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Multi-Armed Bandits
Standard Setting
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In the customary Multi-Armed Bandit framework, we consider a problem where:

We have K arms, each representing an action

The actions are independent

There is no structure in the reward
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Multi-Armed Bandits
Settings with Structure
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However, in several cases, we may have:

A structure in the actions and/or in the reward model

Access to intermediate effects which may help the learning process
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Example
Joint Pricing and Advertising
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We consider the scenario in which we want to sell a product online:

We have to choose a price-budget pair:
• the price we set determines the users’ propensity to buy (the so-called conversion

rate)

• the advertising budget we invest influences the number of potential customers that
will be exposed (i.e., the number of impressions)

We have access to intermediate observations:
• the conversion rate, which depends on the price

• the expected number of impressions, which depends on the budget

Our objective is to maximize the revenue (i.e., reward) that is a function of the
product between intermediate observations
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Example
Joint Pricing and Advertising
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We can solve this problem using standard Multi-Armed Bandit techniques
considering price-budget couples as actions

However, if we look just at the reward and disregard this factored structure, the
learning problem will:

• present an unnecessarily large action space, including all the possible
combinations of action components

• suffer a possibly amplified effect of the noise in the reward due to the product of
the noisy intermediate observations
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Factored-Reward Bandits
Setting

6

At every round t ∈ JT K, we choose an action vector:

a(t) = (a1(t), . . . , ad(t)) ∈ A := Jk1K × · · · × JkdK

• ∀i ∈ JdK we have ki options

• d is the action vector dimension

We observe a vector of d intermediate observations x(t) = (x1(t), . . . , xd(t))
and receive as reward the product of the observations r(t) =

∏
i∈JdK xi(t)

The ith component xi(t) of the intermediate observation vector x(t) is the effect
of the ith action component ai(t) in the action vector: xi(t) = µi,ai(t) + ϵi(t)

• µi,ai(t) ∈ [0, 1] is the expected observation of the ith component ai(t)

• ϵi(t) is σ
2-subgaussian noise
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Factored-Reward Bandits
Learning Problem
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An optimal action vector is:

a∗ = (a∗1, . . . , a
∗
d) ∈ argmax

a=(a1,...,ad)∈A

∏
i∈JdK

µi,ai

and we abbreviate µ∗
i = µi,a∗i

,∀i ∈ JdK

We define the suboptimality gaps related to:
• the ith action component ∆i,ai

:= µ∗
i − µi,ai for ai ∈ JkiK

• the action vector a = (a1, . . . , ad) ∈ A as ∆a :=
∏

i∈JdK µ
∗
i −

∏
i∈JdK µi,ai

The goal of an algorithm A is to minimize the expected cumulative regret:

E[RT (A,ν)] := E

T ∏
i∈JdK

µ∗
i −

∑
t∈JT K

∏
i∈JdK

µi,ai(t)

 = E

 ∑
t∈JT K

∆a(t)


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FRB Worst-case Lower Bound
Formal Statement
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Theorem (Worst-Case Lower Bound)

For every algorithm A, there exists an FRB ν such that for T ≥ O
(
d2
)
, A suffers an

expected cumulative regret of at least:

E [RT (A,ν)] ≥
σ

4
√
2

∑
i∈JdK

√
kiT .

In particular, if ki =: k for every i ∈ JdK, we have:

E [RT (A,ν)] ≥ Ω(σd
√
kT ).
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FRB Instance-Dependent Lower Bound
Formal Statement
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Theorem (Instance-Dependent Lower Bound)

For every consistent algorithm A and FRB ν with unique optimal arm a∗ ∈ A it holds:

lim inf
T→+∞

E [RT (A,ν)]

log T
≥ C(ν) = min

(La)a∈A\{a∗}

∑
a∈A\{a∗}

La∆a

s.t. Li,j =
∑

a∈A\{a∗},ai=j La, ∀i ∈ JdK, j ∈ JkiK \ {a∗i }

Li,j ≥
2σ2

∆2
i,j

, ∀i ∈ JdK, j ∈ JkiK \ {a∗i }

La ≥ 0, ∀a ∈ A \ {a∗}.

We consider Li,j = E[Ni,j ]/ log T to handle the asymptotic nature of the bound
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FRB Instance-Dependent Lower Bound
Efficient Solution
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To solve the optimization problem, we have
to search for the best way to arrange the
pulls

We can make use of rearrangement
inequality for integrals to find the best
solution (Luttinger and Friedberg, 1976)
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F-UCB 11

We present Factored Upper Confidence Bound (F-UCB)

F-UCB performs a UCB-like exploration (Auer et al., 2002) independently for
every dimension i ∈ JdK

Then, we study its theoretical guarantees
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F-UCB
Pseudo-code
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F-UCB
Expected Worst-Case Regret
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Theorem (Worst-Case Upper Bound for F-UCB)

For any FRB ν, F-UCB with α > 2 suffers an expected regret bounded as:

E [RT (F-UCB,ν)] ≤ 4σ
∑
i∈JdK

√
αkiT log T + g(α)

∑
i∈JdK

ki.

In particular, if ki =: k, for every i ∈ JdK, we have:

E [RT (F-UCB,ν)] ≤ Õ(σd
√
kT ).
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F-UCB
Expected Instance-Dependent Regret
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Theorem (Instance-Dependent Upper Bound for F-UCB)

For a given FRB ν, F-UCB with α > 2 suffers an expected regret bounded as:

E [RT (F-UCB,ν)] ≤ C(F-UCB,ν) = max
(Na)a∈A

∑
a∈A\{a∗}

Na∆a

s.t. Ni,j =
∑

a∈A\{a∗},ai=j Na, ∀i ∈ JdK, j ∈ JkiK \ {a∗i }

Ni,j ≤
4ασ2 log T

∆2
i,j

+ g(α), ∀i ∈ JdK, j ∈ JkiK \ {a∗i }∑
a∈ANa = T

Na ≥ 0, ∀a ∈ A
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F-UCB
Expected Instance-Dependent Regret (Explicit)
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Corollary (Explicit Instance-Dependent Upper Bound for F-UCB)

For a given FRB ν, F-UCB with α > 2 suffers an expected regret bounded by:

E [RT (F-UCB,ν)] ≤ C(F-UCB,ν)

≤ 4ασ2 log T
∑
i∈JdK

µ∗
−i

∑
j∈JkiK\{a∗i }

∆−1
i,j + g(α)

∑
i∈JdK

ki,

where µ∗
−i =

∏
l∈JdK\{i} µ

∗
l ≤ 1 for every i ∈ JdK.
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Instance-dependent Optimality of F-UCB 16

For T → +∞, we observe that:

C(F-UCB,ν)

C(ν) log T
≤ 2dα∆

1− (1−∆)d
∆→1
= 2αd

F-UCB performs worse than the lower bound,
with an additional dependence on d

In the figure, we compare:
• (left) the ratio between the regret obtained

by running F-UCB and the
instance-dependent lower bound

• (right) the bound above
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F-Track
Idea

17

F-UCB does not enjoy instance-depedent optimality due to the lack of
syncronization over the components of the action vector

To overcome this problem, we propose F-Track

F-Track is an algorithm which computes and tracks the lower bound
(Lattimore and Szepesvari, 2017)
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F-Track
Pseudo-code
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F-Track
Expected Regret
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Theorem (Instance-Dependent Upper Bound for F-Track)

For any FRB ν, F-Track run with:

fT (δ) :=

(
1 +

1

log T

)(
c log log T + log

(
1

δ

))
,

N0 =
⌈√

log T
⌉

and ϵT =

√
2σ2fT (1/ log T )

N0
,

suffers an expected regret of:

lim sup
T→+∞

E [RT (F-Track,ν)]

log T
= C(ν).
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Conclusions 20

We presented the Factored-Reward Bandits, where we perform a set of actions,
whose effects can be observed, and the reward is the product of those effects

We characterized the statistical complexity of the setting from both the
worst-case and instance-dependent perspectives

We presented F-UCB, and we characterized its instance-dependent and
worst-case guarantees and we discuss its instance-dependent limitations

To overcome the F-UCB’s limitations, we presented F-Track, which shows
asymptotical instance-depependent optimality
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