

## Dynamic Pricing with Volume Discounts in Online Settings

Marco Mussi ${ }^{1}{ }^{*}$, Gianmarco Genalti ${ }^{1 *}$, Alessandro Nuara ${ }^{2}$ Francesco Trovó ${ }^{1}$, Marcello Restelli ${ }^{1}$, and Nicola Gatti ${ }^{1}$

${ }^{1}$ Politecnico di Milano ${ }^{2}$ ML cube ${ }^{*}$ Equal Contribution

$35^{\text {th }}$ IAAI Conference, Washington D.C.

## Al in Retail Business

## |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||



## [1] Chui, Michael, et al. "Notes from the AI frontier: Insights from hundreds of use cases." McKinsey Global Institute (2018).

M. Mussi

POLITECNICO MILANO 1863

## Research on Dynamic Pricing

## Scientific Production on Dynamic Pricing²



## Dynamic Pricing

Consider an e-commerce which sells a product

- Customers visit the product page and decide whether to buy or not - By aggregating users choices, we are able to build a demand curve

[3] Arnoud V Den Boer. Dynamic pricing and learning: historical origins, current research, and new directions. Surveys in operations research and management science, 20(1):1-18, 201


## Motivation

- E-commerce websites may face different kind of users, both customers and business (not known before the sale)
- Different kind of users present different needs in terms of number of units to purchase



## Goal

## Provide a robust dynamic pricing algorithm allowing an e-commerce to face different kinds of users, without knowing their nature before the sale

## Solution Idea

Offer customers volume discounts policies (a.k.a. quantity discounts) where total expense is piecewise linear w.r.t. to units sold


## Setting and Goal

## Problem Formulation - Assumptions

- We only consider goods that are non-luxury, so their demand curve is decreasing in price
- We assume that there is no market interaction between the products: every product can be priced independently
- Only transaction data are available:
- Weekly Sales
- Price History


## Problem Formulation - Goal

W.l.o.g. we will consider the problem of pricing a single good

At every time $t$, find:

- a set of volume thresholds $\boldsymbol{\omega}_{t}:=\left[\omega_{1 t}, \ldots, \omega_{\eta t}\right] \in \mathbb{N}^{\eta}$
- a set of prices $\boldsymbol{p}_{t}:=\left[p_{1 t}, \ldots, p_{\eta t}\right] \in P^{\eta}$



## Problem Formulation - Goal

Maximizing the total profit $R(T)$ over time horizon $T$ :

$$
R(T):=\sum_{t=1}^{T} \sum_{i=1}^{\eta}\left(p_{i t}-c\right) \cdot v_{i}\left(\boldsymbol{p}_{t}, \boldsymbol{\omega}_{t}, t\right)
$$

where $c$ is the acquisition cost

## Solution

## Naïve solution

- Design a single, supervised ML model that determines both the volume thresholds and the corresponding prices per unit to show
- The learning complexity scales exponentially in the number of thresholds
- Not feasible in the presence of scarce data.


## Our Algorithm - Idea

- We decompose the problem of finding both volume thresholds and corresponding optimal prices in two sub-problems:

1. Find the optimal average price for a given product without taking into account volume discounts
2. Build an adaptation scheme to obtain different prices for different volumes, whose (weighted) mean is equal to the optimal price previously obtained

## Algorithm - Overview

## ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||



## Solution

## Optimal Average Price Estimation

## Demand Curve Model

- We want to find the optimal average price $p_{\tau}^{*}$ at given time $\tau$
- For each timestamp $t$ in the past we compute, using transaction data, the total sales $\bar{v}_{t}$ and the average selling price $\bar{p}_{t}$


## Demand Curve Model

- The volume curve $\hat{v}(p, t)$ is modelled using a Bayesian Linear Regression that include features obtained from price $p$ and time $t$
- Price-related features are obtained using non-increasing basis functions, while their weights are enforced to be positive to obtain model's downward monotonicity w.r.t. price
- Time-related features are obtained using polynomial and periodic basis functions to account for seasonalities and trends in the market


## Dealing with Price Exploration

At a given time $\tau$, we can fix time-related feature, and sample using a Thompson Sampling-like approach a curve $\hat{v}_{T S}(p, \tau)$ binding pricing and volumes

[5] Thompson, William "On the likelihood that one unknown probability exceeds another in view of the evidence of two samples." Biometrika (1933): 285-294.

## Dealing with Price Exploration

## |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

We estimate the best average price:

$$
p_{\tau}^{*} \in \arg \max _{p \in P}(p-c) \cdot \hat{v}_{T S}(p, \tau)
$$


[5] Thompson, William "On the likelihood that one unknown probability exceeds another in view of the evidence of two samples." Biometrika (1933): 285-294.

## Solution

## (2) <br> Volume Discounts

## Extract knowledge from data

## ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

We extract quantitative insights from transaction data to characterize users' behavior


$$
\beta_{1}=0.75 \quad \beta_{2}=0.25
$$

> $\beta_{z}$
> \% of baskets with $Z$ units of the product.

x 1

x 2


$$
\omega_{k} \begin{gathered}
\text { Empirical quantity } \\
\text { thresholds (from quantiles) }
\end{gathered}
$$



## Multi-price pricing policy

We are able to obtain a policy composed of multiple prices, guaranteeing that their weighted (on the number of units sold) average corresponds to the optimal price in output from Step 1


## Volume Discounts in Online Settings

- This procedure combines data science techniques with mathematical modelling
- It accounts for online updates of the analyzed dataset, since the pricing policy may vary from time to time depending on the market reaction to previous choices


## Experimental Campaign

## Experimental Setting

- The solution is tested in a real environment
- An A/B test is performed over 328 products with an yearly turnover of 300KEuros
- The test lasted for $\mathbf{4}$ months


## Configuration A (Test)

Priced by our algorithm
Configuration B (Control)
Priced by human specialist

## Experimental Setting

- In this setting, revenue comes from both customers purchasing a few times and then leaving and customers that buy many times
- A pricing policy with volume discounts allows us to maximize profits on these two categories of customers



## Evaluation Metric

The goal is to select sets $\boldsymbol{\omega}_{t}$ and $\boldsymbol{p}_{t}$ maximizing the total profit $R(T)$ over time horizon $T$ :

$$
R(T):=\sum_{t=1}^{T} \sum_{i=1}^{\eta}\left(p_{i t}-c\right) \cdot v_{i}\left(\boldsymbol{p}_{t}, \boldsymbol{\omega}_{t}, t\right)
$$

## Results

## Results are in favor of our algorithm, with observed profits that are $55 \%$ higher in the test configuration


\% of products improving their profits:
Configuration A (Test)
47\%

Configuration B (Control) 25\%

## Effect of the Volume Discounts

The pricing specialists asked us to consider 3 volumes thresholds

| Product | $\Delta \bar{\beta}_{1}$ | $\Delta \bar{\beta}_{2}$ | $\Delta \bar{\beta}_{3}$ |
| :---: | :---: | :---: | :---: |$|\mid \Delta$ units

After the test, we observed an overall increment in purchases containing a number of units above the second and/or the third volume thresholds

## Considerations After the A/B Test

- After the $\mathrm{A} / \mathrm{B}$ test, the e-commerce website decided to adopt the solution on its whole catalog
- The algorithm is now pricing over 1200 products for a total turnover of 1.5 MEuros


## Conclusions

- We provided the first data-driven dynamic pricing algorithm handling volume discounts
- We proposed a solution able to different kinds of users without having prior information about the type of user we are facing
- We evaluated the methodology through a real-world campaign, obtaining results in favor of the algorithm


## Future Works

- Integration of advertising strategies in the presented pricing framework
- Modelling of products' interactions in term of units sold


## Thank you for the attention!

Take a look at our work



