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WHY NOT STANDARD MAB?

We can solve this problem using standard
Multi-Armed Bandit techniques considering the
price-budget couples as actions, at the cost of an:
• unnecessarily large action space (|A| “

ś

iPJdK ki)
• amplified heavy-tailed noise effect

FACTORED-REWARD BANDITS (FRB)

We choose an action vector :

aptq“pa1ptq, . . . , adptqqPA :“Jk1K ˆ ¨ ¨ ¨ ˆ JkdK

We observe a vector of d intermediate observations :

xptq “ px1ptq, . . . , xdptqq
with:

xiptq “ µi,aiptq
looomooon

Expected intermediate
observation of aiptq
(with µi,j P r0, 1s )

` ϵiptq
loomoon

σ2-subgaussian
noise

We receive a reward : rptq “
ś

iPJdK xiptq

We consider ki “ k, @i P JdK for simplicity.

LEARNING PROBLEM

Optimal action vector :

a˚ “pa˚
1 , . . . , a

˚
dqP

Ś

iPJdK argmaxaiPJkiK µi,ai

Optimal expected reward :
ś

iPJdK maxaiPJkiK µi,ai “
ś

iPJdK µ
˚
i “ µ˚

Suboptimality gaps: ∆i,ai
:“ µ˚

i ´ µi,ai

Goal is to minimize the expected cumulative regret :

E rRT pA,νqs “ Tµ˚ ´ E
”

ř

tPJT K
ś

iPJdK µi,aiptq

ı

LOWER BOUNDS

WORST-CASE LOWER BOUND

E rRT pA,νqs ě Ω
´

σd
?
kT

¯

INSTANCE-DEPENDENT LOWER BOUND

lim inf
TÑ`8

E rRT pA,νqs

log T
ě Cpνq

• Every algorithm A has to pull at least:
ErNi,js

log T
ě

2σ2

∆2
i,j

times every suboptimal action component

• The lower bound is obtained by finding the
combination of pulls minimizing the regret

• The naïve approach is to solve a
Linear Programming optimization problem

EFFICIENT SOLUTION TO THE LP
Using Rearrangement Inequality

Opdk logpkqq complexity

d
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µ1,π1p1q µ1,π1p2q µ˚
1
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SOLUTION 1: FACTORED UPPER CONFIDENCE BOUND (F-UCB)
F-UCB is an anytime optimistic regret minimization algorithm that plays over the d different dimensions
independently . In every dimension, the algorithm plays the action defined as:

aptq “ argmax
pa1,...,adqPA

ź

iPJdK

UCBi,ai
ptq

where the optimistic index is: UCBi,ai
ptq“ pµi,ai

pt ´ 1q ` σ

d

α log t

Ni,aipt ´ 1q

WORST-CASE UPPER BOUND

E rRT pF-UCB,νqs ď rO
´

σd
?
kT

¯

INSTANCE-DEPENDENT UPPER BOUND

IMPLICIT UPPER BOUND

• F-UCB pulls at most:

ErNi,js ď
4ασ2 log T

∆2
i,j

times every suboptimal action component

• We want to find the worst combination of pulls

• Again, the naïve approach is to solve a Linear
Programming optimization problem

EXPLICIT UPPER BOUND

(Rearrangement Inequality, opposite direction)

E rRT pF-UCB,νqs

ď 4ασ2 log T
ÿ

iPJdK

µ˚
´i

ÿ

jPJkKzta˚
i u

∆´1
i,j

where µ˚
´i “

ź

lPJdKztiu

µ˚
l ď 1,@i P JdK

SOLUTION 2: F-TRACK
F-UCB IS INSTANCE-DEPENDENT SUBOPTIMAL IN d
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SOLUTION: F-TRACK
F-Track coordinates among the d dimensions in
three phases:

1
Warm-up: Play action vectors in round robin until
every action component has been pulled at least a
minimum amount of times

2
LB Matching: Use warm-up data to compute esti-
mates of µ̂i,j and ∆̂i,j . Solve the lower bound LP
to define a pull schedule

3
Recovery: If, during phase 2, the estimation error
of any µ̂i,j is discovered to invalidate the schedul-
ing, fall back to F-UCB until t “ T

INSTANCE-DEPENDENT UPPER BOUND

lim sup
TÑ`8

E rRT pF-Track,νqs

log T
“ Cpνq

EXPERIMENTAL RESULTS

Comparison between F-UCB and F-Track for dif-
ferent values of d. Setting: k “ 2, µ˚ “ 1, ∆ “ 0.7.

d “ 2 d “ 20
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