

SETTING

INTERACTION PROTOCOL: At every round $t \in [T]$, we choose an action $\mathbf{x}_t \in \mathcal{X}$ and observes $y_t \sim \text{Ber}(f(\mathbf{x}_t))$

<u>GOAL</u>: Maximize a *fixed unknown* function $f : \mathcal{X} \to [0, 1]$ over a decision set $\mathcal{X} \subseteq \mathbb{R}^d$

<u>REGULARITY CONDITIONS</u>: *f* belongs to a reproducing kernel Hilbert space (RKHS) \mathcal{H}_k with bounded kernel k **<u>LEARNING PROBLEM</u>**: Minimize the regret $R_T(\mathfrak{A}) \coloneqq T f(\mathbf{x}^*) - \sum_{t \in [T]} f(\mathbf{x}_t)$ where $\mathbf{x}^* \in \arg \max_{\mathbf{x} \in \mathcal{X}} f(\mathbf{x})$

STATE OF THE ART

SUBGAUSSIAN

NO STRUCTURE	Lattimore and Szepesvári 2020 (Corollary 5.5)	Garivier and Cappé
LINEAR	Abbasi-Yadkori et al. 2011 (Theorem 2)	Faury et al. 2022
METRIC SPACE	Kleinberg et al. 2008 (Theorem 4.2)	Magureanu et al. 2

BERNOULLI

2011 (Theorem 10) (Proposition 3) 2014 (Theorem 2)

OPEN PROBLEMS

1) Can we effectively estimate $f(\mathbf{x})$ in a new point $\mathbf{x} \in \mathcal{X}$ based on the history of past observations $\mathcal{G}_t := \{(\mathbf{x}_s, y_s)\}_{s=1}^{t-1}$ where y_s are Bernoulli samples?

2 Can we derive concentration guarantees for the deviation $|f(\mathbf{x}) - \mu_t(\mathbf{x})|$ (being $\mu_t(\mathbf{x})$ a suitable estimator of $f(\mathbf{x})$) which is tight for the Bernoulli observations?

3 Can we design regret minimization algorithms which

achieve a log T regret guarantee, highlighting the dependence on $D_{KL}(f(\mathbf{x}), f(\mathbf{x}^*))$ when X is finite?

REFERENCES

Y. Abbasi-Yadkori, D. Pál, and C. Szepesvári. Improved algorithms for linear stochastic bandits. In NeurIPS, 2011.

S. Chowdhury and A. Gopalan. On kernelized multi-armed bandits. In *ICML*, 2017.

L. Faury, M. Abeille, K. Jun, and C. Calauzènes. Jointly efficient and optimal algorithms for logistic bandits. In AISTATS, 2022.

A. Garivier and O. Cappé. The KL-UCB algorithm for bounded stochastic bandits and beyond. In COLT, 2011.

R. Kleinberg, A. Slivkins, and E. Upfal. Multi-armed bandits in metric spaces. In STOC, 2008.

T. Lattimore and C. Szepesvári. Bandit algorithms. Cambridge University Press, 2020.

S. Magureanu, R. Combes, and A. Proutière. Lipschitz bandits: Regret lower bound and optimal algorithms. In COLT, 2014.

N. Srinivas, A. Krause, S. Kakade, and M. Seeger. Gaussian process optimization in the bandit setting: No regret and experimental design. In ICML, 2010.