

MARCO MUSSI^{*}, GIANMARCO GENALTI^{*}, ALESSANDRO NUARA, FRANCESCO TROVÒ, MARCELLO RESTELLI AND NICOLA GATTI {marco.mussi, gianmarco.genalti, francescol.trovo, marcello.restelli, nicola.gatti}@polimi.it, alessandro.nuara@mlcube.com

DYNAMIC PRICING

Dynamic pricing refers to the practice of keeping pricing schedules dynamic in time.

WHY THIS WORK?

- E-commerce websites may face different kinds of users, both customers and businesses.
- Different kinds of users present different needs in terms of item quantity.

- The kind of user the website will face is not known *a priori*.
- We want to propose different prices for different volume thresholds thanks to the introduction of discounts.

Setting and Goal

Setting

- We want to price the products independently.
- We consider a setting in which only transaction data are available.
- The demand curve is assumed to be monotonic in price.

GOAL

At each time *t*, find:

- a set of volume thresholds $\boldsymbol{\omega}_t := [\omega_{1t}, \dots, \omega_{nt}] \in \mathbb{N}^{\eta}$
- a set of prices $p_t := [p_{1t}, \ldots, p_{\eta t}] \in \mathcal{P}^{\eta}$

The goal is to select sets ω_t and p_t maximizing the total profit R(T) over time horizon T:

$$R(T) := \sum_{t=1}^{T} \sum_{i=1}^{\eta} (p_{it} - c) \cdot v_i(\boldsymbol{p}_t, \boldsymbol{\omega}_t, t)$$

POLITECNICO DYNAMIC PRICING WITH VOLUME DISCOUNTS IN ONLINE SETTINGS

ALGORITHM

IDEA: If we face this problem using a single machine learning model, the learning complexity scales exponentially in the number of thresholds, and cannot be addressed effectively in the presence of scarce data.

- We **decompose** the problem of finding both volume thresholds and corresponding optimal prices in **two sub-problems**: . Find the **optimal average price** for a given product **without considering volume discounts**.
- 2. Build an **adaptation scheme** to obtain different prices for different volumes, whose (weighted) average is equal to the optimal price previously obtained.

OPTIMAL PRICE ESTIMATION

• We want to find the optimal price p_t^* for every product independently

• For each t in the past, we compute the total **volumes** \overline{v}_t and the average price \overline{p}_t

• Volume curves $\hat{v}(p,t)$ are generalized using **Bayesian Linear Regression** from price (p) and time (t) related features to generalize over demand curve and seasonality

• Price-related features are selected to be monotonic nonincreasing, their weight distributions are chosen with a positive support

• At a given time τ , we can fix time-related feature, and sample using a **Thompson Sampling**-like approach a curve $\hat{v}_{TS}(p, \tau)$ binding pricing and volumes

VOLUME DISCOUNTS LEARNING

• We want to find η **thresholds**, and define the related prices

• The idea of volume discount is to present a volume **discount policy** which is build on top of the optimal price p_{τ}^* computed so far

- The main assumption is about users' need:
 - the **need** for a given item over time is **fixed** and can be satified in one or more purchase
 - after the first purchase, a customer can **full**fill its need buying from us or thanks to a competitor
- The discount policy makes use of **users' buyback probability** and other auxiliary quantities

• The proposed discount policy has as **weighted average** price p_{τ}^*

• The discounts are as relevant as the buyback probability decrease

REAL-WORLD APPLICATION

REAL-WORLD SETTING

A/B test involving ≈ 300 products with ≈ 300 kEuros of turnover and ≈ 83 kEuros of margin. The test is conducted for 4 months in summer/fall 2021. The e-commerce special-

> We observe that volume discounts fundamental, are given that most of the customers are not loyal

RESULTS OVERVIEW

We improve the performance of set A of 55% w.r.t. the set B

We register in set A the 47% of products which increse their turnover, against the 25% of set B

VOLUME DISCOUNTS EFFECT

The average discount applied for the algorithm are 10% for the second volume interval and 20% for the third one.

ıct	$\ \Delta ar{eta_1}$	$\Delta ar{eta_2}$	$\Delta ar{eta_3}$	$\parallel \Delta units$
	-32% -26% -15% -5%	+10% +25% +4% +1%	+22% +1% +11% +4%	+63% +43% +11% +14%
an	-19.5%	+10%	+9.5%	+33%

CONCLUSIONS AFTER THE A/B TEST

• After the A/B test, the e-commerce website decide to

• The dynamic pricing algorithm is now pricing over 1200

Arnoud V Den Boer. Dynamic pricing and learning: historical origins, current research, and new directions. *Surveys in operations research and management science*, 2015.

Robert Kleinberg and Tom Leighton. The value of knowing a demand curve: Bounds on regret for online posted-price auctions. In FOCS. IEEE, 2003.