

DYNAMICAL LINEAR BANDITS

MARCO MUSSI, ALBERTO MARIA METELLI AND MARCELLO RESTELLI

{marco.mussi, albertomaria.metelli, marcello.restelli}@polimi.it

MOTIVATION

- In real-world scenarios, actions leads both to instantaneous and delayed effects
- Delayed effects can be modeled by means of a hidden state
- The hidden state evolves depending on the previous hidden state and current actions

CONTRIBUTIONS

- We define **Dynamical Linear Bandits** to represent sequential problems with a hidden state evolving with a linear unknown dynamics
- We show how to represent the problem with a unique Markov Parameter
- We show that the optimal policy is a constant action
- We provide a **lower bound**, also proving that we cannot avoid knowing an upper bound on the **spectral radius** of the transition matrix
- We propose **DynLin-UCB**, an **optimistic regret** minimization algorithm and we provide:
- a **regret analysis** resulting in $\mathcal{O}(\sqrt{T})$ expected regret
- an extensive numerical validation

SETTING - OVERVIEW

DYNAMICAL LINEAR BANDITS (DLB)

Reward

$$y_t$$
 $\mathbf{x}_{t+1} = \mathbf{A}\mathbf{x}_t + \mathbf{B}\mathbf{u}_t + \boldsymbol{\epsilon}_t$

New state

Delayed reward
re

- The state $\mathbf{x}_t \in \mathbb{R}^n$ is **not observable**
- The action \mathbf{u}_t can be chosen in action space $\mathcal{U} \subseteq \mathbb{R}^d$
- ω , θ , A, and B are unknown

ASSUMPTIONS

- Spectral radius: $\rho(\mathbf{A}) < 1$ STABILITY • $\Phi(\mathbf{A}) = \sup_{\tau \geqslant 0} \|\mathbf{A}^{\tau}\|_2 / \rho(\mathbf{A})^{\tau} < \infty$
- $\|\cdot\|_2$ of θ , ω , B, u, x bounded BOUNDEDNESS
- $\sup_{\mathbf{u},\mathbf{u}'\in\mathcal{U}}\langle\boldsymbol{\theta},\mathbf{u}-\mathbf{u}'\rangle\leqslant 1$
- η_t and ϵ_t are σ^2 -subgaussian
 - } SUBGAUSSIANITY

SETTING - OPTIMAL POLICY AND LOWER BOUND

CUMULATIVE MARKOV PARAMETER

 $\mathbf{h} = \boldsymbol{\theta} + \mathbf{B}^{\scriptscriptstyle \mathrm{T}} (\mathbf{I} - \mathbf{A})^{-\scriptscriptstyle \mathrm{T}} \boldsymbol{\omega}$

OPTIMAL POLICY

 $\mathbf{u}^* \in \arg\max \langle \mathbf{h}, \mathbf{u} \rangle$

EXPECTED AVERAGE REWARD

$$J := \liminf_{H \to +\infty} \mathbb{E} \left[\frac{1}{H} \sum_{t=1}^{H} y_t \right]$$

Online Expected Regret Lower Bound

$$\mathbb{E} R(\underline{\boldsymbol{\pi}}, T) = \mathbb{E} \left[\sum_{t=1}^{T} J^* - y_t \right] \geqslant \Omega \left(\frac{d\sqrt{T}}{(1 - \overline{\rho})^{1/2}} \right)$$

ALGORITHM - DYNAMICAL LINEAR UPPER CONFIDENCE BOUND (DYNLIN-UCB)

DynLin-UCB is an optimistic regret minimization algorithm that operates in **epochs**

- Played action is retrieved using an **optimistic** index
- **Epochs** are of increasing length H_m
 - Knowledge of an **upper bound on the spectral** radius $1 > \overline{\rho} \geqslant \rho(\mathbf{A})$
- The selected action is **persisted** for H_m times
- The **regression** estimate Markov parameters $\hat{\mathbf{h}}_t$ is performed only using the last sample
 - i.e., when the hidden state is approximately **steady**

Algorithm 1 DynLin-UCB

Initialize
$$\mathbf{V}_0 = \lambda \mathbf{I}_d$$
, $\mathbf{b}_0 = \mathbf{0}_d$, $\hat{\mathbf{h}}_0 = \mathbf{0}_d$, $m \leftarrow 1, t \leftarrow 1$

while t < T do

Compute \mathbf{u}_t^* maximizing $UCB_t(\mathbf{u})$ Define $H_m = \lceil \log m / \log(1/\overline{\rho}) \rceil$ for $j \in \{1, ..., H_m\}$ do Play $\mathbf{u}_t^* = \mathbf{u}_{t-1}^*$ and Observe y_t $t \leftarrow t + 1$ end Update $\mathbf{V}_t = \mathbf{V}_{t-1} + \mathbf{u}_t \mathbf{u}_t^{\mathrm{T}}$

 $\mathbf{b}_t = \mathbf{b}_{t-1} + \mathbf{u}_t y_t$

Compute $\hat{\mathbf{h}}_t = \mathbf{V}_t^{-1} \mathbf{b}_t$

 $m \leftarrow m + 1$

OPTIMISTIC ACTIONS CHOICE

$$\mathbf{u}_t^* = \underset{\mathbf{u} \in \mathcal{U}}{\operatorname{arg\,max}} \ \mathbf{UCB}_t(\mathbf{u}) \coloneqq \langle \widehat{\mathbf{h}}_{t-1}, \mathbf{u} \rangle + \beta_{t-1} \|\mathbf{u}\|_{\mathbf{V}_{t-1}^{-1}}$$

BOUND FOR DYNLIN-UCB

$$\forall t \in [1, T]: \qquad \beta_t = \frac{\overline{c}_1}{\sqrt{\lambda}} \log(e(t+1)) + \overline{c}_2 \sqrt{\lambda} + \sqrt{2\overline{\sigma}^2 \left(\log\left(\frac{1}{\delta}\right) + \frac{d}{2}\log\left(1 + \frac{tU^2}{d\lambda}\right)\right)}$$

where \bar{c}_1 , \bar{c}_2 , and $\bar{\sigma}^2$ are constants, and $\lambda > 0$ is a regularization parameter

Online Expected Regret Upper Bound

$$\mathbb{E} R(\text{DynLin-UCB}, T) \leqslant \mathcal{O}\left(\frac{d\sigma\sqrt{T}(\log T)^{\frac{3}{2}}}{1 - \overline{\rho}} + \frac{\sqrt{dT}(\log T)^2}{(1 - \overline{\rho})^{\frac{3}{2}}} + \frac{1}{(1 - \rho(\mathbf{A}))^2}\right)$$

SIMILAR SETTINGS

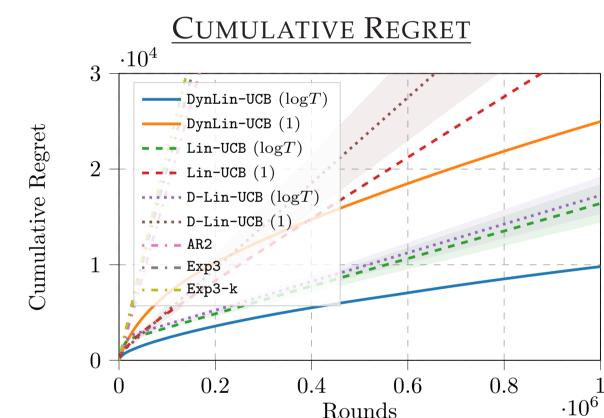
Dynamical Linear Bandits can be seen as:

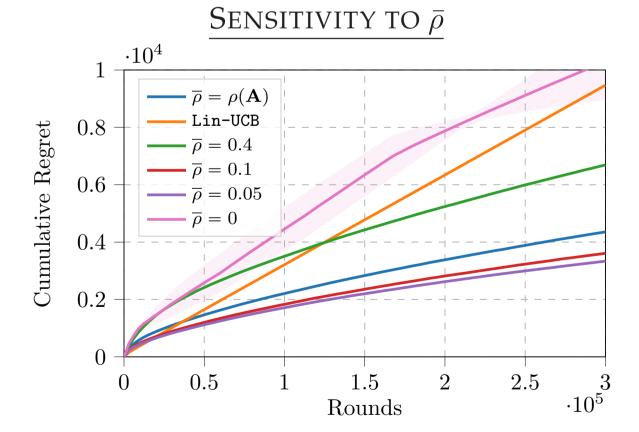
- Partially Observable Markov Decision Processes (Littman et al., 1995), in which the state x_t is non-observable, and the learner has access to the noisy observation y_t
- Multiple Input Single Output discrete-time Linear Time-Invariant System (Kalman, 1963)
- Non-contextual Linear Bandit (Abe and Long, 1999) when the hidden state does not affect the reward, i.e., when $\omega=0$

EXPERIMENTAL VALIDATION

EXPERIMENTAL SETTINGS

 $\mathbf{A} = \text{diag}(0.2, 0, 0.1)$ $\mathbf{B} = \text{diag}(0.25, 0, 0.1)$ $m{ heta} = (0, 0.5, 0.1)^{ ext{T}} \qquad m{\omega} = (1, 0, 0.1)^{ ext{T}}$ $\sigma^2 = 10^{-2}$





REFERENCES

Naoki Abe and Philip M. Long. Associative reinforcement learning using linear probabilistic concepts. In *ICML*, pages 3–11, 1999.

Rudolf Emil Kalman. Mathematical description of linear dynamical systems. Journal of the Society for Industrial and Applied Mathematics, 1(2):152–192, 1963.

Michael L. Littman, Anthony R. Cassandra, and Leslie Pack Kaelbling. Learning policies for partially observable environments: Scaling up. In *ICML*, pages 362–370, 1995.