )∩h(TC)|,

and A = |h(TM)|−|h(TM )∩h(TC)|. Notice that R is com-
posed by those customers that have already occurred during
the “measure” period (since a customer that purchased n
times during TM already returned n−1 times) and those hap-
pened during the “control” period (customers seen in both
periods). Instead, A is the number of customers who pur-
chased at least one time in the “measure” period and did not
show up during the “control” one. Notice that the functions
H and h can be easily calculated starting from transaction
data once the two periods have been defined. In our test, we
decided to use the 6 months before the experimental cam-
paign as a “control” period and the previous 6 months as a
“measure” one. Finally, thanks to the two quantities defined
above, the value of γ can be approximated as γ = R

R+A .

Data-Driven Threshold Selection Threshold values
{ωk}ηk=1 can be selected in several ways. Our solution is to
define a split criterion that divides the products within the
shopping baskets into η sets of equal cardinality. Formally,
we define q : N → N as the function that maps a number of
units into the number of shopping baskets that contain that
many units. Notice that if B is the total number of shopping
baskets over the period examined, then q(z) = B · βz ,
where the values of βz and B can be estimated from the
transaction data, and, consequently, q(·) can be computed
entirely from data. Intuitively, we can build a data set where
each z ∈ N is repeated q(z) · z times, defined as:

Q := {1, . . . , 1︸ ︷︷ ︸
q(1) times

, . . . , d, . . . , d︸ ︷︷ ︸
d · q(d) times

, . . .}. (16)

6With P(A) we denote the power set of A.
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Figure 6: Seasonality over the weeks of a year (mean ± std).

To get the k-th threshold, we extract the
⌈
|Q| · k

η

⌉
-th ele-

ment from the sorted data set Q defined as in Eq. 16.

Experimental Evaluation
We performed a real-world experiment in collaboration with
an Italian e-commerce company in which our algorithms
priced a set of products adopting a long-tail economic
model (Anderson 2006). The e-commerce website collects
data on each purchase (date and time), as a row of a transac-
tion data set, including features such as the identifier of the
purchased product, the number of units sold, the price, the
cost, and the class of the customer (business or private) in-
ferred from the fiscal status observed after the purchase. The
experimental campaign focused on products usually bought
with high volumes to evaluate our algorithms better.

We resorted to an online A/B. The experimental cam-
paign was conducted in one of the main categories of the
e-commerce website, with a test set (A) composed of Nt =
295 products and a control set (B) composed of Nc = 33
products of the same category and with the same character-
istics.7 The test included products with a yearly turnover of
300 KEuros and a total profit of 83 KEuros.

The algorithm produces new prices every 7 days since
a significant intra-week seasonality has been observed (see
Figure 5). Moreover, the products sold by the e-commerce
website are subject to a significant seasonality over differ-
ent periods of the years, as shown in Figure 6. Due to the
particular kind of products sold we dealt with and the nature
of the target customer segment, volume discounts are cru-
cial to the business since they affect customers’ loyalty and
the logistic organization of the company. The e-commerce
website’s specialists defined the number η = 3 of volume
thresholds that should be displayed for every product. The
test was conducted for 17 weeks, from 16 June 2021 to 17
October 2021, during which no communication and market-
ing actions were performed in attempt not to influence the
customers’ behavior.

The business goal was to maximize test set’s (A) aver-
age profit R(A)

T , as defined in Eq. (2), where T = 17. This
score is to be compared with that one achieved by the B set
R

(B)
T over the same period. To evaluate the performance of

7The test and the control sets were defined by e-commerce spe-
cialists according to both technical and market issues.
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Figure 7: Distribution of the two-sided permutation tests
statistics before the test, R = 10000 random permutations.
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Figure 8: Distribution of the two-sided permutation tests
statistics after the test, R = 10000 random permutations.

our algorithm, we performed a statistical test applied to the
product margins to check whether the two groups are com-
parable. More specifically, for each product, we computed
the average weekly net margins (Rt as in Eq. 1) during the
first six months of 2021 (i.e., t is in the first 26 weeks of
2021) and we design a test to check if the median and mean
of the net margin across the products of the A set are larger
than the ones of the B set. We performed one-sided permu-
tation tests with the null hypothesis being “The A set has not
a higher median/mean of net margin w.r.t. the B set”. Fig-
ure 7 shows the distributions of the tests’ statistics together
with the observed one, in which the resulting p-values con-
cerning medians and means are respectively 0.54 and 0.45,
and, therefore, resulting in the fact that there is not enough
statistical evidence to say the two are different. This shows
that set A has not a larger median/mean w.r.t. set B on the
chosen performance metric before the beginning of the test.

We use the BLR basis functions following different crite-
ria to perform the test mentioned above. To model the price
elasticity over the customers’ base, we choose reverted hy-
perbolic tangent functions. Instead, to grasp the irregular na-
ture of e-commerce’s seasonality, we choose Radial Basis
Functions (RBF). Finally, the trend is modeled by choosing
polynomial basis functions. Both RBF and reverted hyper-
bolic tangents are evaluated with different shifts and scales,
while polynomial features with different degrees.

The algorithm ran in a Docker container with Python 3.8
environment on Linux. Every week, the algorithm made an
SQL query to retrieve that data about the products and then
returned the prices. The hardware was a Quad-core Intel
Core i7 8th Gen with 8Gb DDR4 RAM. The time required
for a run of the algorithm over all the products is about 25
minutes. Given that the algorithm is applied to each product
independently of the others, the running time scale linearly
w.r.t. the number of products.
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Figure 9: Distribution of the objective function improve-
ments in Test and Control set.

Results The goods priced by PVD-B during the testing
period provided an improvement (on average) in terms of
the performance metric R

(A)
T of +55% w.r.t. the one R

(B)
T

of control set of goods, or formally R(A)

R(B) = 1.55. After 17
weeks, we performed the same statistical test on the weekly
performance metric obtained between the two sets of prod-
ucts during the test period. Figure 8 shows the distribution
of the test’s statistics along with the observed ones. The two
tests, performed with the same seed and number of random
permutations of the previous, yielded this time p-values on
the medians and the means of respectively of 0.01 and 0.02,
allowing us to reject the null hypothesis and conclude that
the test set of products has both a larger median and mean of
the average weekly performance metric w.r.t. the control set
of products, with at least a confidence of 98%.

Regarding the performances on a product-wise level, we
report in Figure 9 the sorted percentages of improvement on
the performance metric w.r.t. to the period of 2021 preced-
ing the test for every single product. In the test set, 138 prod-
ucts over 295 (≈ 47%) improved their average performance
w.r.t. the corresponding period of 2021, while in control set
only 8 products over 33 (≈ 25%) were able to improve. This
corroborates the idea that the proposed method is able to im-
prove the performance of the e-commerce website by influ-
encing the purchase process of a large number of products.

Effect of Volume Discounts
A final analysis consists in evaluating how the volume dis-
counts algorithm can modify the probability distribution of
the units count of the same product in a basket. More pre-
cisely, we need to check whether the algorithm affects the
volumes β̄k to increase the profit. In our specific setting,
this corresponds to checking if the value β̄1 decreases in fa-
vor of β̄2 and/or β̄3. For this analysis, the parameters of the
volume-discount algorithm have been estimated using the
period from 16 June 2019 to 16 June 2021, and the estima-
tion of γ was performed on the data split in an estimation
period TM from 17 June 2019 to 16 June 2020 and a control
one TC from 17 June 2020 to 16 June 2021.

We analyze the context from both customers’ and prod-
ucts’ perspectives. Figure 10 shows the distribution of the
number of orders performed by the customers. The his-
togram shows almost half of the customers perform a single
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Figure 10: Number of purchases done by the customers.
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Figure 11: Distribution of the parameter γ.

order and leave the shop without coming back. Figure 11 an-
alyze the same phenomenon from the product perspective.
Given a product, we can interpret the γ parameter as the
probability that a customer buying that product will, sooner
or later, buy such product again. Higher is the γ, the more
conservative will be the discount strategy we adopt.

Results The estimated per-product discounts between the
three thresholds are presented in Figure 12. The PVD-B al-
gorithm applies an average discount of ≈ 10% for the sec-
ond volume interval and ≈ 20% for the third one. This im-
plies a shift in the number of purchases among the intervals.
In Table 1, the variations of the three β̄k are reported: dur-
ing the test, we achieved an increase of the values β̄2 and β̄3

while observing a reduction in β̄1. Finally, in Table 2 we re-
port the average variations in terms of average units per bas-
ket of the 4 above-mentioned products during the test period.
The effect of applying the PVD-B algorithm and, therefore,
introducing volume discounts modifies the basket’s average
size by increasing the units purchased by ≈ 33%.

Considerations After the A/B Test
After the end of the A/B test, the e-commerce specialists
were satisfied with the achieved results, including the per-
formance of the volume-discount algorithm. Thus, the com-
pany extended the adoption of our algorithm to all the prod-
ucts presenting a sufficient amount of volumes in the cat-
alog of the e-commerce website (≈ 1200 products). Cur-
rently, our algorithm prices about 1, 200 products generat-
ing a cumulative annual revenue of about 1.5 MEuro, which
corresponds to about 50% of the total e-commerce website
turnover. Furthermore, the algorithm now runs in the cloud
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Figure 12: Average (on time) discounts between volumes’
thresholds in test products.

Product ∆β̄1 ∆β̄2 ∆β̄3

1 -32% +10% +22%
2 -26% +25% +1%
3 -15% +4% +11%
4 -5% +1% +4%

Mean -19.5% +10% +9.5%

Table 1: Variations of β̄k after the test period.

Product ∆units

1 +63%
2 +43%
3 +11%
4 +14%

Mean +33%

Table 2: Variation of units per basket after the test period.

in a SaaS fashion. An automatized routine runs a query on
the dataset of the e-commerce website, extracting the trans-
action data needed and then running the algorithm. The re-
sults are provided to the business unit in a csv file.

Conclusion and Future Works

In this paper, we present PVD-B, an algorithm capable of
defining the price and volume discounts in an online set-
ting. Our approach exploits the transaction data of the e-
commerce website to optimize the pricing strategy in an on-
line fashion. We test our approach in a real-world 4-months
experiment by optimizing the price of 295 products of an
e-commerce website. The results show that our approach
increases the e-commerce website profits by outperforming
the previous management and gaining an increase of 55%.

In future works, we plan to insert in the model time corre-
lations between the purchases and the effect of loyalty in in-
creasing revenue. Furthermore, in this work, we price prod-
ucts independently, while cross-selling approaches could
further increase profits for some classes of products. The
design of algorithms taking into account also these depen-
dencies constitutes an interesting new line of work.
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