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Abstract

In many real-world sequential decision-making
problems, an action might not immediately reflect
on the feedback and spread its effects over a long
time horizon. For instance, in online advertising,
investing in a platform produces an increase in
awareness, but the actual reward (e.g., a conver-
sion) might occur far in the future. Furthermore,
whether a conversion takes place depends on sev-
eral factors: how fast the awareness grows; possi-
ble awareness vanishing effects; synergy or inter-
ference with other advertising platforms. Previous
work has investigated the Multi-Armed Bandit
framework with the possibility of delayed and ag-
gregated feedback, without a particular structure
on how an action propagates into the future, dis-
regarding possible hidden dynamical effects. In
this paper, we introduce a novel setting, Dynami-
cal Linear Bandits (DLB), an extension of linear
bandits characterized by a hidden state. When an
action is performed, the learner observes a noisy
reward whose mean is a linear function of the
hidden state and the action, and the hidden state
evolves according to a linear dynamics. In this
way, the effects of each action are delayed by the
system evolution, persist over time, and the in-
terplay between the action components is taken
into account. After introducing the setting and
discussing the notion of optimal policy, we pro-
vide an any-time optimistic regret minimization
algorithm Dynamical Linear Upper Confidence
Bound (DynLin-UCB) that suffers regret of or-
der O(cd+/T), where c is a constant dependent
on the properties of the linear dynamical evolu-
tion. Finally, we conduct a numerical validation
on a synthetic environment to show the effective-
ness of DynLin-UCB in comparison with bandit
baselines.
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1. Introduction

In a large variety of sequential decision-making problems, a
learner is required choosing an action that, when executed,
determines an evolution of the underlying system state, that
is hidden to the learner. In these partially-observable prob-
lems, the learner might observe a reward (a.k.a. feedback)
that is the combined effect of multiple actions played in
the past and its realization might span a large time horizon.
For instance, in online advertising campaigns, the process
that leads to a conversion, also known as the marketing
funnel (Court et al., 2009), is characterized by complex
dynamics and comprises several phases. When multiple
campaigns and heterogeneous platforms are involved, a prof-
itable budget investment policy has to account for relation-
ships between campaigns/platforms and how their effects
are combined. In this scenario, the conversion attribution
problem (Berman, 2018) consists in assigning the credit of
a conversion (e.g., a user’s purchase of a promoted product)
not only to the latest ad the user was exposed to, but also
to the previous ones which contributed to generate such a
conversion. The joint consideration of each funnel phase is
a fundamental step towards an optimal investment solution,
while considering the advertising campaigns/platforms in-
dependently leads to sub-optimal solutions. Consider, for
instance, a simplified version of the funnel with two types of
campaigns: awareness (i.e., impression) ads and conversion
ads. The first kind of ad aims at improving the brand aware-
ness, while the latter aims at creating the actual conversion.
If we evaluate the performances in terms of conversions
only, we will observe that impression ads are not instan-
taneously effective in creating conversions, so we will be
tempted to reduce the amount of budget invested in such a
campaign. However, this approach is clearly sub-optimal
because, as demonstrated in several works (e.g., Hoban &
Bucklin, 2015), impression ads increase the chance to con-
vert when a conversion ad is shown after the impression.
In addition, the effect of some ads, especially impression
ads delivered via television, may be delayed. It has been
demonstrated (Chapelle, 2014) that users remember adver-
tising over time in a vanishing way, leading to delayed
consequences that simple models cannot capture. It is worth
noting that this kind of interplay comprises more general
scenarios than simple delay (which are anyway present), in-
cluding cases where the interaction is governed by dynamics
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hidden to the observer.

While this problem can be indubitably modeled as a
partially-observable Markov Decision Process (POMDP,
Astrom, 1965), the complexity of the framework and its gen-
erality are often not required to capture the main features
of the problem. Indeed, for specific classes of problems,
the Multi-Armed Bandit (MAB, Lattimore & Szepesvari,
2020) literature has explored the possibility of experiencing
delayed reward (a.k.a. feedback) either assuming that the ac-
tual reward will be observed, individually, in the future (e.g.,
Joulani et al., 2013) or with the more realistic assumption
that an aggregated feedback is available (e.g., Pike-Burke
et al., 2018), with also specific applications for online adver-
tising (Vernade et al., 2017). Although effective in dealing
with delay effects and the possibility of a reward spread in
the future (Cesa-Bianchi et al., 2018), they do not account
for additional, more complex, dynamical effects, which can
be regarded as the evolution of a hidden state.

In this work, we take a different perspective. We propose to
model the non-observable dynamical effects, underlying the
phenomena as a Linear Time-Invariant (LTI) system (Hes-
panha, 2018). In particular, the system is characterized by
an hidden internal state x; (e.g., awareness) which evolves
via a linear dynamics fed by the action uy (e.g., the amount
invested on each platform) and is affected by noise. At each
round, the learner experiences a reward y; (e.g., conver-
sions) which is a noisy observation that linearly combines
the state x; and the action u;. Our goal consists in learning
an optimal policy so as to maximize the expected cumula-
tive reward. We call this setting Dynamical Linear Bandits
(DLBs) that, as we shall see, reduce to linear bandits when
no dynamics is involved. Coming back to the application
scenario, the state allows encoding the awareness that ac-
cumulates and/or vanishes over time. Furthermore, thanks
to the dynamics, the model allows for representing interfer-
ence and synergy phenomena between platforms. Due to
the dynamical nature of the system, the effect of each action
persists over time indefinitely but, under stability conditions,
it vanishes asymptotically.

Contributions The contributions of this paper are theo-
retical, algorithmic, and experimental and can be summa-
rized as follows. In Section 2, we introduce the Dynam-
ical Linear Bandit (DLB) setting to represent sequential
decision-making problems characterized by a hidden state
that evolves linearly according to an unknown dynamics
and the learner observes a noisy reward obtained as a lin-
ear combination of the current state and action played. We
formally define the hidden-state linear dynamics, the com-
putation of the reward, the notion of policy, and the regret
definition. In particular, under stability conditions, we show
that the optimal policy corresponds to playing the constant
action that leads the system to the most profitable steady-

state. In Section 3, we propose a novel anytime optimistic
regret minimization algorithm, Dynamical Linear Upper
Confidence Bound (DynLin-UCB) for the DLB setting.
DynLin-UCB takes inspiration from Lin-UCB and sub-
divides the optimization horizon 7' into increasing-length
epochs. In each epoch, an action is selected and kept con-
stant (persisted) so that the system approximately reaches
the steady-state. Now, a reliable observation of the reward
is collected to update the estimates and optimistically select
the next action to play. We provide a regret analysis for
DynLin-UCB showing that, under certain assumptions, it
enjoys O(cd\/T ) expected regret, where c is a constant that
accounts for the “speed” at which the system reaches the
steady-state and d is the dimensionality of the action u. In
Section 5, we provide a numerical validation to highlight
the properties of our approach in comparison with bandit
baselines. The proof of all the results are reported in Ap-
pendix A.

Notation Let a,b € N with a < b, we denote with
[a,b] = {a,...,b}, with [b] := [1,b], and with [a, o) =
{a,a +1,...}. Let x,y € R™ be real-valued vectors, we
denote with (x,y) = xTy = Z;;l 2;y; the inner prod-
uct. For a positive semidefinite matrix A € R"*", we
denote with |x|3 = x"Ax the weighted 2-norm. The
spectral radius p(A) is the largest absolute value of the
eigenvalues of A, the spectral norm |A|2 is the square
root of the maximum eigenvalue of ATA, the Frobenius
norm |A|F is the trace of ATA. We introduce the maxi-
mum spectral norm to spectral radius ratio of the powers
of A defined as ®(A) = sup,-q [|A7[2/p(A)” (Oymak
& Ozay, 2019). We denote with I,, the identity matrix of
order n and with 0,, the vector of all zeros of dimension 7.
A random vector x € R" is 02—subgaussian, in the sense
of (Hsu et al., 2012), if for every vector ¢ € R™ it holds that

E [exp ({¢,x))] < exp([[¢[30°/2).

2. Problem Formulation

In this section, we introduce the Dynamical Linear Ban-
dits (DLBs), formulate the learning problem, focusing on
the learner-environment interaction, assumptions, policies,
and definition of regret (Section 2.1). Then, we derive a
closed-form expression for the optimal policy for DLBs
(Section 2.2).

2.1. Setting

We consider the sequential interaction between a learner
and an environment. In a Dynamical Linear Bandit (DLB),
the environment is characterized by a hidden state, i.e., a
n-dimensional real vector, initialized to x; € X, where
X < R" is the state space. At each round ¢t € N, the envi-
ronment is in the hidden state x; € X, the learner chooses
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an action, i.e., a d-dimensional real vector u; € U, where
U < R4 is the action space. Then, the learner receives a
noisy reward v, = (w,x¢y+{0,u;y+n, € Y, where Y € R
is the reward space, w € R", 0 € R are unknown parame-
ters, and 7; is a zero-mean o>—subgaussian random noise,
conditioned to the past. Then, the environment evolves to
the new state according to the unknown linear dynamics
X141 = Axy + Bu; + €, where A € R"*" is the dynamic
matrix, B € R"*4 ig the action-state matrix, and €; is a
Zero-mean 02—subgaussian random noise, conditioned to
the past, independent of 7;.!

Remark 2.1. The setting proposed above is a particular
case of a POMDP (Littman et al., 1995), in which the state
X; Is non-observable, while the learner has access to the
noisy observation y; that, in our setting, corresponds to the
noisy reward too. Furthermore, the setting can be viewed
as a MISO (Multiple Input Single Output) discrete—time LTI
system (Kalman, 1963). Finally, the DLB reduces to (non-
contextual) linear bandit (Lattimore & Szepesvdri, 2020)
when the hidden state does not affect the reward, i.e., when
w=0.

Markov Parameters We revise a useful representation,
widely employed in the LTI literature, that allows expressing
y; in terms of the sequence of the most recent H + 1€ N
actions (Ws)se[i—m:¢], reward noise 7, H state noises
(€s)se[t—m:t—1]> and starting state x;_ g (Ho & Kdlmdn,
1966; Oymak & Ozay, 2019; Tsiamis & Pappas, 2019;
Sarkar et al., 2021):

H
ye = b u O+ wAx, g+ (D)
s=0 starting state
H
et Y WA e,
s=1

noise

where the sequence of vectors h{*} € RY for every s €
N U {0} are called Markov parameters and are defined as:
h{% = @ and h{*} = BT(A*~')Tw if s > 1. Furthermore,
we introduce the cumulative Markov parameters, defined
for every 5,5’ € N U {0} with s < &' as hl#*1 = Z;;S hi}
and the corresponding limit as s’ — +o0, i.e., hl>+*) =

7 ni®. Finally, we use the abbreviation h = hI®+®) =
0 + B"(I — A) "w. We will make use of the following
standard assumptions.

Assumption 2.1 (Boundedness). The following inequalities
hold: 0]z < O, ||w]2 < Q, |Bl2 < B, |ulls < U with
uel, and |[x|2 < X withx € X, and sup,, e 0,1 —
u) < 1.2

'n is the order of the LTI system (Kalman, 1963). We make

no assumption on the value of n and on its knowledge.
The assumption of the bounded state norm |x|l2 < X can

Assumption 2.2 (Stability). The spectral radius of A is
strictly smaller than 1, i.e., p(A) < 1, and the maximum

spectral norm to spectral radius ratio of the powers of A is
bounded, i.e., ®(A) < +o0.?

The former assumption requires the boundedness of the
norms of the relevant vectors, matrices, as well as states
and actions; whereas the latter is related to the stability
of the dynamic matrix A, which is widely employed in
discrete—time LTI literature (Oymak & Ozay, 2019; Lale
et al., 2020b;a).

Policies and Performance The learner’s behavior is mod-
eled by a deterministic policy w = (7;)sen defined, for ev-
ery round ¢t € N, as 7y : H;—; — U, mapping the history of
observations Hy;_1 = (u1,y1,...,W—_1,%—1) € H¢_q to
an action u; = m;(H;_1) € U, where H; 1 = (U x Y)t~1
is the set of histories of length ¢ — 1. The performance
of a policy 7 is evaluated in terms of the infinite-horizon
expected average reward:*

H

- 1

J(m) = gfglng lH t:Zl yt] (2
Xt41 = AXt + But + €

Y = (w,x¢) + O, u) + 1,
w, = (Hi—1)

where teN,

where the expectation is taken w.r.t. the randomness of the
state noise €; and reward noise 7;. If a policy = is constant,
i.e., m(H¢—1) = u for every ¢t € N, we abbreviate J(u) =
J(m). A policy v* is an optimal infinite-horizon policy if
it maximizes the infinite-horizon expected average reward,
i.e., m* € argmax, J(m), whose performance is denoted
as J* == J(m*).

Regret The goal of the learner is to minimize the online
expected (policy) regret by playing a policy , compet-
ing against the optimal infinite-horizon poli%y * over a
learning horizon T € N: ER(w,T) := E[>},_; J* — u],
where y; is the sequence of rewards collected by playing
7 as in Equation (2). Furthermore, we introduce a dif-
ferent notion of regret, that will turn useful for analysis
purposes, that we name offline expected (policy) regret that
compares J* with the infinite-horizon performance of the

be replaced with the assumption of bounded state noise €. As
shown in (Agarwal et al., 2019), this assumption can be relaxed
by conditioning to the event that none of the noise vectors are ever
large at the cost of an additional log T factor in the regret.

3The latter is a mild assumption: if A is diagonalizable as
A = QAQ™', than ®(A) < |Q||2|Q"[2 and it is finite. In
particular, if A is symmetric than ®(A) = 1.

“In Appendix B, we show that, under Assumption 2.2, the
infinite-horizon setting is not dissimilar from the finite-horizon
setting, provided that the horizon is sufficiently large.
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action u; = m;(H;_1) played at each round ¢t € [T] by
the agent: E R (m, T) := E[Y]_, J* — J(u;)]. Clearly,
the two regret definition coincide when the system does not
have a dynamics, i.e., |Al2 = 0.

2.2. Optimal Policy

In this section, we derive a closed-form expression for the
optimal policy zr* for the infinite—horizon objective func-
tion, as introduced in Equation (2).

Theorem 2.1 (Optimal Policy). Under Assumptions 2.1
and 2.2, an optimal policy w* maximizing the infinite-
horizon expected average reward J (), as in Equation (2),
is given by:

Vt e N, VHt,1 € Htfl : Wzk(Htfl) =u* (3)

u* € argmax J(u) = ¢(h,u).
ueld

where

Some remarks are in order. The optimal policy performs
the constant action u* € U which brings the system in
the “most profitable” steady-state.’ Indeed, the expression
(h, u) can be rewritten expanding the cumulative Markov
parameter as (0” + w”(I—A)~'B)u* and (I- A)"'Bu*
is the expression of the steady state X* = AX* + Bu*,
when applying action u*. It is worth noting the role of
Assumption 2.2 which guarantees the existence of the in-
verse (I — A)~!. In this sense, our problem shares the
constant nature of the optimal policy with the linear ban-
dit setting (Lattimore & Szepesvari, 2020), although ours
is characterized by an evolving state, which introduces a
new trade-off in the action selection. From the LTI system
perspective, this implies that we can focus on open-loop
stationary policies only. The reason why this problem does
not benefit from closed-loop policies, differently from other
classical problems, such as the LQG (Abbasi-Yadkori &
Szepesvari, 2011), lies in the linearity of the reward y; and
in the additive nature of the noise components 7, and €,
which makes its presence irrelevant for control purposes.
Nonetheless, as we shall see, our problem poses additional
challenges compared to linear bandits since, in order to as-
sess the quality of an action u € U/, we need to let the system
evolve to the steady-state and, then, observe the reward.

3. Algorithm

In this section, we present an anytime optimistic regret
minimization algorithm for the DLB setting introduced in
Section 2. Dynamical Linear Upper Confidence Bound
(DynLin-UCB), whose pseudocode is reported in Algo-
rithm 1, requires the knowledge of an upper-bound p < 1 on
the spectral radius of the dynamic matrix A (i.e., p(A) < p)

In Appendix B, we show that the optimal policy is non—
stationary for the finite—horizon case.

and on the maximum spectral norm to spectral radius ra-
tio ® < 4+ (i.e., ®(A) < ®), as well as the bounds on
the relevant quantities of Assumption 2.1.% DynLin-UCB
is based on the following simple observation. To assess
the quality of an action u € U, we need to persist in ap-
plying it so that the system approximately reaches the cor-
responding steady-state and, then, observe the reward y;,
representing a reliable estimate of J(u) = (h, u). We shall
show that, under Assumption 2.2, the number of rounds
needed to approximately reach such a steady state is loga-
rithmic in the learning horizon 7" and depends on the upper
bound of the spectral norm p. After initializing the Gram
matrix Vo = Al; and the vectors by and flo both to 04
(line 1), DynLin-UCB subdivides the learning horizon T'
in M < T epochs. Each epoch m € [M] is composed of
H,, + 1 rounds, where H,,, = |logm/log(1/p)]| is logarith-
mic in the epoch index m. At the beginning of each epoch
m € [M], DynLin—-UCB computes the upper confidence
bound (UCB) index (line 4):

Vuell : UCB,(u) = (hy1,u)+ Bi1 Hu||V;11 , (4

where flt_l = V;llbt_l is the regression estimator of
the cumulative Markov parameter h as employed in Equa-
tion (3) to define the optimal action and S;—; > 0 is an
exploration coefficient that will be defined later. Simi-
lar to the LinUCB algorithm (Lattimore & Szepesvri,
2020), the index UCB;(u) is designed to be optimistic,
i.e., J(u) < UCB¢(u) in high-probability for all u € U.
Then, the optimistic action u; € arg max,,;; UCB;(u) is
executed (line 5) and persisted for the next H,, rounds
(lines 7-10). The length of the epoch H,, is selected such
that, under Assumption 2.2, the system has approximately
reached the steady state after H,,, + 1 rounds. In this way,
at the end of epoch m, the reward y; is an almost-unbiased
sample of the steady-state performance J(u;). This sample
is employed to update the Gram matrix estimate V; and the
vector b, (line 12), while the samples collected in the pre-
vious H,, rounds are discarded (line 8). It is worth noting
that by setting H,,, = 0 for all m € [M], DynLin-UCB
reduces to LinUCB. The following sections provide the
concentration of the estimator IAlt,l of h (Section 3.1) and
the regret analysis of DynLin-UCB (Section 3.2).

3.1. Self-Normalized Concentration Inequality for the
Cumulative Markov Parameter

In this section, we provide a self-normalized concentration
result for the estimate h, of the cumulative Markov param-

8As an alternative, one can consider a more demanding require-
ment of the knowledge of a bound on the spectral norm ||A |2
of A. Similar assumptions regarding the knowledge of analo-
gous quantities are considered in the literature, including decay
of Markov operator norms (Simchowitz et al., 2020) and strong
stability (Plevrakis & Hazan, 2020).
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Algorithm 1 Dynamical Linear Upper Confidence Bound

(DynLin-UCB).

Input : Regularization parameter A > 0, exploration co-
efficients (3;—1)se[r], spectral radius upper bound

D
1 Tnitialize t < 1, Vo = Ay, b = 04, hg = 0y,
Define
M
M =min{M' e N : Z 1+4|logm/log(1/p)| > T}—1
m=1
forme{l,...,M} do
Compute
u; € arg Igax UCB;(u) == (hy_q,u)+ 51 HuHV:1
ue
Play arm u, and observe y;
Define H,, = |logm/log(1/p)|
forje{l,...,H,}do
Update V; = V,_1,b; = by
t—t+1
Play arm u; = u;_; and observe y;
end
Update Vt = thl + ututT, bt = btfl + uy
Compute flt =V, I,
t—t+1
end

15

eter h, as performed in Algorithm 1. For every m € [M],
we denote with t,,, the last round of epoch m: ¢y = 0 and
tym = tm—1 + 1+ H,,. At the end of each epoch m € [M],
we compute the Ridge-regularized linear regression prob-
lem:

Vi e [T] :

h; = arg min Z
heR? e[ MT:t; <t

=V;'b;.

(e, — B, w,,))? + Al

We start by presenting the following self-normalized maxi-
mal concentration inequality and, then, we compare it with
the existing results in the literature.

Theorem 3.1 (Self-Normalized Concentration). Let (ﬁt)teN
be the sequence of solutions of the regression problems
computed by Algorithm 1. Then, under Assumption 2.1
and 2.2, for every A\ = 0 and ¢ € [0, 1], with probability at
least 1 — 0, it holds that:

Vte N :
b

&1

<
Vi WA

+ \/2&2 (log ((15) + %log (det}\(d\/})>>,

log(e(t + 1)) + caV A+

where: c1 =UQP(A) (1_U£A) + X> ,
_ QB®(A)
Co —@+71_p(A),
5,2 :0_2 Q2¢(A)2
(14 =)

First of all, it is worth noting that, when 2 = 0 (i.e.,
w = 0,) and there is no effect of the state on the re-
ward, the bound perfectly reduces to the self-normalized
concentration for the regression estimation used in linear
bandits (Abbasi-Yadkori et al., 2011, Theorem 1). In par-
ticular, we recognize the second addendum which is the
result of the regularization parameter A > 0 and the third
one which involves the subgaussianity constant 72, which
is related to the joint contribution of the state and reward
noises. Furthermore, the first addendum is an additional bias
term and derives from the epochs of length H,, + 1. We
observe that this term conveniently grows logarithmically
with the round index .

Finally, it is worth looking at our result from the more
general perspective of learning the LTI system parameters.
We can compare our Theorem 3.1 with the concentration
presented in (Lale et al., 2020a, Appendix C), which rep-
resents, to the best of our knowledge, the only result for
the closed-loop identification of LTI systems. First note
that, although we focus on a MISO system (as y; is a scalar,
being our reward), extending our regression estimator to the
multiple-output (MIMO) setting is straightforward. Second,
the approach proposed in (Lale et al., 2020a) employs the
predictive form of the LTI system to cope with the correla-
tion introduced by closed-loop control. This choice allows
for a pretty convenient analysis for recovering the Markov
parameters of the predictive form, but introduces significant
challenges for recovering the parameters of the original sys-
tem. Indeed, this requires an application of the Ho-Kalman
method (Ho & Kalman, 1966) which, however, does not
preserve the concentration properties in the general case,
but only for persistently exciting action signals. Our method,
instead, forces to play an open-loop policy within a single
epoch m € [M] (with logarithmic duration), while the over-
all behavior is closed-loop.” In this way, we are able to
provide a concentration guarantee on the parameters of the
original system without assuming additional properties on
the action signal.

3.2. Regret Analysis

In this section, we provide the analysis of the regret of
DynLin-UCB, when we select as the exploration coeffi-
cient f3;, based on the knowledge of the upper bounds p < 1,

"Indeed, the next action to be played depends on the previous-
epoch estimates.



Dynamical Linear Bandits for Long-Lasting Vanishing Rewards

@ < +00, and those specified in Assumption 2.1:

Vte [T] :
5,&77 (e(t +1)) + EVA+ (5)
\/a log - ;llog(l—i-tg;))
where:
oo (L x),
Gy =0+ QBo

The analysis poses additional challenges than that of
Lin-UCB. Indeed, by a straightforward application of the
proof strategy for Lin-UCB, it is possible, under Assump-
tions 2.1 and 2.2, comfortably obtain an expected offline
regret bound, involving just the steady-state performances
(details in Appendix A.2):8

E Rf(DynLin-UCB,T) [Z J*— 1

~( dvT
o(H2).

However, when applying action uy, the DLB does not im-
mediately reach J(u), as the system needs to converge
to the steady-state according to its dynamics (Equation 2).
Consequently, the expected online reward E[y;] experiences
a transitional phase. In order to obtain a sublinear expected
online regret, we need to guarantee that during the tran-
sitional phase, when moving from one epoch m € [M]
to the next one m + 1, performance does not degrade too
much. This property can be guaranteed by the following
assumption.

Assumption 3.1. For every action uy,uy € U it holds that:

(0,u1) + (BT -A)""
=(8,u) + (B(I—A)’

w,uy) =

min J(u) w,u).

ue{u;,us}

The rationale behind the assumption is the following. We
need to guarantee that when we converge to the steady-
state associated with action uy, i.e., w*(I — A)"!Bu,,
and we apply action uy, the instantaneous expected reward

8For interpretability reasons, we highlight the dependencies on
T, p, and d only and disregard other constant and the logarithmic
terms.

E[y] cannot take values below the minimum between the
steady-state performances of actions u; and uy, i.e., J(uy)
and J(ug) respectively. In this way, the transitional phase
does not have a relevant impact on the regret rate. It is
worth noting that the assumption is surely fulfilled for linear
bandits (i.e., w = 0,,) and strictly proper LTI systems (i.e.,
6 = 0,4). Under this assumption, we are able to provide a
bound on the expected online regret.

Theorem 3.2. Under Assumptions 2.1, 2.2, and 3.1, Algo-
rithm 1 suffers an expected online regret bounded by:

E R(DynLin-UCB,T) lE J* — ]

&b ((1 + ||Ap>dﬁ) .

1- )"

Some remarks are in order. First of all, compared to the
expected offline regret bound, we obtain a multiplicative
factor that corresponds to the Frobenius norm | A || of the
dynamic matrix A. It is worth noting that the Frobenius
norm is related to the spectral gap, since |A|r < n|A|2 <
n®(A)p(A). Second, if the underlying problem does not
have a dynamics, i.e., |A|r = 0 and we choose p = 0, we
obtain a regret bound of order @(d\/f), which corresponds
to the regret bound of LinUCB. Clearly, the dependence on
p is relevant and with too large a value of p compared to the
optimization horizon T' (e.g., 5 = 1 — 1/T*/3) could make
the regret degenerate to linear. This is a case in which the
underlying system is as slow that the whole horizon T is
insufficient to approximately reach steady state.

4. Related Works

Our formulation is placed at the intersection of three re-
search areas: (i) bandits with delayed, aggregated, and
composite feedback (Joulani et al., 2013), (ii) Partially-
Observable Markov Decision Processes (POMDPs, Astrom,
1965), and online control for Linear Time-Invariant (LTT)
dynamical systems (Hespanha, 2018). In this section, we
survey the related approaches in these areas in comparison
with our model and algorithm.

Bandits with Delayed/Aggregated/Composite Feedback
The Multi-Armed Bandit setting has been widely employed
as a principled approach to address sequential decision-
making problems (Lattimore & Szepesvari, 2020). The
possibility of experiencing delayed rewards has been in-
troduced in (Joulani et al., 2013) and widely exploited in
the advertising applications (Chapelle, 2014; Vernade et al.,
2017). A large number of approaches have extended this
setting either considering stochastic delays (Vernade et al.,
2020), unknown delays (Li et al., 2019; Lancewicki et al.,
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2021), arm-dependent delays (Manegueu et al., 2020), non-
stochastic delays (Ito et al., 2020; Thune et al., 2019; Jin
et al., 2022). Some methods relaxed the assumption that
the individual reward is revealed after the delay expires,
admitting the possibility of receiving anonymous feedback,
which can be aggregated (Pike-Burke et al., 2018; Zhang
et al., 2021) or composite (Cesa-Bianchi et al., 2018; Garg &
Akash, 2019; Wang et al., 2021). Most of these approaches
are able to achieve O(+/T)) regret, plus additional terms
depending on the extent of the delay. In our DLBs, the
reward is generated over time as a combined effect of past
and present actions through a hidden state, while these ap-
proaches generate the reward instantaneously and reveal it
(individually or in aggregate) to the learner in the future and
no underlying state dynamics is present.

Online Control of Linear Time-Invariant Systems The
particular structure imposed by linear dynamics makes our
approach comparable to LTI online control for partially-
observable systems (e.g., Lale et al., 2020b; Simchowitz
et al., 2020; Plevrakis & Hazan, 2020). While the dynamical
model is similar, in online control of LTI systems the per-
spective is quite different. Most of the works either consider
the Linear Quadratic Regulator (Mania et al., 2019; Lale
et al., 2020b) or (strongly) convex objective functions (Ma-
nia et al., 2019; SimchowitzNet al., 2020; Lale et al., 2020a),
achieving, in most cases O(+/T') regret for strongly con-
vex functions and (5(T2/ 3) for convex functions. Recently,
(5(\/7) regret rate has been obtained for convex function
too, by means of geometric exploration methods (Plevrakis
& Hazan, 2020). Furthermore, (Lale et al., 2020a) reach
O(log(T)) regret in the case of strongly convex cost func-
tions competing against the best persistently exciting con-
troller (i.e., a controller that implicitly maintains a non-null
exploration). Some approaches are designed to deal with
adversarial noise (Simchowitz et al., 2020). All of these ap-
proaches, however, look for the best closed-loop controller
within a specific class (e.g., disturbance response control (Li
& Bosch, 1993)). These controllers, however, do not al-
low us to easily incorporate constraints on the action space,
which could be of crucial importance in practice, especially
in advertising domains. Our DynLin—-UCB works with an
arbitrary action space and, thanks to the linearity of the
reward in the hidden state, does not require considering
complex closed-loop controllers.

Partially Observable Markov Decision Processes As
already noted, looking at DLBs in their generality, we re-
alize that our model is a particular subclass of the Partially
Observable Markov Decision Processes (POMDP) (Astrom,
1965). However, in the POMDP literature, no particular
structure of the hidden state dynamics is assumed. The spe-
cific linear dynamics are rarely considered, as well as the
possibility of a reward that is a linear combination of the

hidden state and the action. Nevertheless, several works
accounted for the presence of constraints (Undurti & How,
2010; Kim et al., 2011; Isom et al., 2008) without exploiting
the linearity and with no regret guarantees.

5. Numerical Simulations

In this section, we provide a numerical validation of
DynLin-UCB in a synthetically generated domain. The
goal of this simulation is to highlight the behavior of
DynLin-UCB in comparison with bandit baselines, de-
scribing advantages and disadvantages. We start by intro-
ducing the DLB setting considered and the baselines for
comparison, and then discussing the obtained results. The
complete experimental results are reported in Appendix E.

Setting We consider a DLB defined by means of the
following matrices A = diag((0.2,0,0.1)), B =
diag((0.25,0,0.1)), 8 = (0,0.5,0.1)%, w = (1,0,0.1)*
and a Gaussian noise with 0 = 0.03 (diagonal covariance
matrix for the state noise).” This way the spectral gap
of the dynamical matrix is p(A) = 0.2 and ®(A) = 1.
Moreover, the cumulative Markov parameter is given by
h = (0.56,0.5,0.11)*. We consider the action space
U = {(ur,uz,u3)" € [0,1]® with uy + ug + ug < 1.5}
that simulates a total budget of 1.5 to be allocated to the
three platforms. Thus, a “myopic” agent would simply look
at how the action immediately propagates to the reward
through 6, will invest the budget in the first component of
the action, that is weighted by 0.5. Instead, a “far-sighted”
agent, aware of the system evolution, will look at the cumula-
tive Markov parameter h, realizing that the most convenient
action is investing in the first component, weighted by 0.56.
Therefore, the optimal action is u* = (1,0.5,0)" leading
to J* = 0.81.

Baselines We consider as baselines: L.in—-UCB (Abbasi-
Yadkori et al., 2011) designed for linear bandits, and
Exp3 (Auer et al., 2002) usually employed in adversar-
ial settings. Concerning the hyperparameter A for both
DynLin-UCB and Lin-UCB, we tested \ € {1,logT'}.!°
Since Exp3 requires finite actions, we consider a subset
of the action space that surely contain the optimal action.
Given that I/ is a polytope and since the objective is linear,
we enumerate all the vertices of U/, that, in this setting, can-

°It is worth noting that the decision of using diagonal matrices
is just for explanation purposes and w.l.0.g. (at least in the class of
diagonalizable dynamic matrices). Indeed, we are just interested to
the cumulative Markov parameter h and we could have obtained
the same results with an equivalent (non-diagonal) representation,
by applying an inevitable transformation T as A’ = TAT ! and
tow =T 'wand B’ = TB.

For DynLin-UCB, log T is a nearly optimal choice for X as
it can be seen by looking at the first two addenda of the exploration
factor in Equation (5).
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Figure 1. Cumulative regret as a function of the rounds comparing
DynLin-UCB, Lin-UCB (both with A € {1,log T}, and Exp3
(3 runs, mean =+ std).

not be more than d! = 6. The learning rate for Exp3 is set
as prescribed in the original paper (Auer et al., 2002).

Comparison with Lin-UCB and Exp3 Figure 1
shows the performance in terms of cumulative regret of
DynLin-UCB, Lin-UCB and Exp3. The experiments
are conducted over a time horizon of 500k rounds. For
DynLin-UCB, we employed, for the sake of this experi-
ment, the true value of the spectral gap, i.e., p = p(A) =
0.2. First of all, we observe that Exp3 suffers a signifi-
cantly large cumulative regret. Moreover, both versions of
Lin-UCB suffer linear regret. Indeed, even for a quite fast
system (p(A) = 0.2), ignoring the system dynamics, and
the presence of the hidden state, has made Lin-UCB com-
mitting to the sub-optimal (myopic) action u® = (0.5,1,0)*
with performance J° = 0.78 < J*, with also a relevant
variance. On the other hand, DynLin-UCB is able to main-
tain a smaller and stable (variance is negligible) sublinear
regret in both its versions, with a notable advantage when
using A = logT'.

Sensitivity to the Choice p The upper bound p of the
spectral radius p(A) = 0.2 represents a crucial parameter
of DynLin-UCB. While an overestimation p » p(A)
does not compromise the regret rate, but tends to slow
down the convergence process, a severe underestimation
P <« p(A) might prevent learning at all. In Figure 2, we
test DynLin—-UCB against a misspecification of p, when
A = logT. We can see that by considering p = 2p(A),
DynLin-UCB experiences a larger regret but still sublin-
ear and smaller w.r.t. Lin-UCB with A = logT. Even
by reducing p € {0.1,0.05}, DynLin-UCB is able to keep
the regret sublinear, showing a remarkable robustness to

.104
1 0 =
—p=r(A)
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0.8 | —p=04
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0.6 |- 5=0

0.4
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Figure 2. Cumulative regret as a function of the rounds comparing
Lin-UCB and DynLin-UCB with A\ = log 7', varying the upper
bound on the spectral radius p (3 runs, mean + std).

misspecification. Clearly, when setting p to 0 makes the
regret almost degenerates to linear.

6. Discussion and Conclusions

In this paper, we have introduced the Dynamical Linear Ban-
dits (DLBs), a novel model to represent sequential decision-
making problems in which the system is characterized by
a non-observable hidden state that evolves according to a
linear dynamics and by an observable noisy reward that
linearly combines the hidden state and the played action.
This model accounts for scenarios that cannot be easily rep-
resented by existing bandit models that consider delayed
and aggregated feedback. On top of it, we have proposed
a novel any-time optimistic regret minimization approach,
DynLin-UCB, that, under suitable assumptions, is able to
achieve sub-linear regret. The numerical simulation in a
synthetic domains, succeeded in showing that, in a system
where the baselines suffer linear regret, our algorithm en-
joys sublinear regret. Furthermore, DynLin-UCB proved
to be robust to misspecification of its most relevant hyper-
parameter p. To the best of our knowledge, this is the first
work addressing this family of problems, characterized by a
hidden linear dynamics, with a bandit-like approach. Short-
term future directions include the study of the complexity
of the problem by deriving regret lower bounds and under-
standing whether the considered assumptions (especially
Assumption 3.1) and the knowledge of the upper bound p
are actually unavoidable. Long-term future directions might
focus on extending the present approach to non-linear sys-
tem dynamics (e.g., to model saturation phenomena in the
awareness) and non-stationary dynamics (e.g., to account
for the natural market evolution).
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A. Proofs and Derivations

In this section, we provide the proofs we have omitted in the main paper.

A.1. Proofs of Section 2

Theorem 2.1 (Optimal Policy). Under Assumptions 2.1 and 2.2, an optimal policy w* maximizing the infinite-horizon
expected average reward J (), as in Equation (2), is given by:

vVt e N, VH; 1€ Hiq: ﬂ;k(Ht_l) =u* 3)
where u* € argmax J(u) = ¢h,u).
ueld

Proof. Referring to the notation of Appendix B, we first observe that for every policy m, we have J(w) =
liminfpy 4o Ju(w), where Jy(m) = % E[Zle y¢], is the H-horizon expected average reward. Let us start with
Equation (20), a fixed finite H € N, and considering the sequence of actions (uy, us, ... ) generated by policy =:

Ju(mw) =

|-
=

@
Il
—_

hlOF=] Blu,)) + = ZwTAt LE[x4]
t 1

||
Mm

<h E[u,]) — — Z<hﬂH sHLHO) Flu]) + — 2 Wi AT E[x].

w
I

Now, we consider two bounds on Jy (7), obtained by an application of Cauchy-Schwarz inequality on the second addendum:

1 & 1 d »
Ju(m) < — Y 0EL]) + = 3[R B
s= s=1 2
1 H
+ g Z WAL E[x,] = J), (),

t=1

H H
Tum) > 7 D0 EfwD - g7 3 ol Rl

H
1 _
+ 5 ;1 WAL E[x,] = J} ().

Concerning the term | E[us]|2, we have that | E[us]|2 < E[|us]2] < U, having used Jensen’s inequality and under
Assumption 2.1. Regarding the second term, using Assumptions 2.2 and 2.1, we obtain:

+oo
Hh[[H—s+1,+ooD H Z BT(A"1)Tw

|l=H—s+1

2

< BQ ic D(A)p(A)!

I=H—-s+1
p(A)T
= BOQP(A)————. @)
AT @)
Plugging this result into the summation over s, we obtain:
1 BQ®(A) & Hos  BOQO(A)(1—p(A)H)
H 1-p(A) &  H(1—p(A))?2

It is simple to observe that the last term approaches zero as H — +c0. Moreover, with analogous argument, it can be proved

that || Zil wTAtT E[xl]H2 — 0as H — +o0. Thus, we have that liminfg_, o J}J(g) = liminfy_, JL(E).
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Consequently, by the squeezing theorem of limits, we have:

J(x) = liminf Jy(w) = lim inf JIL{(E)

H—+0o0 I—II~>+OC
1 & 1 &
T . - _ T . . -
= minf 7 2, (0. Elu) =h (%fﬂféﬁ H ;E[“J) |
It follows that an optimal policy is a policy that plays the constant action u* € arg max,,(h, u). O

A.2. Proofs of Section 3

Theorem 3.1 (Self-Normalized Concentration). Let (ﬁt)teN be the sequence of solutions of the regression problems
computed by Algorithm 1. Then, under Assumption 2.1 and 2.2, for every X\ = 0 and é € [0, 1], with probability at least
1 =9, it holds that:

Vte N :
b

C1

<
\7EEVAN

+ \/262 <log (;) + %log (det)\(d\/})>>,

log(e(t + 1)) + caV A+

where: ¢ =UQP(A) (lU;fA) + X) )
OBP(A)
© Ot Ty
0~,2 :0,2 Q2®(A)2
<1 = p<A>2>) |

Proof. First of all, let us properly relate the round ¢ € [T7] and the index of the epoch m € [M]. For every epoch m € [M]],
we denote with ¢,,, the last round of epoch m (i.e., the one in which we update the relevant matrices V; and by):!!

to =0, tm =tm_1+ 1+ H,,.

We now proceed at defining suitable filtrations. Let F' = (F})c7y such that for every ¢ > 1, the random variables
{ui,y1,..., 1, Yt—1,u;} are F;_j-measurable, i.e., F;_1 = o(uy,y1,...,W_1,Y:—1,U;). Let us also consider the
filtration indexed by m, denoted with F = (ﬁm)me[ 7 and defined for all m € [M] as Fn = Fi,, +1—1. Thus, the random
variables fm,l-measurable are those realized until the end of epoch m except for ¥, .

Since the estimates ﬁt do not change within an epoch, we need to guarantee the statement for all rounds {¢,, }mepasg only.
For these rounds, we define the following quantities:

g’m = Yt s
Uy, =u,, (or any u; with [ € [t;,—1 + 1,¢,,] since they are all equal)
Hpy,+1
s _ TAs—l
Em =M, + w €tpp—s)
s=1
;(m—l = Xty_19
hm = htmv
Vm = Vtma
b, = tm -

"1t is worth noting that the variables ., are deterministic.
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We prove that (ém)me[[ ] is a martingale difference process adapted to the filtration F. To this end, we recall that, by

construction that (1)) and (€;).e[ry are martingale difference processes adapted to the filtration . It is clear that fm is
F.n-measurable and, being o2-subgaussian it is absolutely integrable. Furthermore, using the tower law of expectation:

- - Hy,+1
E |:§m|~7:m71:| =K [ﬂtnl + Z wTASletm,sftm1]
s=1

Hp+1

=E[n,,|Ft,,-1] + E [ Z W' A Eley, sl Fr,—s—1]| Pt -1 | =0,

s=1
since the system is operating by persisting the action after having decided it at the beginning of the epoch. Thus, by

exploiting the decomposition in Equation (1), we can write:
Hp+1
~ Hp+1] ~ Hop+1 i—1
Ym = Yt,, = <h[[07 + ]]’ um> + wTA + Xtmo1 + Mt + 2 wTA_5 €t —s
s=1

= (nIOHn D G S L WA IR, 1 g,
®)

= (b, W,y — WIIm 4200 S TAm g

where we simply exploit the identity h = hl[0#n+1 4 KHm+2,%) We now introduce the following vectors and matrices

~

uj O
U,, = Do )e R™*4 Ym=| t |eR™,
Uy, Um
& wTAH 2%,
ém =] |eR™, Uy, = : eR™,
Em wTAHn 2%
<h[[H1+1,oo[)7ﬁ1>
Em = : e R™.

(hlHm+1.2) g
Using the vectors and matrices above, we observe that Vo, = AL+ INJ;INJm and Bm = ﬁﬁjm Furthermore, by exploiting
Equation (8), we can write:

}N’m = Umh - gm + ﬁm + Sm-

Let us consider the estimate at m € [M]:

We now proceed at bounding the | - |3, -norm, and exploit the triangle inequality:

Vi

Hﬁm_th é)\H\N/;thV +HV;II~J;§T“HV +H‘~[;1ﬁ$”'7muv +H\7;11fj;£m
071+HU7T"€'”

T

= Ablg + | Urn
;_\/___/

~ ~ _ 17
Vit

Vi
@ ®) ©

L+ HU,Tnﬂm

(d
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where we simply exploited the identity [V ~'x[3, = x"V7!'VV~lx = x"V~!x = |x|3,_,. We now bound one term at a
time. Let us start with (a):

@° = A* |h|J-1 = MW"V, 'h
<XV imi3

< A|h[3
QB@(A)>2
<afe+ /=)
( 1—p(A)

o -1
where we observed that HVm H HVm H < A~!L. Finally, we have bounded the norm of h:
2

Ibll, =

Zh{}
<2(
s=0
+o0

< 0]z + [wl2IBl2 Y |AJ*~

s=1

QB®(A)

<O+
1—p(A)

where we have exploited Assumptions 2.1 and 2.2.

‘We now move to term (b):

I
0
3 H
ch
3
<

N

>l= >

2

2

2
L i~ 2 [y [H 2,000
(S prern,
=1
2
LA ()
=M1 —p( ’

N

where we have employed the following inequality:

s
2

Z AJ'B

j=H;+2
+00

<Jwl, Bl, > HAJ"1H2
j=H;+2

p(A)IH
1—p(A)

< QB®(A)
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Let us now consider term (c):

o= oo

_ ~TTT Nr—177T o~
L =v,U,V U, v,

m

N

N 2
|05
2

m 2

Z TAH[-‘,-le 1ul

s=1

1
A
1
Y

2

1 (& 2

Y <Z1 Jwlla JAFH], %120 |2>
2

<M <Z Hz-‘rl) .

N

We now bound the summations, exploiting the inequality p(A) < 5, holding by assumption:

gl

Il
NgE

D (A

I=

-
Il
-

logl

()"

log
Xp <— o gp(A)l l)

<log(m+1)+1<log(t+1)+1=1log(e(t+1)),

/A
NgE
e}

Il
—

Il
NgE

Il
—

Il
D=
~| =

Il
—

having exploited the fact that m < ¢ and the bound with the integral to the harmonic sum.

Finally, we consider term (d). In this case, we apply Theorem 1 of (Abbasi-Yadkori et al., 2011), observing that the
conditions are satisfied. To this end, we first need to determine the subgaussianity constant for the noise process &;. For
every [ € [m] and ¢ € R, and properly using the tower law of expectation:

Hp+1
E [exp (Cé) |~7?l—1] =E leXP <C77tl +¢ Z wTAS_lﬁtl—s> |ftl—1]

s=1
Hp+1
= E [exp (Q]tz) |]:tl—1] E [E [exp (CUJTAS?lﬁtl—s) ‘ftl—l—s] |]:tl—1]

<exp(<2;)
)T

<o (5
exp(;@ (Hm 5 o)
(%5 (- a=ham)

[

1 2 TAS—1|2+,2
w A‘ g
E [e P (C H 5 H2 ) |7:tz 1:|

<2Q2@(A)2P(A)2(371)02
()

§

exp

i E+ e

l\'JEI:

= exp
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Thus, simultaneously for all m € [M]), with probability at least 1 — ¢, it holds that:

2 _ e g P 2 Q20(A)? 01 e (V)
) _HUmgm g <%0 (1+ Gy e (5) 5l X

O

We now proceed at bounding the offline regret R°T and, then, relating the offline regret R°T with the online regret R, as
defined in the main paper.

Theorem A.1. Under Assumptions 2.1 and 2.2, having selected B; as in Equation (5), for every § € [0, 1], with probability
at least 1 — § DynLin-UCB suffers an offline regret R bounded as:

dX

logT TU?
Roﬂ(pynLin—UCB, T) <, |8dTB2 (1 + 1%1) log <1 + )
og =
Moreover, the expected offline regret E R is bounded as:

off T %)
E R¥(DynLin-UCB,T) < O <(1 — oy

dVT )
Proof. For every epoch m € [M], let us define B,,_1 = f, , and define the confidence set Cp_; = {h € R? :
Ih —hy-1ly, . < Bm-1}. Let us start by considering the instantaneous offline regret 7, at epoch m € [M]. Let

u* € arg max, g, ¢h,u) and let }len_l € Cpp—1 such that UCB,;  _, 4+1(0,,) = <I~17Tn_17 U, . Thus, with probability at least
1 — 6, we have:

P = J* = J (W) = (hyu*) = (h, ) £ B,y W)

<<¢hl,_ —h ) )
<|Bl bl [l
m—1 y
< (‘Ejn_l - Bm_l‘ ¥ Hﬁm_l - hH > [T - (10)
Vin—1 V-1 L
< 2B [y - (11)

where line (9) follows from the optimism, line (10) derives from triangle inequality, line (11) is obtained by observing that
h € C,,,—1 with probability at least 1 — ¢, simultaneously for all m € [M], thanks to Theorem 3.1, having observed that
Bm—1 is larger than the right hand side of Theorem 3.1.

We now move to the cumulative offline regret over the whole horizon T, by decomposing w.r.t. the epochs and recalling that
we pay the same instantaneous regret within each epoch:

M M M
R™(DynLin-UCB,T) = Z (Hp + )7, < Z (H,, +1)2 Z 72 .
m=1 m=1 m=1

Concerning the first summation, we proceed as follows, recalling that M < T and H,, < H, for all m € [M]:

m=1

log T
(Hm+1)2<T(HM+1)<T<1+ °g1>.
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For the second summation, we following the usual derivation for linear bandits, recalling that Em_l < E v—1 for all
m e [M]:
M M
~2 2 ~ 2
T < 4001 Z [ |-
m=1 m=1
2

~ MU TU?
< 8dp3,_, log (1 + ) < 8dp2_, log <1 + dA) ,

where the last passage follows from the elliptic potential lemma (Lattimore & Szepesvari, 2020, Lemma 19.4). Putting all
together, we obtain:

logT TU?
R™(DynLin-UCB,T) <, |8dTB2_, [ 1+ £1 log (1+—— ).
log 5 dA

We can also arrive to a problem-dependent regret bound, by setting A := SUPyey/¢h,uy<(h,u*y (B, W). Since the instantaneous
regret is either O or at least A, we have:

M 7»:»2
R"(DynLin-UCB,T) < Y (Hm + Db
m=1
Hy +1 ~9 MU?
<=2 -
A 8dfBy_1 log (1 + i >

8d logT\ TU?
<211 ) g2 10g (1 .
A( +10g/1))ﬁT log( D

By setting & = 1/T, we obtain the offline regret in expectation, highlighting the dependence on 7', p, and d only:

dﬁ)

off . A
E R (DynLin-UCB,T) < O <(1 o

where we used the fact that @ < 1%? and p(A) < p. O

The following lemma relates the expected offline regret with the expected online regret.
Lemma A.2. Let T € N be the optimization horizon. Then, under Assumptions 2.1, 2.2, 3.1, for Algorithm 1, it holds that:

ER(DynLin-UcB,T) < O (1 + 2®(A)|A|)E R (DynLin-UCB, T)).

Proof. First of all, we observe that for any policy, the cumulative effect of the noise components is zero-mean. Thus, it
suffices to consider the deterministic evolution of the system. Let (U1, ...,Uas) be the sequence of actions played by
Algorithm 1 over the M epochs. We consider one epoch m € [2, M] at a time, starting from the second one. Let us consider
the state that is reached at the end of epoch m — 1, i.e., x;,, , that can be expressed as:

Hpm+1
Xipoy = Ay 1 Y AT B,
=1
We compare this with the steady state that would have been reached by applying the input U,,—1, i.e., X, _, = (I —
1~ + _ ~
A) 1um—1 = Zl:al) Al 1Bum_1:

thm—l - X

+00
I—1p
Z A Bum,1
l=Hp,,+2

tm—le < ||AHM71+1Xtm—2H2 +

2
p(A)fm
1—p(A)

®(A) BU
<ot (+ m) .

< X®(A)p(A)Tm=1+1 L BUD(A)
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where we used the fact that p(A)H#=-1+1 < 1/(m — 1). We now consider the evolution of the state of the system, starting
from X;, _, and applying action i,,. To this end, we consider the steady state X; = (I — A)~'1i,, that we would obtain
by constantly applying action U,,. Let [ € [H,, + 1], we denote with X; _, 1 the state reached after [ rounds staring from
state X,

m—1"°

l
Ri, 1= A%y, + > ATIBi,

s=1
= Aliﬁm—l + (I - Al)(I - A)ilBﬁ'rn
=A%, +(I-ADx%,,

where we exploited Lemma A.3. Now, we sum over [, limited to epoch m:

H,,+1 H,,+1 H,,+1
DM R = Y A%, + Y AT-ADx,,
=1 =1 =1
=AI-A)'TI-AFTNY)x, | —%, )+ (Hp + 1%, (13)

Thus, passing to the reward and averaging over the rounds of epoch m, we introduce the following quantity, representing the
average reward in epoch m:

- 1 H,+1 1 Hp+1
W(ﬁm) = ﬁ Z :’y\t7n,—1+l = <0a ﬁm> + H. +1 Z <w7§t7n,—1+l>'
m =1 m =1

Let us also consider the sequence of states generated starting from state x;, _, and applying action U,,:

l
l s—1lp~
Xtp1+l = A Xty T Z A Bu’rru

s=1
and the corresponding outputs, averaged over the rounds of epoch m:

Hp+1

Z Ytypo1+l = <07 i-\im> +

=1

Hp+1

Z <wa Ktp—1 +l>'

=1

1

1
W(d,,) :
(W) H,, +1

T H, +1

Putting all together, and limiting to epoch m, we obtain:

—~ o~

J(Um) = W(lp) = J(0n) = W(Tly) + W) = W) .

(@) (b)

We now consider one term at a time and start with term (b):

1 H’HL+1

Z <“"7 )/Etm_1+l> - <07 ﬁ7n>
=1

1 Hp+1

e Y ke, i)
H, +1 =

(b) = W(ﬁm) - W(ﬁm) = <0a ﬁm> + H, +1

1 Hp+1

= Z <w75&t'm,71+l - Xtm71+l>

Hp,+1 &

1 Hp+1

_ TAl (& _
= 7Hm 1 lzzl w A (Xtm,1 Xtm—l)

QOB(A)2p(A) BU
S TTmo1 CX+1—MA»’
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having bounded w” A (X, _, — x,,_,) < Qp(A)'®(A)|%,,_, —%¢,,_, H2 and, further, by setting [ = 1 and exploiting
Equation (12) for bounding the norm. We now move to term (a), and exploit Equation (13):

Hp+1

Z <w’ Xtm—1+l>

=1

1
H, +1

(a) = J(ﬁm) - I//I7(ﬁm) = <07 ﬁm> + <w7§tm> - <07 ﬁm> -

1 _
= me " 1(.‘JTA(I —A)” ( AH’"+1)(xf — X, )-

Let us rename R = A(I — A)~1(I — A#m*1) and recall that the involved quantity is a scalar:
—X,,) = tr (WR(Xe,_, —%,,))

= tr (R(Xt,,_, — X, )w”)

< R p | Repoy — %)@ |

having exploited the Cauchy-Schwarz inequality over the inner product space of matrices, i.e., tr(XY) < |X|#|Y| . For
the first norm, we obtain:

IRIp < AR [(T-A)TH T - ATH]) = AL Z All < (Hp+1)2(A) A,
2
using the inequality between matrix norms | XY ||z < |X| r[Y]2 and bounding ”Zfig A1H2 d(A )ZzH% p(A) <

H,, + 1)®(A). For the second term, recalling that (X; , — X )w? has rank 1, we obtain:
( g ot~ Xty

e R P

= |w" (X, , —Xt,,) £ 0™, £ J¥|
(J* = (0"0, + w'Xs, ) + (J* — (670 + w'xy,))
max{Tm, "m-1} + 'm

2(Fm—1+Tm),

NN N

where we used Assumption 3.1 for the first inequality. Putting all together, we have:

T
E R(DynLin-UCB,T) = > J* —y; (14)
t=1

(Hp, + 1) (J* — W (1))
2

=(J" —y) +

AL

M
=J*+OU + QX + ) (Hp +1) (J* = J (@) (15)
M " - M
3 (H + 1) (T@n) = W(@n)) + Y (o + 1) (W (fin) = W (i)

<JF+0U + QX + (Hpm + 1)7,

2

=
ﬁMz

M

~ H, +1
+20(A)|Alr D] Py + ) + QR(APp(A) 3]~ (16)
m=2 m=2
< J*+0U + QX + QP(A)*p(A)(Hys + 1) log(eM)
+ (1 +2®(A)|A||p) ER™(T,DynLin-UCB). (17

where in line (15) we exploited the inequality J* — y; < J* + QU + QX, we used the bounds on (a) and (b) in line (16),
we used the definition of offline regret and bounded the harmonic summation in line (17). O
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Theorem 3.2. Under Assumptions 2.1, 2.2, and 3.1, Algorithm I suffers an expected online regret bounded by:
T
E R(DynLin-UCB,T) =E lz J* — yt]
t=1

5 ((L+ |AlR)AVT
= <<1p>/> |

Proof. We simply combine Theorem A.1 and Lemma A.2. O

A.3. Technical Lemmas

Lemma A.3. Let A € R"*™. Then, for every m € N, it holds that:

mf Al=I-A) T I-A"=T-A™T-A)"L
=0

Proof. Let us simply write explicitly the expressions:

+00 +00 +00
I-A)"'I-A™) = (Z Ai> I-A™) =Y A=) A"
i=0 i=0 i=0
+00 +00 m—1
=) A=Y A= ) AL
i=0 i=m i=0
An analogous derivation holds for the second expression. O

B. Finite-Horizon Setting

In this section, we compare the finite-horizon setting with the infinite-horizon one presented in the main paper. We shall
show that under Assumption 2.2, the two settings tend to coincide when the horizon is sufficiently large. Let us start by
introducing the H-horizon expected average reward, with H € N being the optimization horizon:

1 H X1 = Ax; + Bu; + ¢
Jp () :=ElHZyt] where y = {(w,xpy+{O,upy+n, , tel[H], (18)
t=1 uy = (Hi—q)

where the expectation is taken w.r.t. the randomness of the state noise €, and reward noise 7;. We now show that the optimal
policy for the finite-horizon setting is a non-stationary open-loop policy.

Theorem B.1 (Optimal Policy for the /-Horizon Setting). If H € N, an optimal policy % = (W;k[’t)te[[ ] maximizing the
H -horizon expected average reward J () as in Equation (18) is given by:

Vte [H], YHi—1 € Hi1: 7y (Hi—1) = ufy, where uj, € arg max (hI0H= ),
ueld

Proof. We start by expressing for every ¢ € [H] the reward y; as a function of the sequence of actions u = (u1,...,uy)
produced by a generic policy 7. By exploiting Equation (3) instanced with H = ¢ — 1, we have:

t—1 t—1

Yt = Z<h{s}7 ut_s> + wTAt71X1 + Mt + Z wTA571€t_S.
s=0 s=1

By computing the expectation, using linearity, and recalling that the noises are zero-mean, we obtain:

t—1

Ely:] = > <ht* B[, ]) + w" A" E[xy].
s=0
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By averaging over t € [H], we obtain the H-horizon expected average reward:

Ju(mw) =

-+
Il
—

T =
M=
=
s

T
=

[ =

| H

<Z hit— “’}> E[us] + T Z W AT E[x] (19)
H

¢h

1
0,H—s TAt—1
[ H,E[“s]>+ —tglw A ]E[Xl]. (20)

|~

[
| =
Mm fi M= 0 Mm

1

S

where line (19) is obtained by renaming the indexes of the summations, and line (20) comes from the definition of cumulative
Markov parameter hI%# 51 It is now simple to see, as no noise is present in the expression, that the performance
Jp () is maximized by taking at each round s € N an action u* = 7*(H,_1) such that whose expectation satisfies

E[u}] = arg maXE[u5]<h[[O’H =51 E[u,]). Clearly, we can take the deterministic action such that u* = E[u*].

O

We now show that for sufficiently large H, the H-horizon expected average reward Jy tends to coincide with the infinite-
horizon expected average reward.

Proposition B.2. Let H € N. Then, for every policy m it holds that:

BUQ®(A)(1 — p(A)H)

P
[T (m) — J(m)| < H(1 - p(A))

Proof. Consider two horizons H < H' € N, and let (uy, ug, . ..) be the sequence of actions played by policy zr. Using
Equation (20), we have:

H
Ju(w) — Jp(w) = % Z<h[[0 H—s] JE[u,]) — — Z<h[[0 H'—s]  E[u,]) (21)
s=1 s=1
1 H
= PRCEE S BN Z<hﬂ0 =5l _h Elu,]) (22)
s=1
1 a HH*3+1 +OO[) 1 [[H/75+1 +OO[)
=—=>«h H EBlu)) + Z<h ) Elu,)). (23)
Hs:l H s=

As shown in Appendix A.1, we have that the second addendum vanishes as H’ approaches +oo:

H'

Z(h[[HLSH o) E[uJ}‘ —0 when H' — +o0.

H/

Concerning the first addendum, we have:

H
2 Hh[[H—s+1,+oo|) H
2

s=1

N

E

Z<h[[H s+1,+00) E[us]>‘

= H s=1
_ BUQS(A)(1 - p(A)")
T H(I-p(A)
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C. System Identification

This section presents a solution to identify matrices A, B, C, and D characterizing a Linear Dynamical System starting from
a single trajectory. We adopt a variant of the Ho-Kalman (Ho & Kalman, 1966) algorithm. We start from the identification
method proposed by Lale et al. (Lale et al., 2020a, Section 3), where authors consider a system of the type:

Xt41 = AXt + Bllt + €4, (24)
}N’t = CXt + Z;.

Our setting can be seen as:

X1 = Axy + Buy + €, (25)
y: = Cx; + Duy + 2z,

with x;, e, € R”, u; € R?, and y¢,z; € R™. The noise over state transition model €, and output z; are o2-subgaussian
random variables.

We consider in this part the standard control problem notation adopted for Linear Dynamical Systems. The mapping to our
problem is straightforward by considering C = v, w” and D = v,,0" (v,,, = 1,, and v, = 1,).

In predictive form, the system described in Equation (24) is:

Xi+1 = AX; + Bu, + Fyy,
Vi = CXy + ey,

where:

A =A-FC,
F = AXC'(CEC" +7°1) 7!,

and X is the solution to the following DARE (Discrete Algebraic Riccati Equation):
3 =AZAT - AXCH(CZC’ + ¢’1)7'CZA" + 0’1
In order to identify this Linear Dynamical System, we want to detect a matrix g]
g,=[CF CAF ... CA"7'F CB CAB ...CA" 'B]. (26)
To identify through least squares method matrix Qy, we construct for each ¢, a vector q~5t:
<Zt = [yf_l cer Vieg Uiq .- uE_H]T e Rm+p)H (27)
The system output y; can be rewritten as:

Ve = gy%ﬁ +e + CAHXt—H~

The output of the system under analysis (Equation 25) is:
y(t) =¥+ Duy
= Q}Et +Du; + e+ CAPx,_p
We can incorporate the contribution of Du; in QN,/ obtaining G,
G,=|[CF CAF ... CA""'F D CB CAB ...CA"'B].
The related vector ¢; is:

So=[via - yim W u, ... uly] RO (28)
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The best value of G,, can be found through regularized least squares as in (Lale et al., 2020a, Equation 10):

t

éy:arg)gnmnxu% D1 lly- — Xo- 3, (29)
T=t—H

where | - | represents the Frobenius norm.

The matrix D can be directly retrieved from _C';y In order to get matrices A, B, and C, we remove the values related to D

from éy and we retrieve QNy From how on we can refer to the algorithm proposed in the work of Lale et al. (Lale et al.,
2020a, Appendix B).

E. Experimental Results

In this section, we present two more contributions of the experimental evaluation provided in the main paper. First, we
construct a simulator by generalizing real-world data using the variant of the Ho-Kalman method presented in Appendix C,
and we test DynLin-UCB compared with Lin-UCB, Exp3 and the Expert Policy (i.e., the policy applied by human
experts). Second, we study the behavior of DynLin-UCB, Lin-UCB and Exp3 for different magnitude of noises in both
the state transition model and the output for the setting presented in the main paper.

DynLin-UCB is considered in two version, depending on the choice of the hyper-parameter A. We consider the case with
A =1 (referred as DynLin-UCB (1)), and A = log(7T") (referred as DynLin-UCB (log T")), where T is the total number of
steps performed in the experiment.

Baselines In this section, the quality of DynLin—-UCB is compared with several baselines. First, we compare our solution
with Lin-UCB algorithm, which is a particular case of our solution, that, given the nature of the problem (output is a linear
combination of the actions plus stochastic noise), is a straightforward baseline. As already done in Section 5, we consider
two version of Lin-UCB, one with hyper-parameter A = 1 (referred as Lin-UCB (1)), and the other with A = log(T')
(referred as Lin-UCB (logT")), Second, we compare our algorithm with Exp3 (Auer et al., 2002), an algorithm designed
for adversarial bandits.'? Lastly, only in the case of real-world data, we compare our solution with the human-expert policy
(referred as Expert Policy) which does not consider the interactions and delays explicitly. This policy is static, directly
generalized from the original dataset by learning the average budget allocation over all platforms from the available data. If
such an allocation does not belong to the action space I/, a projection into I/ is performed.

E.1. Real-world Data

In this section, we present an experimental evaluation based on real-world data coming from three of the most important
advertising platforms of the web (Facebook, Google, and Bing), related to a large number of campaigns for a value of
more than 5 Million USD over 2 years. Starting from such data, we generalized the best model by means of a specifically
designed variant of the Ho-Kalman algorithm (Ho & Kalman, 1966).!> We used the matrices estimated with Ho-Kalman to
build up a simulator and compare the performances of DynLin-UCB and the baselines in a controlled environment. The
resulting system has p(A) = 0.67. To assert the quality of the solution, we evaluate DynLin—-UCB in comparison with the
baselines presented above for T' = 10° steps over 10 runs.

Results Figure 3 gives an overview of the results of this simulation. More in details, Figure 3a shows the performance
of each algorithm in terms of cumulative regret, while Figure 3b shows the instantaneous reward. It is worth noting how
neither Lin-UCB nor Exp3 are able to converge to the optimal choice. Indeed, they immediately converge to a sub-optimal
solution and persist it. DynLin—-UCB, instead, shows a convergence trend towards the optimal policy over time in both the
setting (A = 1 and A = log(T)), even if the best solution is the one which employs A = log(T"). The Expert Policy
which tends to consider instantaneous effect only and does not take into account correlations between platforms is also
sub-optimal.

It is worth noting that in the adversarial setting the regret is defined by comparing the learner’s behavior with the best fixed action.
However, the regret guarantees of Exp3 are fully meaningful for the non-adaptive adversaries only to which our setting cannot be reduced
to, since the hidden state evolution (and so the reward) depends on the actual played actions.

3The complete method used to retrieve the best model generalizing data is described in Appendix C.
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Figure 3. Performance of DynLin-UCB, Lin-UCB and Exp3, and the Expert Policy in the system generalized from real-world
data. (10 runs, mean + std)

E.2. Noise Effect

In this experiment, we evaluate the performance of DynLin-UCB and the other bandit baselines described above at different
values of noise. The evaluation is performed over 10 runs considering the setting presented in Section 5 and lasts for
T = 106 time steps. The analysis considers noisy state transition model and output subject to different magnitude of noise.
The noise in this simulation is a zero-mean Gaussian noise with variance o2 = {107°,10~%,1073, 102,107, 1}.

Results Figure 4 shows the results of the experiment for the different values of 2. It is clearly visible how DynLin-UCB
performs in almost the same way no matter the noise at which the system is subject to, leading always to sub-linear regret.
On the other hand, Lin—-UCB regret is different in every simulation we perform. Indeed, with the a low level of noise
reaches linear regret and does not converge (showing linear regret), while for large values of noise it converges very quickly.
This is due to the nature of the confidence bound of Linear bandits that is not able to take into account such a complex
scenario and lead to no guarantees in this setting. Exp3 is not able to reach the optimum in this scenario, independently

from the value of the noise o2.

Infrastructure and Computational Time The code used for the results provided in this section has been run on a Intel(R)
I5(R) 8259U @ 2.30GHz CPU with 8 GB of LPDDR3 system memory. The operating system was macOS 12.2.1, and
the experiments have been run on Python 3.9.7. The experiment performed over real-world data takes overall 90 minutes
to to run all the algorithms and perform 10 runs over 10° rounds each. The experiment to evaluate the performance of
DynLin-UCB and the other bandit baselines takes overall 8 hours to perform the 6 experiments of 10 runs each over 10°
rounds. It is worth noting that the time complexity of DynLin-UCB is upper-bounded by the one of Lin-UCB.
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Figure 4. Performance of DynLin-UCB, Lin-UCB and Exp3 at different values of 2. (10 runs, mean + std)




