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STOCHASTIC RISING BANDITS

EVOLVING REWARDS BANDITS

• The reward obtained by choosing action It ∼ π at
round t is a random variable with mean µi(n

π
It,t),

for every nπ
It,t ∈ N and It ∈ [k]

• nπ
t is a quantity that depends on the history, e.g.,

the number of pulls Ni,t or the current round t

• The goal is to maximize the expected cumulative
reward:

JT (π) = E

[
T∑
t=1

µIt(n
π
It,t)

]
, where It ∼ π

or, equivalently, minimize the regret:

RT (π) = max
π̃

JT (π̃)− JT (π)

• Notable examples are:

nπ
i,t = Nπ

i,t (number of pulls) =⇒ Rested Bandits

nπ
i,t = t (time) =⇒ Restless Bandits

RISING BANDITS

Rising Bandits are a special class of evolving rewards
bandits where µi : n 7→ [0, 1] satisfy the following
assumption for every i ∈ [k] and n ∈ [T ]:

Non-decreasing: γi(n) ≥ 0

Concave: γi(n− 1) ≥ γi(n)

where γi(n) := µi(n+ 1)− µi(n)
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GRAPH-TRIGGERED BANDITS

In Graph-Triggered Bandits, actions are related by the means of an undirected graph

nπ
i,t = Ñπ

i,t :=
∑

j connected to i

Nπ
j,t (number of triggers) =⇒ Graph-Triggered Bandits
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In Rested Rising Bandits, optimal
policy commits on one action
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GRAPH
TRIGGERED

Optimal policy is
NP-Hard to compute!

2

3

1
1 2 3

1 1 1 1
2 1 1 1
3 1 1 1

RESTLESS

In Restless Rising Bandits,
optimal policy is greedy

Rested and Restless Bandits ⊂ Graph-Triggered Bandits ⊂ Evolving Rewards Bandits

GRAPH-TRIGGERED RISING BANDITS WITH CLUSTER GRAPH

For graph-triggered rising bandits, if the graph can be partitioned into a set C of disjoint cliques, given a time
horizon T the optimal action I⋆t can be computed as

I⋆t ∈ argmax
i∈C∗

T

µi(t)︸ ︷︷ ︸
Greedy behavior like in restless rising bandits

where C∗
T ∈ argmax

C∈C

∑
t∈[T ]

max
j∈C

µj(t)︸ ︷︷ ︸
Commitment on one clique like in rested rising bandits

.

SOLVING GRAPH-TRIGGERED RISING BANDITS

Let Υν(M, q) :=
∑

t∈[M−1]

max
i∈[k]

γi(t)
q , for every M ∈ [T ] and q ∈ [0, 1]

REGRET BOUND FOR DETERMINISTIC GTRBS WITH CLUSTER GRAPH

Rν,G(BR-BG-UB) ≤ Õ

(
inf

q∈[0,1]

{
T q

∑
Cm∈C

|Cm|Υν

(⌈
ÑCm,T

|Cm|

⌉
, q

)
︸ ︷︷ ︸

Rested Contribution

+
∑

Cm∈C
|Cm|Ñ

q
1+q

Cm,TΥν

(⌈
ÑCm,T

|Cm|

⌉
, q

) 1
1+q

︸ ︷︷ ︸
Restless Contribution

})

REGRET BOUND FOR STOCHASTIC GTRBS WITH CLUSTER GRAPH

Rν,G(R-□-UCB) ≤ Õ

(
min

q∈[0,1]

{ ∣∣∣∣(σT ) 2
3

∣∣∣∣︸ ︷︷ ︸
Noise Contribution

+ k̄1T
qΥν

(⌈
T

k̄1

⌉
, q

)
︸ ︷︷ ︸

Rested Contribution

+T
2q

1+q

∑
Cm∈CG:|Cm|>1

|Cm|Υν

(⌈
T

|Cm|

⌉
, q

) 1
1+q

︸ ︷︷ ︸
Restless Contribution

})
,

Results for GTRBs with cluster graph can be used to obtain regret guarantees for general graphs!

EMPIRICAL VALIDATION

We consider a rising bandit with k = 5 and reward
functions from the family µi = min{κint,mi}
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Using cluster graphs only, we show the regret bounds
attained by BR-BG-UB when varying the adjacency
matrix in a deterministic setting
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As the graph becomes sparser, the regret becomes
higher, which is concordant with theory
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