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GRAPH-TRIGGERED BANDITS EMPIRICAL VALIDATION

STOCHASTIC RISING BANDITS

EVOLVING REWARDS BANDITS In Graph-Triggered Bandits, actions are related by the means of an undirected graph We consider a rising bandit with £ = 5 and reward
, , , functions from the family p; = min{x;n:, m;}
* The reward obtained by choosing action I; ~ = at ir= N o= Z N7, (number of triggers) —> Graph-Triggered Bandits 1

round t is a random variable with mean p;(n7 ,),
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* n/ is a quantity that depends on the history, e.g.,
the number of pulls V; ; or the current round ¢

e The goal is to maximize the expected cumulative
reward:

Jr(m) =E Zﬂlt(”z,t) , where [; ~ T

or, equivalently, minimize the regret:

Ry () = max Jp(7) — Jo(7) ) RESTED { ) TRIGGERED { ) REsTLESS
e Notable examples are: .. . . . o .. , USiI.lg cluster graphs only, we show.the regret bounds
In Rested Rising Bandits, optimal Optimal policy is In Restless Rising Bandits, attained by BR-BG-UB when varying the adjacency
nT. = N7, (number of pulls) —> Rested Bandits policy commits on one action NP-Hard to compute! optimal policy is greedy matrix in a deterministic setting

Rested and Restless Bandits C Graph-Triggered Bandits C Evolving Rewards Bandits

n;, =t (time) = Restless Bandits
GRAPH-TRIGGERED RISING BANDITS WITH CLUSTER GRAPH

RISING BANDITS

For graph-triggered rising bandits, if the graph can be partitioned into a set C of disjoint cliques, given a time

Rising Bandits are a special class of evolving rewards horizon T the optimal action I can be computed as
bandits where p; : n — [0, 1] satisfy the following

assumption for every ¢ € [k] and n € [T

I} € argmax pu;(t) where C € arg max Z max f; (t)
ic€Cs cec e’

Non-decreasing:  v;(n) >0 - , N p

TV TV
Greedy behavior like in restless rising bandits Commitment on one clique like in rested rising bandits

Concave: ~v;(n—1) > ~;(n)
where 7;(n) = p;(n + 1) — pi(n)
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SOLVING GRAPH-TRIGGERED RISING BANDITS

Let Y, (M, q) Z m?g]c%( )4, for every M € [T| and q € [0, 1]
-
te[M—1]
REGRET BOUND FOR DETERMINISTIC GTRBS WITH CLUSTER GRAPH 104

Action 3

Action 2 ) a_ | As the graph becomes sparser, the regret becomes

R, o(BR-BG-UB) < O f {79 C.IT,
7G( )— (qel%l{ Z ‘ ’ ( ‘C ’

TS higher, which is concordant with theory
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