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Abstract
Policy gradient (PG) methods are effective re-
inforcement learning (RL) approaches, particu-
larly for continuous problems. While they op-
timize stochastic (hyper)policies via action- or
parameter-space exploration, real-world applica-
tions often require deterministic policies. Exist-
ing PG convergence guarantees to deterministic
policies assume a fixed stochasticity in the (hy-
per)policy, tuned according to the desired final
suboptimality, whereas practitioners commonly
use a dynamic stochasticity level. This work pro-
vides the theoretical foundations for this practice.
We introduce PES, a phase-based method that re-
duces stochasticity via a deterministic schedule
while running PG subroutines with fixed stochas-
ticity in each phase. Under gradient domination
assumptions, PES achieves last-iterate conver-
gence to the optimal deterministic policy with
a sample complexity of order rOpϵ´5q. Addition-
ally, we analyze the common practice, termed
SL-PG, of jointly learning stochasticity (via an
appropriate parameterization) and (hyper)policy
parameters. We show that SL-PG also ensures
last-iterate convergence with a rate rOpϵ´3q, but
to the optimal stochastic (hyper)policy only, re-
quiring stronger assumptions compared to PES.

1. Introduction
Among reinforcement learning (RL, Sutton & Barto, 2018)
approaches, policy gradient (PG, Deisenroth et al., 2013)
methods achieved significant success in addressing real-
world scenarios thanks to their ability to handle continuous
state and action spaces (Peters & Schaal, 2006), resilience to
sensor and actuator noise (Gravell et al., 2020), and robust-
ness in partially-observable environments (Azizzadenesheli
et al., 2018). Additionally, they enable the incorporation of
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expert knowledge in the policy design phase (Ghavamzadeh
& Engel, 2006), improving the efficacy, safety, and inter-
pretability of the learned policy (Peters & Schaal, 2008).

PG methods optimize directly over the parameter space
of parametric policies in order to improve a performance
function (e.g., the expected return). In RL, addressing the
exploration problem is crucial. Agents must try different
actions to gather information on long-term outcomes, rather
than solely maximizing immediate rewards. In PGs, explo-
ration is typically achieved by injecting noise into either
the agent’s actions or the policy parameters. These two
exploration strategies are known as action-based (AB) and
parameter-based (PB) exploration (Metelli et al., 2018),
respectively. In particular, AB exploration, whose proto-
typical algorithms are REINFORCE (Williams, 1992) and
GPOMDP (Baxter & Bartlett, 2001), keeps the exploration
at the action level by leveraging stochastic policies (e.g.,
Gaussian). Instead, PB approaches, whose prototype is
PGPE (Sehnke et al., 2010), explore at the parameter level
via stochastic hyperpolicies, used to sample the parameters
of an underlying (typically deterministic) policy.

From a theoretical perspective, significant work has focused
on the convergence guarantees of PG methods, particularly
for AB exploration (Zhao et al., 2011; Papini et al., 2018;
Yuan et al., 2022; Fatkhullin et al., 2023; Bhandari & Russo,
2024). However, these methods produce parameters of
stochastic (hyper)policies1 that often fail to meet reliability,
safety, and traceability requirements in real-world applica-
tions. The PG literature traditionally addressed learning
deterministic policies through deterministic policy gradient
algorithms (DPG, Silver et al., 2014), which inspired suc-
cessful deep RL methods (e.g., DDPG, Lillicrap et al., 2016;
Fujimoto et al., 2018). However, these approaches are inher-
ently off-policy and rely on actor-critic architectures. These
algorithmic complexities make their convergence guarantees
difficult to establish and currently available under demand-
ing assumptions only (Xiong et al., 2022).

Recently, Montenegro et al. (2024) introduced a general
framework for assessing last-iterate global convergence
to the optimal deterministic policy using stochastic (hy-
per)policies. Similarly to much of the PG literature, they

1The term (hyper)policy refers jointly to AB and PB explo-
rations.

1



Convergence Analysis of Policy Gradient Methods with Dynamic Stochasticity

consider the simplest form of exploration that injects noise
from a white noise distribution (e.g., zero-mean Gaussian)
with a static stochasticity parameter σ (i.e., fixed throughout
learning). By setting σ proportional to the desired subop-
timality ϵ, convergence to the optimal deterministic policy
is achieved. However, this approach has the drawback of
requiring to use a very small σ from the start of learning.
This limits the practicality of static stochasticity methods.

Static stochasticity conflicts with the common practice of
dynamically adjusting stochasticity during learning. In AB
exploration, deep RL methods (Schulman et al., 2015; Duan
et al., 2016) typically address this by jointly optimizing the
policy parameters and variance (via a suitable parameteriza-
tion) through gradient ascent. Additionally, entropy regular-
ization (Haarnoja et al., 2018; Ahmed et al., 2019) further
promotes exploration by modifying the reward function to
favor more stochastic policies. In PB exploration, Gaus-
sian hyperpolicies are often used, with the variance learned
alongside the hyperpolicy mean via gradient ascent (e.g.,
Wierstra et al., 2014; Likmeta et al., 2020).

Although dynamically adjusting stochasticity has been suc-
cessful in practical RL applications, its theoretical under-
standing remains limited. This theory-practice gap raises the
question: Can PG methods guarantee convergence to the
optimal deterministic policy when using dynamic stochas-
ticity? In this paper, we answer this question positively.

Original Contribution. In this work, we make a step to-
wards the theoretical understanding of employing dynamic
stochasticity in PGs. The main contributions are:

• In Section 3, we present PES (Phased Exploration Sched-
ule), a phase-based algorithm reducing stochasticity
through a pre-determined schedule across phases, in
which a PG subroutine with fixed stochasticity is run.
After outlining the convergence conditions for PG subrou-
tines in Section 4, we discuss in Section 5 the impact of
varying stochasticity on the performance index. Finally,
in Section 6, we demonstrate that, under these conditions
and a gradient domination assumption, PES achieves last-
iterate global convergence to the optimal deterministic
policy with an rOpϵ´5q sample complexity.

• In Section 7, we analyze the convergence for the com-
mon practice of jointly learning (hyper)policy parameters
and stochasticity, referred to as SL-PG (Stochasticity-
Learning Policy Gradient). We show that last-iterate
global convergence is achievable with a sample complex-
ity of rOpϵ´3q, but to stochastic (hyper)policies only and
requiring stronger assumptions than PES. We conclude
by discussing the possibility of achieving convergence to
deterministic policies at the same rate as PES.

In Section 9, we numerically validate the proposed algo-
rithm. Related work is discussed in Section 8. The proofs
of the results are deferred to the appendix.

2. White Noise Exploring Policy Gradients
Notation. For a measurable set X , we denote with ∆pX q
the set of probability measures over X . For P P ∆pX q, we
denote with p its density function. For n,m P N with n ě
m, we denote JnK :“ t1, . . . , nu and Jm,nK :“ tm,m `
1, . . . , nu. For x P R, we denote pxq` :“ maxt0, xu.

Lipschitz Continuous and Smooth Functions. A function
f : X Ď Rd Ñ R is L1-Lipschitz continuous (L1-LC)
if |fpxq ´ fpx1q| ď L1}x ´ x1}2 for every x,x1 P X .
Similarly, f is L2-Lipschitz smooth (L2-LS) if it is contin-
uously differentiable and its gradient ∇xf is L2-LC, i.e.,
}∇xfpxq ´∇xfpx1q}2 ď L2}x´x1}2 for every x,x1 P X .

Markov Decision Processes. The environment is mod-
eled as a Markov Decision Process (MDP, Puterman, 1990).
An MDP is represented by M :“ pS,A, p, r, ρ0, γq, where
S Ď RdS and A Ď RdA are the measurable state and ac-
tion spaces; p : S ˆ A ÝÑ ∆pSq is the transition model,
where pps1|s,aq specifies the probability density of land-
ing in state s1 P S by playing action a P A in state
s P S; r : S ˆ A ÝÑ r´Rmax, Rmaxs is the reward
function, where rps,aq specifies the reward the agent gets
when playing action a in state s; ρ0 P ∆pSq is the initial-
state distribution; γ P r0, 1s is the discount factor. A
trajectory τ “ psτ,0,aτ,0, . . . , sτ,T´1,aτ,T´1q of length
T P N Y t`8u is a sequence of T state-action pairs. The
discounted return of a trajectory τ is given by:

Rpτq :“
T´1
ÿ

t“0

γtrpsτ,t,aτ,tq.

We admit γ “ 1 only when T ă `8.

Deterministic Parametric Policies. We consider a para-
metric deterministic policy µθ : S Ñ A, where θ P Θ Ď
RdΘ is the parameter vector belonging to the parameter
space Θ. The performance of µθ is assessed via the ex-
pected return JD : Θ Ñ R, defined as:

JDpθq :“ E
τ„pDp¨|θq

rRpτqs ,

where pDpτ ;θq :“ ρ0psτ,0q śT´1
t“0 ppsτ,t`1|sτ,t,µθpsτ,tqq

is the density of trajectory τ induced by policy µθ. The
agent’s goal consists of finding an optimal parameter θD̊ P
argmaxθPΘ JDpθq and we denote JD̊ :“ JDpθD̊q.

White Noise Exploration. Similarly to Montenegro et al.
(2024), we introduce the notion of white noise that we will
employ to define white-noise-based exploration.

Definition 2.1 (White Noise). Let d P N. A family of
probability distributions tΦd,σuσPRą0

Ă ∆pRdq is a white
noise if for every σ P Rą0:

E
ϵ„Φd,σ

rϵs “ 0d and E
ϵ„Φd,σ

r}ϵ}22s ď dσ2.

Unlike Montenegro et al. (2024), which assumes static

2



Convergence Analysis of Policy Gradient Methods with Dynamic Stochasticity

stochasticity, we consider families of distributions parame-
terized by σ, referred to as the stochasticity amount. Def-
inition 2.1 enables the analysis of algorithms that dynam-
ically vary σ during learning. This includes, for example,
zero-mean Gaussian distributions ϵ „ N p0d, σΛq with
λmaxpΛq ď 1, where Er}ϵ}22s “ σ2 trpΛq ď dσ2. This
noise is assumed to be white across exploration steps.

Action-Based (AB) Exploration. In AB exploration, we
consider a parametric stochastic policy πθ,σ : S Ñ ∆pAq
built upon an underlying deterministic policy µθ , by perturb-
ing each action suggested by µθ with a white-noise random
vector. The policy is used to sample actions at „ πθ,σp¨|stq
played in state st for every step t of interaction. Formally,
we consider the following definition of white noise policies.

Definition 2.2 (White Noise Policies). Let θ P Θ, σ P Rą0,
and µθ : S Ñ A be a parametric deterministic policy and
let ΦdA,σ be a white noise distribution (Def. 2.1). A white
noise policy πθ,σ : S Ñ ∆pAq is such that, for every state
s P S, the action a „ πθ,σp¨|sq satisfies a “ µθpsq ` ϵ,
where ϵ „ ΦdA,σ which is sampled independently at every
step (i.e., whenever an action is sampled).

This definition justifies the name for AB exploration since
the exploration is carried out at the action level. From now
on, we refer to this kind of stochastic policies, calling σ the
stochasticity amount of πθ,σ .

The performance of πθ,σ is assessed via the expected return
JA : Θ ˆ Rą0 Ñ R, defined as:

JApθ, σq :“ E
τ„pAp¨|θq

rRpτqs ,
being pApτ ;θq the density of trajectory τ induced by πθ,σ .

In AB exploration, whenever σ ą 0, we aim to learn
θÅpσq P argmaxθPΘ JApθ, σq. Given a JApθ, σq differ-
entiable w.r.t. θ, PG methods (Peters & Schaal, 2008)
update the parameter θ via gradient ascent: θt`1 ÐÝ
θt ` ζt p∇θJApθt, σq, where ζt ą 0 is the step size and
p∇θJApθ, σq is an estimator of ∇θJApθ, σq. In particular,
we consider the GPOMDP estimator (Baxter & Bartlett,
2001) which employs N independent trajectories tτiuNi“1

collected with policy πθ,σ (i.e., τi „ pAp¨;θq), where N is
called batch size. In this paper, we just consider GPOMDP,
since REINFORCE, which is conceptually similar, suffers
from larger variance (Williams, 1992; Baxter & Bartlett,
2001). More details on AB exploration are presented in
Appendix B.

Parameter-Based (PB) Exploration. In PB exploration,
we use a parametric stochastic hyperpolicy νθ,σ Ď ∆pΘq
built upon an underlying deterministic policy µθ , by perturb-
ing the parameter vector θ with a white-noise random vector.
The hyperpolicy is used to sample parameters θ1 „ νθ,σ to
be plugged in the deterministic policy µθ1 at the beginning

of every trajectory. Formally, we consider the following
definition of white noise hyperpolicies.

Definition 2.3 (White Noise Hyperpolicies). Let θ P Θ, σ P
Rą0, and µθ : S Ñ A be a parametric deterministic policy
and let ΦdΘ,σ be a white-noise distribution (Def. 2.1). A
white noise hyperpolicy νθ,σ P ∆pΘq is such that, for every
parameterization θ P Θ, the parameterization θ1 „ νθ,σ
satisfies θ1 “ θ ` ϵ, where ϵ „ ΦdΘ,σ which is sampled
independently for every trajectory.

This definition justifies the name for PB exploration, since
the exploration is carried out at the parameter level. Note
that, differently from AB exploration, in PB one, before
starting to collect each trajectory, the current parametriza-
tion for the deterministic policy θ is perturbed with a noise
vector ϵ „ ΦdΘ,σ, then the deterministic policy µθ`ϵ is
used for the entire trajectory. From now on, we focus on this
kind of stochastic hyperpolicies, calling σ the stochasticity
amount for νθ,σ .

The performance index of νθ,σ is JP : Θ ˆ Rą0 ÝÑ R, that
is the expectation over θ1 of JDpθ1q defined as:

JPpθ, σq :“ E
θ1„νθ,σ

“

JDpθ1q‰

.

Whenever σ ą 0, PB exploration aims at learning θP̊ pσq P
argmaxθPΘ JPpθ, σq. If JPpθ, σq is differentiable w.r.t. θ,
PGPE (Sehnke et al., 2010) updates the hyperparameter θ
by gradient ascent: θt`1 ÐÝ θt ` ζt p∇θJPpθt, σq. PGPE
uses an estimator of ∇θJPpθ, σq which employs N inde-
pendent parameter-trajectory pairs tpθi, τiquNi“1, collected
with hyperpolicy νθ,σ , that is, θi „ νθ,σ and τi „ pDp¨;θiq.
Also in this case, N is called batch size. More details on PB
exploration are presented in Appendix B.

Exploration-Agnostic Framework. In this work, we con-
sider both AB and PB explorations and present the re-
sults using a unified notation. We define J: with : P
tP,Au as the exploration-agnostic objective and θ˚pσq P
argmaxθPΘ J:pθ, σq as the corresponding optimal parame-
terization for a given stochasticity amount σ. This notation
is also applied to other quantities, mapped to their respective
exploration (either AB or PB) in Appendix C.

3. PES: Algorithm Description
In this section, we present Phased Exploration Schedule
(PES) a phase-based algorithm with PG subroutines which
aims to output a deterministic policy. The algorithm, whose
pseudo-code is presented in Algorithm 1, in each phase
p P J0, P ´ 1K runs a PB or an AB policy gradient method
(i.e., a PG subroutine) with a fixed stochasticity amount σp
to learn in Kp iterations a parameterization θp starting from
the output of the previous phase, θp´1.

When starting a new phase, PES updates the stochasticity
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Algorithm 1 PES.
Input :Number of phases P , Iterations per phase pKiq

P
i“1,

Initial parameter θ, Stochasticity schedule pσiq
P
i“1,

Learning rate schedule pζiq
P
i“1, Batch size N

Initialize θ0 ÐÝ θ
for p P JP K do

θp ÐÝ Run for Kp iterations a PB or AB PG from θp´1, with
fixed stochasticity σp, learning rate ζp, batch size N

end
Return θP

according to a decreasing deterministic schedule. This al-
lows the algorithm to begin with high stochasticity σmax,
aiding in the discovery of a good parameterization θ0, and
then gradually reduces σ. As we will show, this process
ensures that the final parameterization θP´1 is nearly opti-
mal for the final stochasticity σP´1, which can be set to the
desired suboptimality ϵ for deterministic policy deployment.
This approach avoids the issues of using a fixed stochasticity
of ϵ, as discussed in Section 1.

In particular, PES employs the following deterministic
schedule to update the stochasticity:

σp “ σmaxpp` 1q´y,

with σmax, y P Rą0, and p P J0, P´1K. As we shall discuss
later, this choice, besides fulfilling the previously mentioned
desiderata, enables last-iterate convergence guarantees to
the optimal deterministic policy.

Theoretical Motivation. From a theoretical perspective,
since each PG subroutine is run with a fixed exploration
amount σp, under appropriate assumptions, following (Mon-
tenegro et al., 2024), it is possible to assess the sample
complexity NKp (i.e., the number of trajectories needed
for phase p) to ensure a global last-iterate convergence of
J:p¨, σpq to a desired accuracy ϵ:

J:pθ˚pσpq, σpq ´ ErJ:pθp, σpqs ď ϵ,

recalling that the optimal (hyper)policy parameterization
θ˚pσq depends on the stochasticity itself. As we will show,
by (i) using the PES deterministic schedule for stochasticity
σp and (ii) satisfying the conditions for last-iterate conver-
gence of each PG subroutine, it suffices to determine the
number of phases P to ensure convergence to a determinis-
tic policy. Before presenting PES’ last-iterate convergence
guarantees to the optimal deterministic policy (Sec. 6), we
first outline the assumptions required for state-of-the-art
last-iterate convergence of PG subroutines (Sec. 4) and then
examine the impact of reducing stochasticity on J: (Sec. 5).

4. PG Subroutines Convergence
In this section, we recall the assumptions needed to guaran-
tee state-of-the-art last-iterate convergence results for each
PG subroutine of PES. A more detailed discussion is pre-
sented in Appendix D.

Assumptions for PG Subroutines Convergence. Mon-
tenegro et al. (2024) show that to ensure last-iterate global
convergence of a PG subroutine with a fixed stochasticity
σp, the objective J:p¨, σpq has to fulfill three properties: piq
smoothness of J:p¨, σpq w.r.t. θ, piiq weak gradient domi-
nation (WGD) on J:p¨, σpq w.r.t. θ, and piiiq bounded vari-
ance of the employed estimator. This set of assumptions
is standard in the PG convergence literature (Papini et al.,
2018; Agarwal et al., 2021; Yuan et al., 2022; Fatkhullin
et al., 2023; Bhandari & Russo, 2024). In our dynamic
exploration scenario, we need such conditions to hold for
every σp. Condition piq holds for both JP and JA for every
exploration amount σp under the following assumption.

Assumption 4.1 (JD is L2-LS w.r.t. θ). There exists L2 P
Rě0 such that for every θ P RdΘ , the following holds:

}∇2
θJDpθq}2 ď L2.

Indeed, the smoothness of JD w.r.t. the parameter θ is
inherited by the stochastic objectives.

Lemma 4.1 (J: Inherited Smoothness). Under Assump-
tion 4.1, for every θ P Θ and σ P Rě0, it holds:

}∇2
θJ:pθ, σq}2 ď L2.

Condition piiq can be inherited by both JP and JA under the
assumption that WGD holds for JD.

Assumption 4.2 (WGD on JD). There exist αD ą 0 and
βD ě 0 such that, for every θ P Θ, the following holds:

JD̊ ´ JDpθq ď αD}∇θJDpθq}2 ` βD.

We highlight that, if βD “ 0, then we are in the presence
of the so-called strong gradient domination, meaning that
the objective JD has no local optima. When βD ą 0, WGD
holds and JD may admit local optima. Before showing the
WGD inheritance, we need to introduce a further assumption
on the MDP and µθ regularity, needed for the AB case.

Assumption 4.3 (MDP and µθ Regularity). Let s, s1 P S.
The log transition model log pps1|s, ¨q is Lp-LC and L2,p-
LS, and the reward function rps, ¨q is Lr-LC and L2,r-LS
w.r.t. the action. Moreover, the deterministic policy µθpsq
is Lµ-LC and L2,µ-LS w.r.t. its parameters.

Further details for this assumption are provided in Ap-
pendix D. Next, we show the inheritance of WGD properties
by JA and JP.

Theorem 4.2 (Inherited WGD for J:, Montenegro et al.
2024). Considering a (hyper)policy complying with Defi-
nitions 2.2 or 2.3, under Assumptions 4.2 and 4.3, for any
σ P Rą0 and θ P Θ, the following holds:

J:pθ˚pσq, σq ´ J:pθ, σq ď αD}∇θJ:pθ, σq}2 ` β:pσq,
with β:pσq :“ βD ` W:σ, for some W: ě 0.

Notice that the multiplier αD of the norm of the gradient is
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that of Assumption 4.2, whereas the term β:pσq acquires a
dependence on the exploration amount σ.

Remark 4.1 (When does WGD hold?). We remark that the
WGD property depends on both the policy parameteriza-
tion class and the environment. For instance, Bhandari &
Russo (2024) show that, for AB exploration in tabular envi-
ronments and using natural policy parameterizations, the
Polyak-Łojasiewicz (PL) condition holds. This is a stronger
condition than WGD, requiring JApθ˚pσq, σq ´JApθ, σq ď
α}∇θJApθ, σq}22 for some α P Rą0. Moreover, Mei et al.
(2020) show that, for AB exploration in tabular environ-
ments and using a softmax policy parameterization, i.e.,
πθ,σpa | sq9 exppθps,aqq, the WGD property holds for
JA with βA “ 0. Finally, Ding et al. (2022) prove a more
general result, still in the context of AB exploration, show-
ing that WGD holds whenever: piq the Fisher informa-
tion matrix induced by the policy πθ,σ is non-degenerate
for every θ P Θ, i.e., F pθ, σq “ Eπθ,σ

r∇θ log πθ,σpa |
sq∇θ log πθ,σpa | sqJs ľ µF I for some µF ą 0; and
piiq a “compatible function approximation bias” is upper
bounded by ϵbias. Under these conditions, WGD holds on
JA with constants αA “ Gµ´1

F and βA “ p1 ´ γ´1q?
ϵbias,

where G is such that }∇θ log πθpa | sq}2 ď G. Finding a
hyperpolicy class that induces WGD on JP, in the sense of
(Ding et al., 2022), remains an open problem.

Finally, condition piiiq, requiring the variance of the estima-
tor p∇θJ:pθ, σq to be bounded, is granted by the following
assumption on the scores of the stochastic (hyper)policy.

Assumption 4.4 (Bounded Scores). Let Φd,σ P ∆pRdq be
a white-noise distribution complying with Definition 2.1
with σ P Rą0 and density ϕd,σ. ϕd,σ is differentiable in its
argument and there exists a constant c ą 0 such that:

piq E
ϵ„Φs,σ

r}∇ϵ log ϕd,σpϵq}22s ď cdσ´2,

piiq E
ϵ„Φs,σ

r}∇2
ϵ log ϕd,σpϵq}2s ď cσ´2.

As an example, this assumption is fulfilled by zero-mean
Gaussian noise ϵ „ N p0d, σΛq. Under such an assumption,
the variance of the estimator p∇θJ:pθ, σq is bounded.

Lemma 4.3 (Bounded Estimator Variance). Considering
a (hyper)policy complying with Definitions 2.2 (PB) or 2.3
(AB), under Assumptions 4.3 and 4.4 the following holds:

Varr p∇θJ:pθ, σqs ď V:,θ
Nσ2

, for some V:,θ ě 0.

PG Subroutines Convergence. Under the assumptions
discussed so far, a PG subroutine with a fixed stochasticity
σp enjoys the following convergence guarantee.

Theorem 4.4 (PG Global Last-Iterate Convergence, Mon-
tenegro et al. 2024). Consider running for Kp iterations a
PG algorithm with a (hyper)policy satisfying Definitions 2.2
or 2.3 with an exploration amount σp P Rą0. Under As-

sumptions 4.1, 4.2, 4.3, and 4.4, by selecting an appropriate
constant step size ζp and a sample complexity NKp satisfy-
ing:

NKp ě rO
ˆ

α4
DL2V:,θ
ϵ3σ2

p

˙

,

then J:pθ˚pσpq, σpq ´ ErJ:pθp, σpqs ď ϵ` β:pσpq, where
the notation rOp¨q hides logarithmic terms.

In Section 6, we will use the assumptions and the results
presented in this section to ensure the convergence of each
PG subroutine, and study the convergence of the whole
phased process of PES to the optimal deterministic policy.

5. The Effects of Dynamic Stochasticity
In this section, we discuss the effects on J: when varying the
stochasticity σ. Specifically, we seek to understand under
which assumptions a small variation of the stochasticity
σ attains a small variation of the expected return J:p¨, σq.
Intuitively, this is a minimal requirement for the design
of algorithms like PES aiming to dynamically change the
stochasticity during the learning process.

As highlighted in Section 2, we recall that the optimal (hy-
per)policy parameterization θ˚pσq depends on the stochas-
ticity itself, i.e., θ˚pσq P argmaxθPΘ J:pθ, σq.

Assumptions. Before presenting the results, we introduce
regularity assumptions on the deterministic objective JD.
The following assumption, needed in the analysis of the
PB case, requires the JD to be LC in the policy parameters.

Assumption 5.1 (JD is LJ -Lipschitz w.r.t. θ). JD is LJ -
Lipschitz w.r.t. parameterization θ, i.e., for every θ,θ1 P Θ:

|JDpθq ´ JDpθ1q| ď LJ}θ ´ θ1}2.
For analyzing the AB case, we need a similar assumption
on the non-stationary (NS) deterministic objective. Let ϵ “
pϵtqT´1

t“0 „ ΦT
dA,σ be a sequence of independently sampled

noise vectors. Let µ “ pµqT´1
t“0 be a NS deterministic policy,

where, at time step t the deterministic policy µt : S Ñ A is
played, with µt “ µθ ` ϵt. The objective for this kind of
policy is JDpµq “ Eτ„pDp¨|µqrRpτqs, where pDpτ |µq is the
density of a trajectory τ induced by the NS policy.

Assumption 5.2 (JD is L1,µ-Lipschitz w.r.t. µ). The per-
formance JD of the NS deterministic policy µ is pLtqT´1

t“0 -
Lipschitz w.r.t. the non stationary policy, i.e., for every µ,µ1:

|JDpµq ´ JDpµ1q| ď
T

ÿ

t“0

Lt sup
sPS

}µtpsq ´ µ1
tpsq}2.

Moreover, we denote L1,µ “ řT´1
t“0 Lt.

In the following, we consider (hyper)policies complying
with Definitions 2.2 (PB) or 2.3 (AB). Unfortunately, this,
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combined with the assumptions presented above, is not
enough to ensure the desired regularity, as shown in Exam-
ple 5.1.

Example 5.1. Consider a one-state MDP with A “ r´1, 1s,
rpaq “ maxt0, au, T “ 1, and constant deterministic pol-
icy, µ “ 0, fulfilling Assumptions 5.1 and 5.2. We consider
the following white noise, fulfilling Definition 2.1:

Φ1,σ “
#

1
2δ´σ ` 1

2δσ if σ ă σ

Uniform
`“´?

3σ,
?
3σ

‰˘

otherwise
,

where σ ą 0. We compute the expected return, which is just
the expected reward, in our case:

Jpσq “
#

σ
2 if σ ă σ?
3
4 σ otherwise

.

We immediately observe that Jpσq is discontinuous in the
point σ “ σ.

Thus, we introduce the following assumption that ensures a
form of regularity in the way the noise is generated.

Assumption 5.3 (Scale-invariant Noise). Let tΦd,σuσą0 be
a family of white noise distributions (Def. 2.1). For every
σ P Rą0, let ϵ „ Φd,σ and ϵ „ Φd,1. It holds that: ϵ D“ σϵ,

where D“ denotes equality in distribution.

Assumption 5.3 establishes that we can generate the noise
random variable ϵ associated with a certain stochastic-
ity σ by generating a noise random variable ϵ associated
with a conventional stochasticity (e.g., 1, but other choices
are possible) and multiplying the variable by σ. This as-
sumption is fulfilled, for instance, by zero-mean Gaussian
distributions N p0d, σ

2Λq. In particular, under Assump-
tion 5.3, for any stochasticity σ and function g, it holds
that Eϵ„Φd,σ

rgpϵqs “ Eϵ„Φd,1
rgpσϵqs. This represents the

key observation to prove that the expected return J:p¨, σq is
LC w.r.t. the stochasticity σ, and subsequent results on the
optimal performance, as illustrated in the following theorem.

Theorem 5.1. If the (hyper)policy complies with Defini-
tions 2.2 (PB) or 2.3 (AB), under Assumptions 5.1 (PB)
or 5.2 (AB), and Assumption 5.3, for every θ P Θ and
σ1, σ2 P Rě0, it holds that:

piq |J:pθ, σ1q ´ J:pθ, σ2q| ď D:|σ1 ´ σ2|
piiq J˚

: pσ1q ´ J:pθ˚pσ2q, σ1q ď 2D:|σ1 ´ σ2|
piiiq |J:pθ˚pσ1q, σ1q ´ J:pθ˚pσ2q, σ2q| ď D:|σ1 ´ σ2|,

where : P tP,Au, DA “ L1,µ

?
dA, and DP “ LJ

?
dΘ.

Theorem 5.1 will be crucial for establishing the convergence
guarantees of PES. Indeed, besides bounding the loss when
varying the stochasticity σ while keeping the same param-
eterization θ (point (i)), it also quantifies the distance in
expected return between optima under different stochastic-

ity amounts (points (ii)-(iii)).

6. PES: Convergence
In this section, we demonstrate that PES achieves last-iterate
convergence guarantees to the globally optimal determinis-
tic policy. Specifically, we require that each PG subroutine
p P J0, P ´ 1K, run under a stochasticity σp, exhibits last-
iterate convergence to the optimal (hyper)policy θp with a
suboptimality ϵ, i.e., J:pθ˚pσpq, σpq ´ ErJ:pθp, σpqs ď ϵ.

Given the decreasing deterministic schedule employed by
PES, if these guarantees are satisfied, the algorithm en-
sures that the next phase is initialized with an ϵ-optimal
parameterization from the previous phase. This allows us
to leverage the results of Theorem 5.1 to control the perfor-
mance loss when switching from phase p ´ 1 to phase p,
i.e., J:pθ˚pσpq, σpq ´ J:pθp´1, σpq.

Given the convergence of PG subroutines at each phase (The-
orem 4.4) and the regularity of the objective J: with respect
to stochasticity (Theorem 5.1), we just need to carefully
select the number of phases P to establish the last-iterate
convergence of PES to the optimal deterministic policy.

Theorem 6.1 (PES Convergence). Employing a (hy-
per)policy complying with Definitions 2.2 (PB) or 2.3 (AB),
under Assumptions 5.1 (PB) or 5.2 (AB), 5.3, and under the
assumptions for the convergence of PG subroutines (Sec. 4),
if PES is run for P “ pϵ{σmaxq´1{y phases, the output
parameterization θP´1 is such that:

JD̊ ´ ErJDpθP´1qs ď p1 ` 2D: ` W:qϵ` βD,

with a sample complexity:

NK ě rO
ˆ

L2α
2
DV:,θp2D: ` W:q

ϵ5

˙

,

where K “ řP´1
p“0 Kp.

Notice that, by setting the number of phases to P “
pϵ{σmaxq´1{y, we set the final stochasticity σP´1 “ ϵ. In
Theorem 6.1, we recover the rOpϵ´5q rate of Montenegro
et al. (2024) for last-iterate convergence to the optimal deter-
ministic policy, with a fixed stochasticity amount σ “ ϵ. As
highlighted in Section 1, keeping a static stochasticity σ as
small as ϵ has practical limitations. Instead, PES takes ad-
vantage of scaling the exploration amount σp at each phase
and starting from a good parameterization for the previous
exploration amount σp´1. These benefits will be further
discussed in Section 9.

Moreover, the convergence results of PES highlight a trade-
off between the parameters σmax and y. Specifically, σmax

controls the stochasticity of the first phase and the number
of phases required to output the optimal deterministic policy.
A large value of σmax makes PES to learn starting from a
highly stochastic objective, requiring more phases to con-
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verge, while a small σmax needs less phases to converge,
but limits the range of the stochasticity. Furthermore, y
determines the number of phases and the smoothness of the
schedule. A small value of y results in a large number of
phases P , making the reduction of stochasticity smoother.

Finally, by plugging the constants for PB (: “ P) or AB
(: “ A) exploration into the results of Theorem 6.1, we
recover the standard trade-offs between the two exploration
strategies (see Metelli et al., 2018). Specifically, PB ex-
ploration suffers from high-dimensional parameterizations
(i.e., large dΘ), while AB struggles with long-lasting inter-
actions with the environment and with high-dimensional
action spaces (i.e., large T and dA).

Remark 6.1 (On employing Hessian-aided PG subroutines).
We remark that the PG subroutines used within PES are
not limited to vanilla PG methods, as considered in this
paper. For instance, one could employ Hessian-aided al-
gorithms such as HARPG (Fatkhullin et al., 2023), which
enjoy faster last-iterate global convergence guarantees of
order rOpϵ´2q. In our setting, this translates into a rate of
rOpϵ´2σ´2q when using a fixed σ, due to the bound on the

policy scores (Assumption 4.4), which scales as Opσ´2q. As
a consequence, PES with HARPG converges to the optimal
deterministic policy with a sample complexity of rOpϵ´4q,
improving upon our current result at the cost of relying on
PG subroutines that incorporate Hessian information.

7. SL-PG: Convergence Analysis
In this section, we discuss the convergence of PG methods
jointly learning parameters θ and stochasticity σ (via a suit-
able parameterization ξ) of (hyper)policies. From now on,
we refer to this common practice as SL-PG (Stochasticity-
Learning Policy Gradients). As discussed in Section 1, this
approach has proven to be very successful in practical sce-
narios (Schulman et al., 2015; Duan et al., 2016; Likmeta
et al., 2020), since it potentially allows PGs to adapt the
stochasticity level to exit from local optima when needed.
However, the literature on PG convergence guarantees only
considers a static stochasticity (Yuan et al., 2022; Bhandari
& Russo, 2024; Montenegro et al., 2024).

SL-PG learns, in addition to the (hyper)policy parameters θ,
a certain scalar parameterization ξ P R of σ P Rą0, employ-
ing a stochasticity mapping function f : R Ñ rσmin, σmaxs,
with σmin, σmax P Rą0, to map ξ to σ as σ “ fpξq. To as-
sess the convergence of SL-PG, the stochasticity mapping
function f has to fulfill the following condition.

Assumption 7.1 (f Regularity). There exist L1,f ě 0 and
L2,f ě 0 such that, for every ξ1, ξ2 P R, we have:

|fpξ1q ´ fpξ2q| ď L1,f |ξ1 ´ ξ2|,
ˇ

ˇ

ˇ

ˇ

B
Bξ fpξ1q ´ B

Bξ fpξ2q
ˇ

ˇ

ˇ

ˇ

ď L2,f |ξ1 ´ ξ2|.

Considering υ :“ pθJ, ξqJ as the joint parameteriza-
tion, SL-PG aims to optimize the objective rJ:pυq :“
J:pθ, fpξqq by updating the parameterization υk via
stochastic gradient ascent υk`1 Ð υk ` δk p∇υ

rJ:pυkq,
where δk ą 0 is a step size and p∇υ

rJ:p¨q is an unbiased
estimator of ∇υJ:p¨q (e.g., GPOMDP for AB and PGPE for
PB) computed from a batch of N trajectories.

Convergence Conditions. We anticipate that SL-PG ex-
hibits last-iterate convergence guarantees to the optimal
stochastic (hyper)policy characterized by a joint param-
eterization υ˚ P argmaxυPΘˆR

rJ:pυq. We also denote
rJ˚
: :“ rJ:pυ˚q. To achieve such guarantees, we need similar

conditions to the ones required for the convergence of PGs
with fixed stochasticity (Section 4). In particular, the ob-
jective rJ:pυq has to fulfill three properties: piq smoothness
of rJ:p¨q w.r.t. υ, piiq weak gradient domination (WGD)
of rJ:p¨q w.r.t. υ, and piiiq bounded variance of the gra-
dient estimator. To ensure these properties for the joint
parametrization υ if the conditions of Section 4 hold for the
parametrization θ (with fixed σ), we only need to guarantee
analogous conditions for the parameter ξ.

Condition piq requires an additional assumption on the
smoothness of the deterministic objective with respect to
the NS policy, which is necessary for the AB case due to the
inherent nature of this type of exploration.

Assumption 7.2 ( JD is L2,µ-LS w.r.t. µ). The performance
JD of the non-stationary deterministic policy µ is pL2,tqT´1

t“0 -
LC in the non-stationary policy, i.e., for every µ,µ1:

}∇µJDpµq ´ ∇µJDpµ1q}2 ď
T´1
ÿ

t“0

L2,t sup
sPS

›

›µtpsq ´ µ1
tpsq›

›

2
.

Furthermore, we denote L2,µ :“ řT´1
t“0 L2,t.

Then, condition piq is inherited from the deterministic ob-
jective by both rJP and rJA, establishing, in addition to
Lemma 4.1, that J:pθ, fpξqq is L1:,ξ-LC and L2:,ξ-LS w.r.t.
ξ (details in Appendix G).

Lemma 7.1 (J: is L1:,ξ-LC and L2:,ξ-LS w.r.t. ξ). Under
Assumptions 4.1, 5.1, 5.2, 7.1, and 7.2 it holds that:
ˇ

ˇ

ˇ

ˇ

B
Bξ J:pθ, fpξqq

ˇ

ˇ

ˇ

ˇ

ď L1:,ξ and
ˇ

ˇ

ˇ

ˇ

B2

Bξ2 J:pθ, fpξqq
ˇ

ˇ

ˇ

ˇ

ď L2:,ξ.

When Lemmas 4.1 and 7.1 hold, then }∇2
υ

rJ:pυq} ď
L2:,υ :“ L2:,ξ ` L2.

To meet condition piiq, we introduce directly WGD on rJ:
w.r.t. the optimization variable υ.

Assumption 7.3 (WGD on rJ: w.r.t. υ). There exist αυ ą 0
and βυ ě 0 such that, for every υ P RdΘ`1, it holds:

rJ˚
: ´ rJ:pυq ď αυ

›

›

›
∇υ

rJ:pυq
›

›

›

2
` βυ.
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Notice that the meaning of this assumption is the same
of Assumption 4.2 explained in Section 4. Moreover, in
Appendix G, we demonstrate that this can be inherited by
other assumptions and results introduced previously.

Finally, condition piiiq holds for both rJA and rJP under the
same assumptions needed for the boundedness of the vari-
ance of p∇θJ:pθ, σq. In particular, we have the following
result on the boundedness of the variance of p∇ξJ:pθ, fpξqq.

Lemma 7.2 (Bounded p∇ξJ:pθ, fpξqq). If the (hyper)policy
satisfies Definitions 2.2 or 2.3, under Assumptions 4.4
and 5.3, using an exploration mapping fp¨q fulfilling As-
sumption 7.1, for any parameterization ξ, it holds that:

Varr p∇ξJ:pθ, fpξqqs ď V:,ξ
Nfpξq2 .

Then, the variance of p∇υ
rJ:pυq is bounded by pV:,θ `

V:,ξqN´1fpξq´2 (further details in Appendix G).

Convergence Results. We now study the last-iterate con-
vergence of SL-PG to the optimal stochastic (hyper)policy,
characterized by a total parameterization υ˚.
Theorem 7.3 (SL-PG Convergence). If the (hyper)policy
satisfies Definitions 2.2 or 2.3, under Assumptions 4.1,
4.3, 4.4, 5.1 (PB) or 5.2 (AB), 5.3, 7.1, 7.2, and 7.3, running
SL-PG for K iterations, with a suitable constant choice
for the learning rate δk, the output parameterization υK is
such that:

rJ˚
: ´ Er rJ:pυKqs ď ϵ` βυ,

with a total sample complexity of:

NK “ rO
ˆ

16α4
υL2:,υV:,υ
ϵ3σ2

min

˙

,

where L2:,υ :“ L2 ` L2:,ξ and V:,υ :“ V:,θ ` V:,ξ.

It is worth noticing that, under more demanding assump-
tions of the ones reported in Section 4, we recover the same
rate of Theorem 4.4 for what concerns the last-iterate con-
vergence to the optimal stochastic (hyper)policy. More-
over, in Appendix G, we recover the same result without
of Assumption 7.3. However, if one wants to recover the
convergence guarantees to the optimal deterministic pol-
icy by employing the result of Theorem 5.1, one has to
assume that all the ϵ-optimal stochastic (hyper)policies
are such that they have a stochasticity of at most ϵ, i.e.,
rJ˚
: ´Er rJ:pυKqs ď ϵ`βυ ñ σK “ fpξKq ď Opϵq. Then,

it would be possible to employ a stochasticity mapping f
such that σmin “ ϵ, recovering the same rate rOpϵ´5q of
PES for last-iterate deterministic convergence, being sure
that the learned stochasticity fpξKq would be at most ϵ.

Also in this case, by plugging into the results of Theorem 7.3
the constants for PB (: “ P) or AB (: “ A) exploration, we
recover the usual trade-offs between the two paradigms.

PES vs. SL-PG. SL-PG is similar to PES in its dynamic
handling of stochasticity σ, but instead of following a fixed
decreasing schedule, it adapts σ, potentially aiding in es-
caping local optima. However, this adaptability requires
stronger assumptions. In practice, PES may also get stuck
in local optima if parameters y and Kp are not chosen care-
fully. While PES offers theoretical guarantees on perfor-
mance loss when deploying a deterministic policy, SL-PG
provides no such assurance, as the convergence behavior of
σ remains an open problem without additional assumptions.
These aspects will be further discussed in Section 9.

8. Related Work
In this section, we discuss related work on convergence
rates. Further related literature is provided in Appendix A.

The convergence of PGs to stationary points at a rate of
Opϵ´4q has been known at least since the work of Sutton
et al. (1999). However, the recent analysis by Yuan et al.
(2022) and Montenegro et al. (2024) provide further clarifi-
cation on key aspects and required assumptions. Faster vari-
ants of REINFORCE, leveraging stochastic variance reduc-
tion techniques, were introduced much later (Papini et al.,
2018; Xu et al., 2019). These methods achieved improved
convergence rates, with the Opϵ´3q rate of (Xu et al., 2020)
now considered optimal, supported by lower bounds from
non-convex stochastic optimization (Arjevani et al., 2023).
The same optimality applies to second-order methods (Shen
et al., 2019; Arjevani et al., 2020). While the convergence
properties of PGPE are similar to those of PG, they have
received comparatively less attention. Notably, (Xu et al.,
2020) proved the Opϵ´3q rate for a variance-reduced ver-
sion of PGPE. More recently, the focus has shifted toward
studying the global convergence of PG to optimal policies
under additional assumptions. Pioneering works in this di-
rection include Scherrer & Geist (2014), Fazel et al. (2018),
and Bhandari & Russo (2024). These works introduced the
concept of gradient domination (also known as the Polyak-
Łojasiewicz condition), which has a long-standing history
in optimization (Lojasiewicz, 1963; Polyak, 1963; Karimi
et al., 2016). Several studies have analyzed the iteration
complexity of PG with exact gradients for specific policy
classes, such as softmax or direct tabular parametrization,
where gradient domination is guaranteed (e.g., Agarwal
et al., 2021; Mei et al., 2020; Li et al., 2021). An exception
is the sample-based natural policy gradient, which has been
studied for general smooth policies (Agarwal et al., 2021).
Regarding vanilla sample-based PG (e.g., GPOMDP), Liu
et al. (2020) were the first to investigate its sample complex-
ity for global optimality. They also introduced the concept
of Fisher-non-degeneracy (Ding et al., 2022), enabling the
use of gradient domination for a broader class of policies.
Under weaker assumptions, Yuan et al. (2022) and Mon-
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Figure 1. J: and σ behavior for PB and AB in Swimmer-v5 (5 runs,
mean ˘95% C.I.).

Method PB ∆P AB ∆A

PES-A 61.14 ˘ 1.1 ´0.12 28.93 ˘ 9.89 0.44

SL-PG 61.43 ˘ 2.73 ´0.21 49.83 ˘ 13.38 ´1.19

PES-B 60.40 ˘ 2.31 ´0.27 29.24 ˘ 8.74 0.33

Table 1. Deterministic deployment performance (5 runs over 100
trajectories, mean ˘ std). ∆: “ JDpθKq ´ J:pθKq.

tenegro et al. (2024) achieved an improved rOpϵ´3q sample
complexity. More sophisticated methods, such as variance-
reduced approaches, have pushed the sample complexity
further. The current state of the art is (Fatkhullin et al.,
2023), achieving rOpϵ´2.5q for Hessian-free methods and
rOpϵ´2q for second-order algorithms, with the latter being
optimal up to logarithmic terms (Azar et al., 2013). In the
case of Gaussian policies, all the aforementioned works
implicitly assume that covariance parameters remain fixed.

9. Experiments
In this section, we numerically validate the presented re-
sults. Additional details and experiments are provided in
Appendix H.2 Here, we analyze the behavior of PES and
SL-PG in both AB and PB explorations, comparing them
with their static stochasticity counterparts (GPOMDP and
PGPE).We conduct the evaluations in the Swimmer-v5 envi-
ronment, part of the MuJoCo (Todorov et al., 2012) control
suite, using a horizon of T “ 200. All learning rates are

2The code is available at https://github.com/
MontenegroAlessandro/MagicRL.

managed by the Adam (Kingma & Ba, 2014) optimizer.

For both PB and AB, we present PES with two different
schedules, both starting with σ “ 1. The first (A) schedule
consists of P “ 25 phases, each lasting Kp “ 200 itera-
tions, with a schedule exponent of y “ 1. The second (B)
schedule includes P “ 5000 phases, each lasting Kp “ 1
iteration, with a schedule exponent of y “ 0.5. SL-PG is ex-
ecuted forK “ 5000 iterations, using the common exponen-
tial parameterization for σ (i.e., σ “ eξ). The static stochas-
ticity counterparts are also run for K “ 5000 iterations, em-
ploying stochasticity levels σ P t1, 0.5, 0.04, 0.014u. Here,
σ “ 1 represents the maximum stochasticity in the PES
schedules, while σ “ 0.04 and σ “ 0.014 correspond to the
minima of the first and second PES schedules, respectively.

Parameter-based. Figure 1a shows that PES-B outper-
forms the other methods in convergence to optimal per-
formance, while presenting a similar behavior to SL-PG.
PES-A shows a slower convergence due to the longer phases
length. For the deterministic deployment PES-A, mimick-
ing what prescribed by theory, scores a higher performance
w.r.t. PES-B, showing similar results to SL-PG (Tab. 1).

Action-based. This pattern does not hold under AB. Fig-
ure 1b shows the main drawback of PES, consisting of the
possibility of getting stuck in local optima when Kp does
not suffice. This is avoided by SL-PG, which has the ability
to adapt σ to face this situation. This can be noticed also in
deterministic deployment scores (Tab. 1).

Final σ. In general, while the final stochasticity of PES is
controlled by the imposed schedule, the final stochasticity
of SL-PG is unknown until the end of the learning process,
as it is learned via stochastic gradient ascent. This has the
effect that the loss incurred when switching off the noise is
smaller w.r.t. that incurred when using SL-PG (Tab. 1).

10. Conclusion
This work studied last-iterate convergence guarantees for
PGs with dynamic stochasticity, bridging theory and prac-
tice. We introduced PES, a phase-based approach that deter-
ministically scales down stochasticity, enjoying last-iterate
convergence to the optimal deterministic policy with a rate
of rOpϵ´5q. Additionally, we analyzed the common practice
of jointly learning (hyper)policy parameters and stochas-
ticity, showing its last-iterate convergence to the optimal
stochastic (hyper)policy with a rate of rOpϵ´3σ´2

minq, under
stronger assumptions than PES. Future work should further
narrow the theory-practice gap by exploring guarantees for
single-iteration phases (i.e., Kp “ 1 for all p), relaxing as-
sumptions for SL-PG convergence, and analyzing the learn-
ing dynamics of the stochasticity value in SL-PG. More-
over, it would be interesting to determine SL-PG conver-
gence employing a stochasticity mapping f letting σ “ 0.
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A. Additional Related Work
In this appendix, we discuss additional related work w.r.t. the literature on convergence rates, discussed in Section 8.

Deterministic Policies. Value-based RL algorithms, such as Q-learning, naturally deliver deterministic policies as their
final solution. In contrast, most PG methods are designed to search within the space of non-degenerate stochastic policies.
As noted by Sutton et al. (1999), this characteristic is often seen as an advantage rather than a limitation, as the optimal
policy is frequently stochastic in partially observable environments. The ability to deploy deterministic policies is one of the
key advantages of PGPE and related evolutionary techniques (Schwefel, 1993; Wierstra et al., 2014), as well as model-based
approaches like PILCO (Deisenroth & Rasmussen, 2011). In the domain of action-based policy search, the Deterministic
Policy Gradient (DPG) algorithm introduced by Silver et al. (2014) was the first to explicitly focus on searching in the space
of deterministic policies. Unlike PGPE, DPG uses stochastic policies during the learning process for exploration,similarly
to value-based methods, while largely ignoring distribution mismatch caused by off-policy sampling. Despite this, DPG
served as the foundation for popular deep RL algorithms, including (Lillicrap et al., 2016; Fujimoto et al., 2018). In (Xiong
et al., 2022), the convergence of on-policy DPG (fully deterministic) to a stationary point was established with a sample
complexity of order Opϵ´4q. However, their analysis relies on an explorability assumption (Asm. 4 in their paper), which
is standard for stochastic policies but very demanding for deterministic ones. A more practical approach to achieving
fully deterministic DPG was proposed by Saleh et al. (2022), who also discuss the benefits of deterministic policies. As
expected, fully deterministic learning is only feasible under strong assumptions about the regularity of the environment.
Recently, (Montenegro et al., 2024) consider for both parameter-based and action-based PGs the more common scenario of
evaluating stochastic policies at training time, only to deploy a good deterministic policy in the end. The authors show that,
under weak gradient dominance assumptions, this practice enjoys last-iterate global convergence guarantees to the optimal
deterministic policy with a rate of order rOpϵ´5q, requiring to maintain fixed right from the beginning of the learning process
the (hyper)policy variance at a quantity which is Opϵq, limiting the practicality of this approach.

Policy Variance. When optimizing Gaussian policies using policy-gradient methods, the scale parameters (such as the
variance or, more generally, the covariance matrix of the policy) are often assumed to be fixed in theoretical analyses
but are typically optimized via gradient descent in practice. To the best of our knowledge, there is no comprehensive
theory addressing the impact of varying policy (or hyperpolicy) variance on the convergence rates of PGs. Ahmed et al.
(2019) were among the first to seriously examine how policy stochasticity influences the geometry of the objective function,
although their focus was on entropy regularization. Papini et al. (2020) addressed the issue from a different point of
view, proposing the use of second-order information to avoid the greediness of gradient updates, which they argue is
particularly problematic for scale parameters. Their work emphasizes monotonic improvement rather than convergence
guarantees. Bolland et al. (2023) and Mobahi & Fisher (2015) studied PG with Gaussian policies through the framework
of optimization by continuation (Allgower & Georg, 1990), treating the process as a sequence of smoothed versions of
the deterministic policy optimization problem. Unfortunately, the theoretical foundation for optimization by continuation
remains sparse, even if this approach presents similarities with our proposal PES. It is important to note that the common
practice of learning (Wierstra et al., 2014; Schulman et al., 2015; Duan et al., 2016; Likmeta et al., 2020) the exploration
parameters alongside the other policy parameters invalidates all known convergence results for GPOMDP. This is because
the smoothness of the stochastic objective is inversely proportional to the policy variance (Papini et al., 2022). In contrast,
entropy-regularized policy optimization is better analyzed through mirror descent theory rather than traditional stochastic
gradient descent theory (Shani et al., 2020).

Comparing AB and PB Exploration. A foundational work on this topic is the paper by Zhao et al. (2011), which provides
upper bounds on the variance of the REINFORCE and PGPE estimators. Their analysis highlights the better dependence of
PGPE on the task horizon compared to REINFORCE. The idea that variance reduction alone does not fully capture the
efficiency of policy gradient methods has emerged more recently (Ahmed et al., 2019). Montenegro et al. (2024) revisited the
comparison between action-based (AB) and parameter-based (PB) methods through the lens of modern sample complexity
theory, arriving at similar conclusions but offering, in our view, a more comprehensive understanding of the subject. Another
set of works that extensively compares AB and PB exploration includes (Metelli et al., 2018; 2020; 2021). These studies
analyze the trade-off between the task horizon and the number of policy parameters, both theoretically and experimentally,
but in the specific context of trust-region methods.
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B. Stochastic Policy Gradients
Deterministic Parametric Policies. We consider a parametric deterministic policy µθ : S Ñ A, where θ P Θ Ď RdΘ

is the parameter vector belonging to the parameter space Θ. The performance of µθ is assessed via the expected return
JD : Θ Ñ R, defined as:

JDpθq :“ E
τ„pDp¨|θq

rRpτqs ,
where

pDpτ ;θq :“ ρ0psτ,0q
T´1
ź

t“0

ppsτ,t`1|sτ,t,µθpsτ,tqq

is the density of trajectory τ induced by policy µθ. The agent’s goal consists of finding an optimal parameter θD̊ P
argmaxθPΘ JDpθq and we denote JD̊ :“ JDpθD̊q.

White Noise Exploration. As it is standard for papers concerning PG convergence (Papini et al., 2018; Yuan et al., 2022;
Fatkhullin et al., 2023), in this paper we consider white-noise-based undirected exploration. As discussed in Montenegro
et al. (2024), this kind of exploration is just a characterization of stochastic (hyper)policies which is particularly intuitive
when one has to deal with selecting the exploration amount. Before formally defining action-based and parameter-based
exploration, we provide a preliminary definition of white noise.

Definition B.1 (White Noise). Let d P N and σ ą 0. A probability distribution Φd,σ P ∆pRdq is a white noise if:

E
ϵ„Φd,σ

rϵs “ 0d and E
ϵ„Φd,σ

r}ϵ}22s ď dσ2. (1)

Definition 2.1 includes also zero-mean gaussian distributions ϵ „ N p0d,Σq, where Eϵ„N p0d,Σqr}ϵ}22s “ trpΣq ď dσ2.
Note that the noise is intended to be white among different time (or iteration) steps, while the noise vector for a particular
realization may not be white. For instance, if the distribution at hand is Gaussian, it may be non-isotropic. Moreover, in
principle it is possible to employ different white noise distributions throughout the exploration steps.

Action-Based (AB) Exploration. In AB exploration, we consider a parametric stochastic policy πρ : S Ñ ∆pAq, where
ρ P P Ď RdP is the parameter vector. The policy is used to sample actions at „ πρp¨|stq to be played in state st for every
step t of interaction. Stochastic policies πρ can be considered as built upon an underlying deterministic policy µθ (over
the same parameter space Θ), by perturbing each action suggested by µθ with a white-noise random vector. Formally, we
consider the following definition of white noise policies:

Definition B.2 (White noise policies). Let θ P Θ, σ ą 0, and µθ : S Ñ A be a parametric deterministic policy and let
ΦdA,σ be a white noise distribution compliant with Definition 2.1. A white noise policy πθ,σ : S Ñ ∆pAq is such that, for
every state s P S, the action a „ πθ,σp¨|sq satisfies a “ µθpsq ` ϵ, where ϵ „ ΦdA,σ which is sampled independently at
every step (i.e., whenever an action is sampled).

Note that piq a policy complying with Definition 2.2 is a standard stochastic policy and piiq this definition of white noise
policy justifies the name for AB exploration, since the exploration is carried out at the action level. From now on, we refer
to this kind of stochastic policies, referring to σ as the exploration amount for πθ,σ .

The performance of πθ is assessed via the expected return JA : Θ ˆ R Ñ R, defined as:

JApθ, σq :“ E
τ„pAp¨|θq

rRpτqs ,
where

pApτ ;θq :“ ρ0psτ,0q
T´1
ź

t“0

πθ,σpaτ,t|sτ,tqppsτ,t`1|sτ,t,aτ,tq

is the density of trajectory τ induced by policy πθ,σ .

Given that we consider white-noise policies, another definition of JA is possible. Let µ “ pµqT´1
t“0 be a non-stationary

deterministic policy, where, at time step t the deterministic policy µt : S Ñ A is played. The objective for this kind of policy
is JDpµq “ Eτ„pDp¨|µqrRpτqs, with pDpτ |µq “ ρ0psτ,0q śT´1

t“0 ppsτ,t`1|sτ,t,µtpsτ,tqq. Now, let ϵ “ pϵtqT´1
t“0 „ ΦT

dA,σ be
a sequence of independently sampled noise vectors. We can denote µθ ` ϵ “ pµθ ` ϵtqT´1

t“0 . Thus, the AB performance
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index can be expressed as:

JApθ, σq “ E
ϵ„ΦT

dA,σ

“

JDpµθ ` ϵq‰

.

In AB exploration, whenever σ ą 0, we aim to learn θÅpσq P argmaxθPΘ JApθ, σq. If JApθ, σq is differentiable w.r.t. θ,
PG methods (Peters & Schaal, 2008) update the parameter θ via gradient ascent: θt`1 ÐÝ θt ` ζt p∇θJApθt, σq, where
ζt ą 0 is the step size and p∇θJApθ, σq is an estimator of ∇θJApθ, σq. In particular, the GPOMDP estimator (Baxter &
Bartlett, 2001) is:

p∇θJApθ, σq :“ 1

N

N
ÿ

i“1

T´1
ÿ

t“0

˜

t
ÿ

k“0

∇θ log πθ,σpaτi,k|sτi,kq
¸

γtrpsτi,t,aτi,tq,

where N is the number of independent trajectories tτiuNi“1 collected with policy πθ,σ (τi „ pAp¨;θq), called batch size. In
this paper, we just consider GPOMDP, and we will not present REINFORCE, given that these two solutions are conceptually
similar, and the estimator considered in the latter suffers from larger variance (Williams, 1992; Baxter & Bartlett, 2001).

Parameter-Based (PB) Exploration. In PB exploration, we use a parametric stochastic hyperpolicy νρ Ď ∆pΘq, where
ρ P P Ď RdP is the parameter vector. The hyperpolicy is used to sample parameters θ „ νρ to be plugged in the
deterministic policy µθ at the beginning of every trajectory. As for the AB case, stochastic hyperpolicies νρ can be
considered as built upon an underlying deterministic policy µθ (over the same parameter space Θ), by perturbing the
parameter vector θ with a white-noise random vector. Formally, we consider the following definition of white noise
hyperpolicies:

Definition B.3 (White noise hyperpolicies). Let θ P Θ, σ ą 0, and µθ : S Ñ A be a parametric deterministic policy and
let ΦdΘ,σ be a white-noise distribution compliant with Definition 2.1. A white noise hyperpolicy νθ,σ P ∆pΘq is such that,
for every parameterization θ P Θ, the parameterization θ1 „ νθ,σ satisfies θ1 “ θ ` ϵ, where ϵ „ ΦdΘ,σ which is sampled
independently at every trajectory.

Also in this case, piq a hyperpolicy complying with Definition 2.3 is a standard stochastic hyperpolicy and piiq this definition
of white noise hyperpolicy justifies the name for PB exploration, since the exploration is carried out at the parameter level.
It is worth noticing that, differently from what happens in AB exploration, in PB exploration, before starting to collect each
trajectory, the current parametrization for the deterministic policy θ is perturbed with a noise vector ϵ „ ΦdΘ

pσq, then the
deterministic policy µθ`ϵ is used for the entire trajectory. From now on, we focus on this kind of stochastic hyperpolicies,
referring to σ as the exploration amount for νθ,σ .

The performance index of νθ,σ is JP : RdΘ ˆ R ÝÑ R, that is the expectation over θ1 of JDpθ1q defined as:

JPpθ, σq :“ E
θ1„νθ,σ

“

JDpθ1q‰

.

Leveraging on the definition of white noise hyperpolicy, we can provide the following additional definition for the PB
performance index JP:

JPpθ, σq “ E
ϵ„ΦdΘ,σ

rJDpθ ` ϵqs
Whenever σ ą 0, PB exploration aims at learning θP̊ pσq P argmaxθPΘ JPpθ, σq. If JPpθ, σq is differentiable w.r.t. θ,
PGPE (Sehnke et al., 2010) updates the hyperparameter θ by gradient ascent: θt`1 ÐÝ θt ` ζt p∇θJPpθt, σq. PGPE uses an
estimator of ∇θJPpθ, σq defined as:

p∇θJPpθ, σq “ 1

N

N
ÿ

i“1

∇θ log νθ,σpθiqRpτiq,

where the batch size N is the number of independent parameter-trajectory pairs tpθi, τiquNi“1, collected with hyperpolicy
νθ,σ , that is, θi „ νθ,σ and τi „ pDp¨;θiq.
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C. Exploration Mapping Quantities
In this section, we present a mapping table of various quantities, often expressed in their exploration-agnostic form along
this work, to the specific expression they have in the Parameter-based and Action-based exploration paradigms.

Constant Parameter-based Action-based

D: LJ

?
dΘ L1,µ

?
dA

W: αDL2

?
dΘ ` LJ

?
dΘ αDψ

?
dA ` L1,µ

?
dA

V:,θ R2
maxcdΘ

Np1´γq2
R2

maxcdAL2
µ

Np1´γq3

L1:,ξ LJL1,f

?
dΘ L1,µL1,f

?
TdA

L2:,ξ L2L
2
1,fdΘ ` LJL2,f

?
dΘ L2,µL

2
1,fTdA ` L1,µL2,f

?
TdA

L3:,ξ L2L1,f

?
dΘ L2,µL1,f

?
TdA

V:,ξ
R2

maxcd
2
ΘL2

1,f

Np1´γq2
R2

maxcd
2
AL2

1,f

Np1´γq3

As can be noticed from the table, there is a trade-off between PB and AB explorations, as already highlighted in previous
works (Metelli et al., 2018; Montenegro et al., 2024). Indeed, PB exploration may suffer from large parameterizations
(i.e., dΘ large), while AB exploration may suffer from long-lasting interactions with the environment and from highly-
dimensioned actions spaces (i.e., T or dA large). In particular, for AB exploration, when we are in an infinite horizon
setting (i.e., γ ă 1 and T “ `8) we identify the length of a trajectory with the effective horizon T « rOp1{p1 ´ γqq. This
approximation only affects logarithmic terms in the sample complexity (Yuan et al., 2022).

16



Convergence Analysis of Policy Gradient Methods with Dynamic Stochasticity

D. Details on the Convergence of PG Subroutines
As highlighted in Section 4, in order guarantee last-iterate global convergence of a PG subroutine employing a (hyper)policy
complying with Definitions 2.2 and 2.3 with σ ą 0 as exploration amount, three conditions are needed: piq smoothness of
J:pθ, σq w.r.t. θ, piiq WGD on J:pθ, σq w.r.t. θ, and piiiq bounded variance of the estimator p∇θJ:pθ, σq.

D.1. Inherited Smoothness

The smoothness of JP and JA is simply inherited by the smoothness of JD.

Lemma 4.1 (J: Inherited Smoothness). Under Assumption 4.1, for every θ P Θ and σ P Rě0, it holds:

}∇2
θJ:pθ, σq}2 ď L2.

Proof. See Lemmas D.3 and D.7 by Montenegro et al. (2024).

D.2. Inherited Weak Gradient Domination

WGD on JP and JA can be inherited by WGD on JD, with additional characterization of the MDP and the deterministic policy
µθ. Such an assumption, that has already been stated in the main paper (Asm 4.3), is rewritten here in Assumptions D.1
and D.2 for the sake of rigor and clarity.

Assumption D.1 (MDP Regularity). The log transition model log pps1|s, ¨q is Lp-LC and L2,p-LS, and the reward function
rps, ¨q is Lr-LC and L2,r-LS w.r.t. the action for every s, s1 P S, i.e., for every a,a1 P A:

| log pps1|s,aq ´ log pps1|s,a1q| ď Lp}a ´ a1}2
}∇a log pps1|s,aq ´ ∇a log pps1|s,a1q}2 ď L2,p}a ´ a1}2
|rps,aq ´ rps,a1q| ď Lr}a ´ a1}2
}rps,aq ´ rps,a1q}2 ď L2,r}a ´ a1}2.

Assumption D.2 (µθ Regularity). The deterministic policy µθpsq is Lµ-LC and L2,µ-LS w.r.t. parameter for every s P S,
i.e., for every θ,θ1 P Θ:

}µθpsq ´ µθ1 psq}2 ď Lµ}θ ´ θ1}2
}∇θµθpsq ´ ∇θµθ1 psq}2 ď L2,µ}θ ´ θ1}2.

Under Assumptions D.1 and D.2, WGD can be inherited by JP and JA when also Assumption 4.2 holds (i.e., WGD on JD
w.r.t. θ). We stress that these two assumptions are needed for the AB case. Thus, they are unavoidable when one wants to
consider an exploration-agnostic setting.

Theorem 4.2 (Inherited WGD for J:, Montenegro et al. 2024). Considering a (hyper)policy complying with Definitions 2.2
or 2.3, under Assumptions 4.2 and 4.3, for any σ P Rą0 and θ P Θ, the following holds:

J:pθ˚pσq, σq ´ J:pθ, σq ď αD}∇θJ:pθ, σq}2 ` β:pσq,
with β:pσq :“ βD ` W:σ, for some W: ě 0.

Proof. See Theorems 7.1 and 7.2 by Montenegro et al. (2024).

For what concerns the quantity β:pσq “ βD ` W:σ, we have the following mapping to PB and AB explorations:

• PB: WP “ αDL2

?
dΘ ` LJ

?
dΘ;

• AB: WA “ αDψ
?
dA ` L

?
dA, with ψ “ Opp1 ´ γq´4q. In particular:

ψ “ Lµ

˜

L2
pRmaxγ

p1 ´ γq4 ` pLrLp `RmaxL2,p ` LpLrγq
p1 ´ γq2 ` L2,r

1 ´ γ

¸

p1 ´ γT q,

as can be seen in Lemma D.11 by Montenegro et al. (2024).
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D.3. Bounded Variance of the Estimators

Lemma 4.3 (Bounded Estimator Variance). Considering a (hyper)policy complying with Definitions 2.2 (PB) or 2.3 (AB),
under Assumptions 4.3 and 4.4 the following holds:

Varr p∇θJ:pθ, σqs ď V:,θ
Nσ2

, for some V:,θ ě 0.

Proof. See Lemmas D.2 and D.6 by Montenegro et al. (2024).

It is worth noticing that for PB exploration with a hyperpolicy complying with Definition 2.3, it suffices to be under
Assumption 4.4 to obtain the result of Lemma 4.3.

D.4. PG Global Last-Iterate Convergence

Theorem 4.4 (PG Global Last-Iterate Convergence, Montenegro et al. 2024). Consider running for Kp iterations a
PG algorithm with a (hyper)policy satisfying Definitions 2.2 or 2.3 with an exploration amount σp P Rą0. Under
Assumptions 4.1, 4.2, 4.3, and 4.4, by selecting an appropriate constant step size ζp and a sample complexity NKp

satisfying:

NKp ě rO
ˆ

α4
DL2V:,θ
ϵ3σ2

p

˙

,

then J:pθ˚pσpq, σpq ´ ErJ:pθp, σpqs ď ϵ` β:pσpq, where the notation rOp¨q hides logarithmic terms.

Proof. This result follows directly from Theorem 6.1 by Montenegro et al. (2024). However, in the original result, the term
σ´2
p is hidden inside the variance bound term. here, we explicitly show it because we need to take care of the dependence on

the specific exploration amount since we have to consider it to be dynamic.

18
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E. Proofs of Section 5
Theorem 5.1. If the (hyper)policy complies with Definitions 2.2 (PB) or 2.3 (AB), under Assumptions 5.1 (PB) or 5.2 (AB),
and Assumption 5.3, for every θ P Θ and σ1, σ2 P Rě0, it holds that:

piq |J:pθ, σ1q ´ J:pθ, σ2q| ď D:|σ1 ´ σ2|
piiq J˚

: pσ1q ´ J:pθ˚pσ2q, σ1q ď 2D:|σ1 ´ σ2|
piiiq |J:pθ˚pσ1q, σ1q ´ J:pθ˚pσ2q, σ2q| ď D:|σ1 ´ σ2|,

where : P tP,Au, DA “ L1,µ

?
dA, and DP “ LJ

?
dΘ.

Proof. To prove result piq, we have to consider the specific exploration strategies to exploit the additional noise characteriza-
tion provided by Assumption 5.3.

Result piq: Parameter-based. The objective JP has the form:

JPpθ, σq “ E
ϵ„ΦdΘ,σ

rJPpθ ` ϵ, 0qs “ E
ϵ„ΦdΘ,σ

rJDpθ ` ϵqs , (2)

for any parameterization θ P Θ and exploration amount σ P Rą0.

Thus, we have the following:

|JPpθ, σ1q ´ JPpθ, σ2q| (3)

“
ˇ

ˇ

ˇ

ˇ

E
ϵ1„ΦdΘ,σ1

rJDpθ ` ϵ1qs ´ E
ϵ2„ΦdΘ,σ2

rJDpθ ` ϵ2qs
ˇ

ˇ

ˇ

ˇ

. (4)

Since we are under Assumption 5.3, we can write the following:

|JPpθ, σ1q ´ JPpθ, σ2q| (5)

“
ˇ

ˇ

ˇ

ˇ

E
ϵ„ΦdΘ,1

rJDpθ ` σ1ϵq ´ JDpθ ` σ2ϵqs
ˇ

ˇ

ˇ

ˇ

(6)

ď E
ϵ„ΦdΘ,1

r|JDpθ ` σ1ϵq ´ JDpθ ` σ2ϵq|s , (7)

where we applied Jensen’s inequality.

By applying Assumption 5.1, we obtain:

|JPpθ, σ1q ´ JPpθ, σ2q| (8)
ď E

ϵ„ΦdΘ,1

r|JDpθ ` σ1ϵq ´ JDpθ ` σ2ϵq|s (9)

ď LJ E
ϵ„ΦdΘ,1

r}θ ` σ1ϵ ´ θ ´ σ2ϵ}2s (10)

“ LJ E
ϵ„ΦdΘ,1

r}σ1ϵ ´ σ2ϵ}2s (11)

ď LJ

c

E
ϵ„ΦdΘ,1

”

}σ1ϵ ´ σ2ϵ}22
ı

(12)

“ LJ

c

E
ϵ„ΦdΘ,1

”

}ϵ}22 pσ2 ´ σ2q2
ı

(13)

ď LJ

a

dΘ|σ1 ´ σ2|, (14)

where we applied the Cauchy-Schwartz inequality and Definition 2.1.

Result piq: Action-based. The proof for this point is similar to the one for result piq (PB). Here, we can express JA as:

JApθ, σq “ E
ϵ„ΦT

dA,σ

”

JDpµ
θ

` ϵq
ı

, (15)

for every parameterization θ P Θ and exploration amount σ P R`.
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Since we are under Assumption 5.3, we can write the following (with a little abuse of notation):

|JApθ, σ1q ´ JApθ, σ2q| (16)

“
ˇ

ˇ

ˇ

ˇ

ˇ

E
ϵ1„ΦT

dA,σ1

”

JDpµ
θ

` ϵ1q
ı

´ E
ϵ2„ΦT

dA,σ2

”

JDpµ
θ

` ϵ2q
ı

ˇ

ˇ

ˇ

ˇ

ˇ

. (17)

By applying Assumption 5.1, we obtain:

|JApθ, σ1q ´ JApθ, σ2q| (18)

“
ˇ

ˇ

ˇ

ˇ

ˇ

E
ϵ„ΦT

dA,1

”

JDpµ
θ

` σ1ϵq ´ JDpµ
θ

` σ2ϵq
ı

ˇ

ˇ

ˇ

ˇ

ˇ

(19)

ď E
ϵ„ΦT

dA,1

”ˇ

ˇ

ˇ
JDpµ

θ
` σ1ϵq ´ JDpµ

θ
` σ2ϵq

ˇ

ˇ

ˇ

ı

, (20)

where we employed Jensen’s inequality.

Now, by applying Assumption 5.2, we obtain:

|JApθ, σ1q ´ JApθ, σ2q| (21)

ď E
ϵ„ΦT

dA,1

”
ˇ

ˇ

ˇ
JDpµ

θ
` σ1ϵq ´ JDpµ

θ
` σ2ϵq

ˇ

ˇ

ˇ

ı

(22)

ď E
ϵ„ΦT

dA,1

«

T´1
ÿ

t“0

Lt sup
sPS

›

›

›
µ

θ
psq ` σ1ϵ ´ µ

θ
psq ´ σ2ϵ

›

›

›

2

ff

(23)

ď
T´1
ÿ

t“0

Lt E
ϵ„ΦdA,1

r}σ1ϵ ´ σ2ϵ}2s (24)

ď
T´1
ÿ

t“0

Lt

c

E
ϵ„ΦdA,1

”

}σ1ϵ ´ σ2ϵ}22
ı

(25)

ď L1,µ

a

dA|σ1 ´ σ2|, (26)

where we applied the Cauchy-Schwartz inequality and Definition 2.1

Result piiq. Here, we exploit the result piq. In particular, we sum and subtract the quantity J:pθ˚pσ1q, σ2q, and then we
exploit the fact that J:pθ˚pσ2q, σ2q ě J:pθ˚pσ1q, σ2q. We start by summing and subtracting the quantity J:pθ˚pσ1q, σ2q.

J˚
: pσ1q ´ J:pθ˚pσ2q, σ1q (27)

“ J:pθ˚pσ1q, σ1q ´ J:pθ˚pσ2q, σ1q (28)
“ J:pθ˚pσ1q, σ1q ´ J:pθ˚pσ2q, σ1q ˘ J:pθ˚pσ1q, σ2q. (29)

Now, we exploit the fact that J:pθ˚pσ2q, σ2q ě J:pθ˚pσ1q, σ2q.

J˚
: pσ1q ´ J:pθ˚pσ2q, σ1q (30)

ď J:pθ˚pσ1q, σ1q ´ J:pθ˚pσ1q, σ2q ` J:pθ˚pσ2q, σ2q ´ J:pθ˚pσ2q, σ1q. (31)

Now, we apply twice result piq, obtaining:

J˚
: pσ1q ´ J:pθ˚pσ2q, σ1q ď 2D:|σ1 ´ σ2|. (32)

Result piiiq. To prove this result, we separately consider the cases in which J:pθ˚pσ1q, σ1q ě J:pθ˚pσ2q, σ2q or
J:pθ˚pσ1q, σ1q ď J:pθ˚pσ2q, σ2q.

In the first case, we consider J:pθ˚pσ1q, σ1q ě J:pθ˚pσ2q, σ2q. Thus, we have what follows:

J:pθ˚pσ1q, σ1q ´ J:pθ˚pσ2q, σ2q (33)
“ J:pθ˚pσ1q, σ1q ´ J:pθ˚pσ2q, σ2q ˘ J:pθ˚pσ1q, σ2q (34)
“ J:pθ˚pσ1q, σ1q ´ J:pθ˚pσ1q, σ2q ` J:pθ˚pσ1q, σ2q ´ J:pθ˚pσ2q, σ2q

loooooooooooooooooooomoooooooooooooooooooon

ď0

(35)
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ď J:pθ˚pσ1q, σ1q ´ J:pθ˚pσ1q, σ2q. (36)

Now, we use result piq, obtaining:

J:pθ˚pσ1q, σ1q ´ J:pθ˚pσ2q, σ2q ď D:|σ1 ´ σ2|. (37)

The remaining case is J:pθ˚pσ1q, σ1q ď J:pθ˚pσ2q, σ2q. With a similar result, we have:

J:pθ˚pσ2q, σ2q ´ J:pθ˚pσ1q, σ1q (38)
“ J:pθ˚pσ2q, σ2q ´ J:pθ˚pσ1q, σ1q ˘ J:pθ˚pσ2q, σ1q (39)
“ J:pθ˚pσ2q, σ2q ´ J:pθ˚pσ2q, σ1q ` J:pθ˚pσ2q, σ1q ´ J:pθ˚pσ1q, σ1q

loooooooooooooooooooomoooooooooooooooooooon

ď0

(40)

ď J:pθ˚pσ2q, σ2q ´ J:pθ˚pσ2q, σ1q. (41)

As for the previous case, we use result piq, obtaining:

J:pθ˚pσ2q, σ2q ´ J:pθ˚pσ1q, σ1q ď D:|σ1 ´ σ2|. (42)
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PES

σ0 θ
K0ÝÝÑ θ0

σ1 θ0
K1ÝÝÑ θ1

...

σP´1 θP´2
KP´1ÝÝÝÝÑ θP´1

Figure 2. Graphical representation of PES.

F. Proofs of Section 6
Theorem 6.1 (PES Convergence). Employing a (hyper)policy complying with Definitions 2.2 (PB) or 2.3 (AB), under
Assumptions 5.1 (PB) or 5.2 (AB), 5.3, and under the assumptions for the convergence of PG subroutines (Sec. 4), if PES is
run for P “ pϵ{σmaxq´1{y phases, the output parameterization θP´1 is such that:

JD̊ ´ ErJDpθP´1qs ď p1 ` 2D: ` W:qϵ` βD,

with a sample complexity:

NK ě rO
ˆ

L2α
2
DV:,θp2D: ` W:q

ϵ5

˙

,

where K “ řP´1
p“0 Kp.

Proof. Outline. To asses the converge of PES we need to apply:

• Theorem F.1 by Montenegro et al. (2024) to every phase p P J0, P ´ 1K to ensure the last-iterate global convergence to
the pth phase’s optimum;

• Theorem 5.1 to quantify the distance between J:pθ˚pσpq, σpq ´ ErJ:pθp´1, σpqs each time we initialize a phase p
with the output of the preceding one. To use this theorem, we need to be under Assumptions 5.1 (PB) or 5.2 (AB) and
Assumption 5.3. Moreover, the employed (hyper)policy has to be compliant with Definitions 2.2 and 2.3.

In the following, we use θ to indicate the initialization for the parameters and we define θ´1 :“ θ.

Convergence of PG Subroutines. In order to apply Montenegro et al. (Theorem F.1, 2024) to every phase p P J0, P ´ 1K,
the following conditions must hold:

• The objective J:p¨, σpq has to be L2-LS w.r.t. the parameterization θ. This is obtained under Assumption 4.1
(Lemma 4.1);

• WGD holds for J:pθ, σpq w.r.t. θ. Under Assumption 4.2 and other regularity assumptions on the deterministic policy
and on the MDP (see Appendix D), this can be obtained (Thr. 4.2) as:

J:pθ˚pσpq, σpq ´ J:pθ, σpq ď αD}∇θJ:pθ, σpq}2 ` β:pσpq,
with β:pσpq :“ βD ` W:σp;

• Bounded variance of the estimators, which is obtained under Assumption 4.4 and other regularity assumptions on the
deterministic policy and on the MDP (see Appendix D and Lemma 4.3) as:

Varr p∇θJ:pθ, σpqs ď V:,θ
Nσ2

p

.

We recall that the constant V:,θ does not depend on the quantity σ, as reported in Lemma 4.3.

Being in a generic phase p P J0, P ´ 1K, we can apply Theorem F.1 by Montenegro et al. (2024) to assess the minimum
number of iterations Kp needed to ensure last-iterate global convergence of the pth PG subroutine. In particular, running the
PG subroutine with a constant learning rate

ζp “ ϵ2Nσ2
p

4α2
DL2V:,θ

(43)
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for Kp iterations such that

Kp ě 16α4
DL2V:,θ
Nϵ3σ2

p

log
pJ:pθ˚pσpq, σpq ´ ErJ:pθp´1, σpqs ´ β:pσpqq`

ϵ
, (44)

then the output parameterization θp is such that

J:pθ˚pσpq, σpq ´ ErJ:pθp, σpqs ď ϵ` β:pσpq. (45)

Total Iteration Complexity. The total amount of iterations don by PES is given by:

K “
P´1
ÿ

i“0

Ki. (46)

By requiring each step size ζi to satisfy Equation (43) and Ki to satisfy Equation (44), then each PG subroutine enjoys
last-iterate convergence guarantees as Equation (45). Thus, we can require the following condition on K:

K “
P´1
ÿ

i“0

Ki (47)

“ K0 `
P´1
ÿ

i“1

Ki (48)

ě 16α4
DL2V:,θ

Nϵ3σ2
max

log
pJ:pθ˚pσmaxq, σmaxq ´ J:pθ, σmaxq ´ β:pσmaxqq`

ϵ
(49)

`
P´1
ÿ

i“1

16α4
DL2V:,θ
Nϵ3σ2

i

log

ˆ pJ:pθ˚pσiq, σiq ´ ErJ:pθi´1, σiqs ´ β:pσiqq`

ϵ

˙

. (50)

By construction of PES, and by the fact that each PG subroutine enjoys last-iterate convergence guarantees, we can quantify
the term J:pθ˚pσiq, σiq ´ ErJ:pθi´1, σiqs ´ β:pσiq. Indeed, except for the first phase i “ 0, we have:

J:pθ˚pσiq, σiq ´ ErJ:pθi´1, σiqs ´ β:pσiq (51)
ď J:pθ˚pσiq, σiq ´ ErJ:pθi´1, σi´1qs `D:|σi ´ σi´1| ´ β:pσiq (52)
ď J:pθ˚pσiq, σiq ´ J:pθ˚pσi´1q, σi´1q `D:|σi ´ σi´1| ` ϵ` β:pσi´1q ´ β:pσiq (53)
ď 2D:|σi ´ σi´1| ` ϵ` β:pσi´1q ´ β:pσiq (54)
“ 2D:pσi´1 ´ σiq ` ϵ` β:pσi´1q ´ β:pσiq, (55)

where we employed Theorem 5.1, we considered that PES employs a non-increasing σi schedule, and we exploited the fact
that each final parameterization of each phase satisfies Equation (45).

Moreover, since β:pσiq “ βD ` W:σi, we have the following:

J:pθ˚pσiq, σiq ´ ErJ:pθi´1, σiqs ´ β:pσiq ď p2D: ` W:qpσi´1 ´ σiq ` ϵ. (56)

Exploiting this last result, we can enforce a stronger but simpler condition to hold for K:

K ě 16α4
DL2V:,θ

Nϵ3σ2
max

log
pJ:pθ˚pσmaxq, σmaxq ´ J:pθ, σmaxq ´ β:pσmaxqq`

ϵ
(57)

`
P´1
ÿ

i“1

16α4
DL2V:,θ
Nϵ3σ2

i

log

ˆ

1 ` p2D: ` W:qpσi´1 ´ σiq
ϵ

˙

. (58)

Now, considering the specific σi schedule employed by PES, we have that:

σi´1 ´ σi “ σmax

`

i´y ´ pi` 1q´y
˘

, (59)

thus recovering the following condition on the iteration complexity:

K ě 16α4
DL2V:,θ

Nϵ3σ2
max

log
pJ:pθ˚pσmaxq, σmaxq ´ J:pθ, σmaxq ´ β:pσmaxqq`

ϵ
(60)
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`
P´1
ÿ

i“1

16α4
DL2V:,θ
Nϵ3σ2

i

log

ˆ

1 ` σmaxp2D: ` W:q pi´y ´ pi` 1q´yq
ϵ

˙

. (61)

Before going on with the proof, we notice that x ě logp1 ` xq for any x ą ´1. We shall apply this with x “
σ0p2D:`W:qpσi´1´σiq

ϵ , which is positive. In light of this, we enforce an even stronger condition to hold for K:

K ě 16α4
DL2V:,θ

Nϵ3σ2
max

log
pJ:pθ˚pσmaxq, σmaxq ´ J:pθ, σmaxq ´ β:pσmaxqq`

ϵ
(62)

` 16α4
DL2V:,θp2D: ` W:q

Nϵ4σmax

P´1
ÿ

i“1

i´y ´ pi` 1q´y

pi` 1q´2y
, (63)

where we also substituted the value σ´2
i with σ´2

maxpi` 1q2y , given the σ schedule employed by PES.

Now, we calculate the convergence value of the summation:
P´1
ÿ

i“1

pi´y ´ pi` 1q´yq
pi` 1q´2y

(64)

“
P´1
ÿ

i“1

ppi` 1qy ´ iyq
ˆ

i` 1

i

˙y

(65)

ď 2y
P´1
ÿ

i“1

ppi` 1qy ´ iyq (66)

“ 2ypP y ´ 1q ď 2yP y. (67)

This result suggests a particular choice for the number of phases P and exponent y. Indeed, we select these two quantities
such that P y “ σmax{ϵ since this choice leads to a σP´1 “ ϵ. Having made such a choice, we can write:

P´1
ÿ

i“1

pi´y ´ pi` 1q´yq
pi` 1q´2y

ď 2y
σmax

ϵ
. (68)

Considering P y “ σmax{ϵ, we can require the total iteration complexity to satisfy the even stronger condition:

K ě 16α4
DL2V:,θ

Nϵ3σ2
max

log
pJ:pθ˚pσmaxq, σmaxq ´ J:pθ, σmaxq ´ β:pσmaxqq`

ϵ
` 16α4

DL2V:,θp2D: ` W:q
Nϵ5

. (69)

The latter is the number of iterations ensuring, together with the choices of learning rates pζiqP´1
i“0 (Eq. 43), the pσiqP´1

i“0

schedule, and the number of phases P “ pϵ{σmaxq´1{y , that the final parameterization satisfies Equation (45):

J:pθ˚pσP´1q, σP´1q ´ ErJ:pθP´1, σP´1qs ď ϵ` β:pσP´1q. (70)

In particular, since σP´1 “ ϵ, we have the following:

J:pθ˚pσP´1q, σP´1q ´ ErJ:pθP´1, σP´1qs (71)
“ J:pθ˚pϵq, ϵq ´ ErJ:pθP´1, ϵqs ď ϵ` β:pϵq. (72)

Finally, to prove the convergence to deterministic global optimum, we use the results of Theorem 5.1:

J:pθ˚pϵq, ϵq ´ ErJ:pθP´1, ϵqs (73)
ě J:pθ˚pϵq, ϵq ´ ErJDpθP´1qs ´D:ϵ (74)
“ JDpθ˚p0qq ´ ErJDpθP´1qs ` J:pθ˚pϵq, ϵq ´ JDpθ˚p0qq ´D:ϵ (75)
ě JDpθ˚p0qq ´ ErJDpθP´1qs ´ 2D:ϵ. (76)

All in all, we have:

JD̊ ´ ErJDpθP´1qs ď p1 ` 2D:qϵ` β:pϵq “ p1 ` 2D: ` W:qϵ` βD, (77)

with a total sample complexity NK “ Opϵ´5q.
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G. Proofs of Section 7
G.1. SL-PG Stochasticity Estimators

Here, we present the estimators to update ξ in SL-PG. It is worth noticing that they have a similar form to the ones presented
in Section 2, but the scores of the (hyper)policies has to be computed w.r.t. ξ. In the following, we consider σ “ fpξq.

Parameter-based

p∇ξJPpθ, σq “ 1
N

řN
i“1

B
Bξ log νθ,σpθiqRpτiq

Action-based

p∇ξJApθ, σq :“ 1
N

řN
i“1

řT´1
t“0

´

řt
k“0

B
Bξ log πθ,σpaτi,k|sτi,kq

¯

γtrpsτi,t,aτi,tq

G.2. Inherited Smoothness of J: w.r.t. the Stochasticity Parameterization

Lemma G.1. (JP Inherited Smoothness w.r.t. σ) If the hyperpolicy satisfies Definition 2.3, under Assumptions 4.1 and 5.3,
for every θ P RdΘ and σ P R`, the second derivative of JP w.r.t. σ is bounded as follows:

ˇ

ˇ

ˇ

ˇ

B2

Bσ2
JPpθ, σq

ˇ

ˇ

ˇ

ˇ

ď dΘL2.

Proof. Given the fact that the hyperpolicy νθ,σ satisfies Definition 2.3 and that Assumption 5.3 holds, we can write the
following:

B2

Bσ2
JPpθ, σq “ B2

Bσ2
E

ϵ„ΦdΘ,1

rJDpθ ` σϵqs (78)

“ E
ϵ„ΦdΘ,1

„ B2

Bσ2
JDpθ ` σϵq

ȷ

. (79)

We now need to apply the chain rule to the term B2

Bσ2 JDpθ ` σϵq:

B2

Bσ2
JDpθ ` σϵq “ B

Bσ
ˆ B

BσJDpθ ` σϵq
˙

(80)

“ B
Bσ

ˆ

∇η JDpηq|η“θ`σϵ

Bpθ ` σϵq
Bσ

˙

(81)

“ B
Bσ

´

∇η JDpηq|η“θ`σϵ ϵ
¯

(82)

“ ϵJ∇2
η JDpηq|η“θ`σϵ ϵ. (83)

Thus, applying the absolute value to the quantity B2

Bσ2 JPpθ, σq, and recalling that Assumption 4.1 holds, we have what
follows:

ˇ

ˇ

ˇ

ˇ

B2

Bσ2
JPpθ, σq

ˇ

ˇ

ˇ

ˇ

ď E
ϵ„ΦdΘ,1

„
ˇ

ˇ

ˇ

ˇ

B2

Bσ2
JDpθ ` σϵq

ˇ

ˇ

ˇ

ˇ

ȷ

(84)

“ E
ϵ„ΦdΘ,1

”
ˇ

ˇ

ˇ
ϵJ∇2

η JDpηq|η“θ`σϵ ϵ
ˇ

ˇ

ˇ

ı

(85)

ď L2 E
ϵ„ΦdΘ,1

”

}ϵ}22
ı

(86)

ď L2dΘ. (87)

Lemma G.2. (JP Inherited Smoothness w.r.t. ξ) If the hyperpolicy satisfies Definition 2.3, under Assumptions 4.1, 7.1, 5.1,
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and 5.3, for every θ P RdΘ and σ P R`, the second derivative of JP w.r.t. ξ is bounded as follows:
ˇ

ˇ

ˇ

ˇ

B2

Bξ2 JPpθ, fpξqq
ˇ

ˇ

ˇ

ˇ

ď L2P,ξ.

where L2P,ξ “ L2L
2
1,fdΘ ` LJL2,f

?
dΘ.

Proof. The proof is similar to the one of Lemma G.1.

We start by exploiting Definition 2.3 and Assumption 5.3:

B2

Bξ2 JPpθ, fpξqq “ B2

Bξ2 E
ϵ„ΦdΘ,1

rJDpθ ` fpξqϵqs (88)

“ E
ϵ„ΦdΘ,1

„ B2

Bξ2 JDpθ ` fpξqϵq
ȷ

. (89)

We now need to apply the chain rule to the term B2

Bξ2 JDpθ ` fpξqϵq:

B2

Bξ2 JDpθ ` fpξqϵq “ B
Bξ

ˆ B
Bξ JDpθ ` fpξqϵq

˙

(90)

“ B
Bξ

ˆ

∇η JDpηq|η“θ`fpξqϵ
Bpθ ` fpξqϵq

Bξ
˙

(91)

“ B
Bξ

ˆ

∇η JDpηq|η“θ`fpξqϵ ϵ
B
Bξ fpξq

˙

(92)

“ B
Bξ

´

∇η JDpηq|η“θ`fpξqϵ
¯

ϵ
B
Bξ fpξq ` ∇η JDpηq|η“θ`fpξqϵ ϵ

B2

Bξ2 fpξq (93)

“ ϵJ∇2
η JDpηq|η“θ`fpξqϵ ϵ

B
Bξ fpξq2 ` ∇η JDpηq|η“θ`fpξqϵ ϵ

B2

Bξ2 fpξq. (94)

Thus, applying the absolute value to the quantity B2

Bξ2 JPpθ, fpξqq, and considering Assumptions 4.1 and 7.1, we have what
follows:

ˇ

ˇ

ˇ

ˇ

B2

Bξ2 JPpθ, fpξqq
ˇ

ˇ

ˇ

ˇ

(95)

ď E
ϵ„ΦdΘ,1

„
ˇ

ˇ

ˇ

ˇ

B2

Bξ2 JDpθ ` fpξqϵq
ˇ

ˇ

ˇ

ˇ

ȷ

(96)

ď E
ϵ„ΦdΘ,1

„
ˇ

ˇ

ˇ

ˇ

ϵJ∇2
η JDpηq|η“θ`fpξqϵ ϵ

B
Bξ fpξq2

ˇ

ˇ

ˇ

ˇ

ȷ

` E
ϵ„ΦdΘ,1

„
ˇ

ˇ

ˇ

ˇ

∇η JDpηq|η“θ`fpξqϵ ϵ
B2

Bξ2 fpξq
ˇ

ˇ

ˇ

ˇ

ȷ

(97)

ď L2L
2
1,fdΘ ` LJL2,f

a

dΘ. (98)

Lemma G.3. (JP Inherited LC w.r.t. ξ) If the hyperpolicy satisfies Definition 2.3, under Assumptions 5.1, 7.1, and 5.3, for
every θ P RdΘ and σ P R`, the derivative of JP w.r.t. ξ is bounded as follows:

ˇ

ˇ

ˇ

ˇ

B
Bξ JPpθ, fpξqq

ˇ

ˇ

ˇ

ˇ

ď L1P,ξ.

where L1P,ξ “ LJL1,f

?
dΘ.

Proof. The proof is similar to the one of Lemma G.2.

We start by exploiting Definition 2.3 and Assumption 5.3:
B
Bξ JPpθ, fpξqq “ B

Bξ E
ϵ„ΦdΘ,1

rJDpθ ` fpξqϵqs (99)

“ E
ϵ„ΦdΘ,1

„ B
Bξ JDpθ ` fpξqϵq

ȷ

. (100)
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We now need to apply the chain rule to the term B
BξJDpθ ` fpξqϵq:

B
Bξ JDpθ ` fpξqϵq “ B

Bξ JDpθ ` fpξqϵq (101)

“ ∇η JDpηq|η“θ`fpξqϵ
Bpθ ` fpξqϵqq

Bξ (102)

“ ∇η JDpηq|η“θ`fpξqϵ ϵ
B
Bξ fpξq. (103)

Thus, applying the absolute value to the quantity B
BξJPpθ, fpξqq, and considering Assumptions 5.1 and 7.1, we have what

follows:
ˇ

ˇ

ˇ

ˇ

B
Bξ JPpθ, fpξqq

ˇ

ˇ

ˇ

ˇ

(104)

ď E
ϵ„ΦdΘ,1

„
ˇ

ˇ

ˇ

ˇ

B
Bξ JDpθ ` fpξqϵq

ˇ

ˇ

ˇ

ˇ

ȷ

(105)

ď E
ϵ„ΦdΘ,1

„
ˇ

ˇ

ˇ

ˇ

∇η JDpηq|η“θ`fpξqϵ ϵ
B
Bξ fpξq

ˇ

ˇ

ˇ

ˇ

ȷ

(106)

ď LJL1,f

a

dΘ. (107)

Lemma G.4 (JP Inherited Lipschitz Gradient w.r.t. ξ). If the hyperpolicy satisfies Definition 2.3, under Assumptions 4.1
and 7.1, for every θ1,θ2 P Θ and ξ P R, it holds:

ˇ

ˇ

ˇ

ˇ

B
Bξ JPpθ1, fpξqq ´ B

Bξ JPpθ2, fpξqq
ˇ

ˇ

ˇ

ˇ

ď L1,fL2

a

dΘ}θ1 ´ θ2}2. (108)

Proof. Under Assumption 4.1, it holds that:

}∇θJDpθ1q ´ ∇θJDpθ2q}2 ď L2}θ1 ´ θ2}2. (109)

Under Assumption 5.3, by definition of JP using a hyperpolicy satisfying Definition 2.3, it holds:

JPpθ, fpξqq “ E
ϵ„ΦdΘ,1

rJDpθ ` fpξqϵqs . (110)

Moreover, by applying the chain rule, we have:
B
Bξ JPpθ, fpξqq “ ∇ηJDpηq|η“θ`fpξqϵ

B
Bξ fpξqϵ. (111)

Thus, the following derivation holds:
ˇ

ˇ

ˇ

ˇ

B
Bξ JPpθ1, fpξqq ´ B

Bξ JPpθ2, fpξqq
ˇ

ˇ

ˇ

ˇ

(112)

“
ˇ

ˇ

ˇ

ˇ

B
Bξ E

ϵ„ΦdΘ,1

rJDpθ1 ` fpξqϵqs ´ B
Bξ E

ϵ„ΦdΘ,1

rJDpθ2 ` fpξqϵqs
ˇ

ˇ

ˇ

ˇ

(113)

“
ˇ

ˇ

ˇ

ˇ

E
ϵ„ΦdΘ,1

„ B
Bξ JDpθ1 ` fpξqϵq

ȷ

´ E
ϵ„ΦdΘ,1

„ B
Bξ JDpθ2 ` fpξqϵq

ȷ
ˇ

ˇ

ˇ

ˇ

(114)

“
ˇ

ˇ

ˇ

ˇ

E
ϵ„ΦdΘ,1

„ B
Bξ JDpθ1 ` fpξqϵq ´ B

Bξ JDpθ2 ` fpξqϵq
ȷ

ˇ

ˇ

ˇ

ˇ

(115)

ď E
ϵ„ΦdΘ,1

„
ˇ

ˇ

ˇ

ˇ

B
Bξ JDpθ1 ` fpξqϵq ´ B

Bξ JDpθ2 ` fpξqϵq
ˇ

ˇ

ˇ

ˇ

ȷ

(116)

“ E
ϵ„ΦdΘ,1

„
ˇ

ˇ

ˇ

ˇ

∇ηJDpη1q|η1“θ1`fpξqϵ
B
Bξ fpξqϵ ´ ∇ηJDpη2q|η2“θ2`fpξqϵ

B
Bξ fpξqϵ

ˇ

ˇ

ˇ

ˇ

ȷ

(117)
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ď E
ϵ„ΦdΘ,1

„
ˇ

ˇ

ˇ

ˇ

B
Bξ fpξq

ˇ

ˇ

ˇ

ˇ

}ϵ}2
›

›

›
∇ηJDpη1q|η1“θ1`fpξqϵ ´ ∇ηJDpη2q|η2“θ2`fpξqϵ

›

›

›

2

ȷ

(118)

ď L1,fL2

a

dΘ}θ1 ´ θ2}2, (119)

where, in the first inequality, we employed the Jensen’s inequality, and, for the last passage, we exploited Assumption 4.1.

Lemma G.5. (JA Inherited Smoothness w.r.t. σ) If the policy satisfies Definition 2.2, under Assumption 7.2 and 5.3, for
every θ P RdΘ and σ P R`, the second derivative of JA w.r.t. σ is bounded as follows:

ˇ

ˇ

ˇ

ˇ

B2

Bσ2
JApθ, σq

ˇ

ˇ

ˇ

ˇ

ď TdAL2,µ

Proof. The proof of this lemma follows the same reasoning of the one of Lemma G.1. The only difference is in the fact that
the noise vector ϵ has dimension TdA.

Indeed, given the fact that the policy πθ,σ satisfies Definition 2.2 and that Assumption 5.3 holds, we can write the following:

B2

Bσ2
JApθ, σq “ B2

Bσ2
E

ϵ„ΦT
dA,1

”

JDpµ
θ

` σϵq
ı

(120)

“ E
ϵ„ΦT

dA,1

„ B2

Bσ2
JDpµ

θ
` σϵq

ȷ

. (121)

We now need to apply the chain rule to the term B2

Bσ2 JDpµ
θ

` σϵq:

B2

Bσ2
JDpµ

θ
` σϵq “ B

Bσ
ˆ B

BσJDpµ
θ

` σϵq
˙

(122)

“ B
Bσ

˜

∇η JDpηq|η“µ
θ

`σϵ

Bpµ
θ

` σϵq
Bσ

¸

(123)

“ B
Bσ

´

∇η JDpηq|η“µ
θ

`σϵ ϵ
¯

(124)

“ ϵJ∇2
η JDpηq|η“µ

θ
`σϵ ϵ. (125)

Thus, applying the absolute value to the quantity B2

Bσ2 JApθ, σq, and recalling that Assumption 7.2 holds, we have what
follows:

ˇ

ˇ

ˇ

ˇ

B2

Bσ2
JApθ, σq

ˇ

ˇ

ˇ

ˇ

ď E
ϵ„ΦT

dA,1

„
ˇ

ˇ

ˇ

ˇ

B2

Bσ2
JDpµ

θ
` σϵq

ˇ

ˇ

ˇ

ˇ

ȷ

(126)

“ E
ϵ„ΦT

dA,1

”
ˇ

ˇ

ˇ
ϵJ∇2

η JDpηq|η“µ
θ

`σϵ ϵ
ˇ

ˇ

ˇ

ı

(127)

ď L2,µ E
ϵ„ΦT

dA,1

”

}ϵ}22
ı

(128)

ď L2,µTdA. (129)

Lemma G.6. (JA Inherited Smoothness w.r.t. ξ) If the policy satisfies Definition 2.2, under Assumption 7.2, 7.1, 5.2, and 5.3,
for every θ P RdΘ and σ P R`, the second derivative of JA w.r.t. ξ is bounded as follows:

ˇ

ˇ

ˇ

ˇ

B2

Bξ2 JApθ, fpξqq
ˇ

ˇ

ˇ

ˇ

ď L2A,ξ,

where L2A,ξ “ L2,µL
2
1,fTdA ` L1,µL2,f

?
TdA.

Proof. The proof of this lemma follows the same reasoning of the one of Lemma G.2. The only difference is in the fact that
the noise vector ϵ has dimension TdA, as shown also in the proof of Lemma G.5.
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Indeed, given that σ “ fpξq and that f satisfies Assumption 7.1, and given the fact that the policy πθ,σ satisfies Definition 2.2
and that Assumption 5.3 holds, we can write the following:

B2

Bξ2 JApθ, fpξqq “ B2

Bξ2 E
ϵ„ΦT

dA,1

”

JDpµ
θ

` fpξqϵq
ı

(130)

“ E
ϵ„ΦT

dA,1

„ B2

Bξ2 JDpµ
θ

` fpξqϵq
ȷ

. (131)

We now need to apply the chain rule to the term B2

Bξ2 JDpµ
θ

` fpξqϵq:

B2

Bξ2 JDpµ
θ

` fpξqϵq “ B
Bξ

ˆ B
Bξ JDpµ

θ
` fpξqϵq

˙

(132)

“ B
Bξ

˜

∇η JDpηq|η“µ
θ

`fpξqϵ
Bpµ

θ
` fpξqϵq
Bξ

¸

(133)

“ B
Bξ

ˆ

∇η JDpηq|η“µ
θ

`fpξqϵ
B
Bξ fpξqϵ

˙

(134)

“ ϵJ∇2
η JDpηq|η“µ

θ
`fpξqϵ ϵ

B
Bξ fpξq2 ` ∇η JDpηq|η“µ

θ
`fpξqϵ ϵ

B2

Bξ2 fpξq. (135)

Thus, applying the absolute value to the quantity B2

Bξ2 JApθ, fpξqq, and recalling that Assumptions 7.2 and 5.2 hold, we have
what follows:

ˇ

ˇ

ˇ

ˇ

B2

Bξ2 JApθ, fpξqq
ˇ

ˇ

ˇ

ˇ

(136)

ď E
ϵ„ΦT

dA,1

„
ˇ

ˇ

ˇ

ˇ

B2

Bξ2 JDpµ
θ

` fpξqϵq
ˇ

ˇ

ˇ

ˇ

ȷ

(137)

“ E
ϵ„ΦT

dA,1

„
ˇ

ˇ

ˇ

ˇ

ϵJ∇2
η JDpηq|η“µ

θ
`fpξqϵ ϵ

B
Bξ fpξq2

ˇ

ˇ

ˇ

ˇ

ȷ

` E
ϵ„ΦT

dA,1

„
ˇ

ˇ

ˇ

ˇ

∇η JDpηq|η“µ
θ

`fpξqϵ ϵ
B2

Bξ2 fpξq
ˇ

ˇ

ˇ

ˇ

ȷ

(138)

ď L2,µL
2
1,fTdA ` L1,µL2,f

a

TdA. (139)

Lemma G.7. (JA Inherited LC w.r.t. ξ) If the policy satisfies Definition 2.2, under Assumption 5.2, 7.1, and 5.3, for every
θ P RdΘ and σ P R`, the derivative of JA w.r.t. ξ is bounded as follows:

ˇ

ˇ

ˇ

ˇ

B
Bξ JApθ, fpξqq

ˇ

ˇ

ˇ

ˇ

ď L1A,ξ,

where L1A,ξ “ L1,µL1,f

?
TdA.

Proof. The proof of this lemma follows the same reasoning of the one of Lemma G.3. The only difference is in the fact that
the noise vector ϵ has dimension TdA, as shown also in the proof of Lemma G.5.

Indeed, given that σ “ fpξq and that f satisfies Assumption 7.1, and given the fact that the policy πθ,σ satisfies Definition 2.2
and that Assumption 5.3 holds, we can write the following:

B
Bξ JApθ, fpξqq “ B

Bξ E
ϵ„ΦT

dA,1

”

JDpµ
θ

` fpξqϵq
ı

(140)

“ E
ϵ„ΦT

dA,1

„ B
Bξ JDpµ

θ
` fpξqϵq

ȷ

. (141)

We now need to apply the chain rule to the term B
BξJDpµ

θ
` fpξqϵq:

B
Bξ JDpµ

θ
` fpξqϵq “ B

Bξ JDpµ
θ

` fpξqϵq (142)
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“ ∇η JDpηq|η“µ
θ

`fpξqϵ
Bpµ

θ
` fpξqϵq
Bξ (143)

“ ∇η JDpηq|η“µ
θ

`fpξqϵ
B
Bξ fpξqϵ. (144)

Thus, applying the absolute value to the quantity B
BξJApθ, fpξqq, and recalling that Assumption 5.2 holds, we have what

follows:
ˇ

ˇ

ˇ

ˇ

B
Bξ JApθ, fpξqq

ˇ

ˇ

ˇ

ˇ

(145)

ď E
ϵ„ΦT

dA,1

„
ˇ

ˇ

ˇ

ˇ

B
Bξ JDpµ

θ
` fpξqϵq

ˇ

ˇ

ˇ

ˇ

ȷ

(146)

“ E
ϵ„ΦT

dA,1

„
ˇ

ˇ

ˇ

ˇ

∇η JDpηq|η“µ
θ

`fpξqϵ
B
Bξ fpξqϵ

ˇ

ˇ

ˇ

ˇ

ȷ

(147)

ď L1,µL1,f

a

TdA. (148)

Lemma G.8 (JA Inherited Lipschitz Gradient w.r.t. ξ). If the policy satisfies Definition 2.2, under Assumptions 7.2 and 7.1,
for every θ1,θ2 P Θ and ξ P R, it holds:

ˇ

ˇ

ˇ

ˇ

B
Bξ JApθ1, fpξqq ´ B

Bξ JApθ2, fpξqq
ˇ

ˇ

ˇ

ˇ

ď L1,fL2,µ

a

TdA}θ1 ´ θ2}2. (149)

Proof. The proof of this lemma follows the same reasoning of the one of Lemma G.8. The only difference is in the fact that
the noise vector ϵ has dimension TdA, as shown also in the proof of Lemma G.5.

Under Assumption 5.3, by definition of JA using a hyperpolicy satisfying Definition 2.2, it holds:

JApθ, fpξqq “ E
ϵ„ΦT

dA,1

”

JDpµ
θ

` fpξqϵq
ı

. (150)

Moreover, by applying the chain rule, we have:
B
Bξ JApθ, fpξqq “ ∇ηJDpηq|η“µ

θ
`fpξqϵ

B
Bξ fpξqϵ. (151)

Thus, the following derivation holds:
ˇ

ˇ

ˇ

ˇ

B
Bξ JApθ1, fpξqq ´ B

Bξ JApθ2, fpξqq
ˇ

ˇ

ˇ

ˇ

(152)

“
ˇ

ˇ

ˇ

ˇ

ˇ

B
Bξ E

ϵ„ΦT
dA,1

”

JDpµ
θ1

` fpξqϵq
ı

´ B
Bξ E

ϵ„ΦT
dA,1

”

JDpµ
θ2

` fpξqϵq
ı

ˇ

ˇ

ˇ

ˇ

ˇ

(153)

ď E
ϵ„ΦT

dA,1

„
ˇ

ˇ

ˇ

ˇ

B
Bξ JDpµ

θ1
` fpξqϵq ´ B

Bξ JDpµ
θ2

` fpξqϵq
ˇ

ˇ

ˇ

ˇ

ȷ

(154)

“ E
ϵ„ΦT

dA,1

„
ˇ

ˇ

ˇ

ˇ

∇ηJDpη1q|η1“µ
θ1

`fpξqϵ
B
Bξ fpξqϵ ´ ∇ηJDpη2q|η2“µ

θ2
`fpξqϵ

B
Bξ fpξqϵ

ˇ

ˇ

ˇ

ˇ

ȷ

(155)

ď E
ϵ„ΦT

dA,1

„
ˇ

ˇ

ˇ

ˇ

B
Bξ fpξq

ˇ

ˇ

ˇ

ˇ

}ϵ}2
›

›

›

›

∇ηJDpη1q|η1“µ
θ1

`fpξqϵ ´ ∇ηJDpη2q|η2“µ
θ2

`fpξqϵ

›

›

›

›

2

ȷ

(156)

ď L1,fL2,µ

a

TdA}θ1 ´ θ2}2, (157)

where, in the first inequality, we employed the Jensen’s inequality, and, for the last passage, we exploited Assumption 7.2.

Lemma 7.1 (J: is L1:,ξ-LC and L2:,ξ-LS w.r.t. ξ). Under Assumptions 4.1, 5.1, 5.2, 7.1, and 7.2 it holds that:
ˇ

ˇ

ˇ

ˇ

B
Bξ J:pθ, fpξqq

ˇ

ˇ

ˇ

ˇ

ď L1:,ξ and
ˇ

ˇ

ˇ

ˇ

B2

Bξ2 J:pθ, fpξqq
ˇ

ˇ

ˇ

ˇ

ď L2:,ξ.
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Proof. This lemma is the ensemble of Lemmas G.6, G.7, G.2, and G.3.

Lemma G.9 (J: Inherited Lipschitz Gradient w.r.t. ξ). If the (hyper)policy satisfies Definition 2.2 (AB) or 2.3 (PB), under
Assumptions 4.1 and 7.1, for every θ1,θ2 P Θ and ξ P R, it holds that:

ˇ

ˇ

ˇ

ˇ

B
Bξ J:pθ1, fpξqq ´ B

Bξ J:pθ2, fpξqq
ˇ

ˇ

ˇ

ˇ

ď L3:,ξ}θ1 ´ θ2}2.

Proof. This lemma is the ensemble of Lemmas G.4 and G.8.

G.3. Bounded Variance of the Estimators p∇ξJ:pθ, fpξqq
Lemma G.10 (Bounded Hyperpolicy Scores). If the hyperpolicy νθ,σ satisfies Definition 2.3, under Assumption 5.3 and 4.4
and using an exploration mapping function fp¨q such that Assumption 7.1 is fulfilled, then the following holds:

E
θ1„νθ,σ

«

ˇ

ˇ

ˇ

ˇ

B
Bξ log νθ,σpθ1q

ˇ

ˇ

ˇ

ˇ

2
ff

ď cd2ΘL
2
1,fσ

´2,

where σ “ fpξq.

Proof. From Definition 2.3 and from Assumption 5.3, we know that if θ1 „ νθ,σ , then

θ1 “ θ ` σϵ “ θ ` fpξqϵ, (158)

where ϵ „ ΦdΘ,1.

Moreover, we know that

νθ,σpθ1q “ ϕdΘ,σpθ1 ´ θq “ ϕdΘ,σpfpξqϵq. (159)

Thus, we can write what follows:
B
Bξ log νθ,σpθ1q “ B

Bξ log ϕdΘ,σpfpξqϵq “ ∇ϵ log ϕdΘ,σpϵq|ϵ“fpξqϵ
B
Bξ fpξqϵ. (160)

By applying the expectation w.r.t. the sampled parameter θ1 to the square of B
Bξ log νθ,σpθ1q, we obtain:

E
θ1„νθ,σ

«

ˇ

ˇ

ˇ

ˇ

B
Bξ log νθ,σpθ1q

ˇ

ˇ

ˇ

ˇ

2
ff

“ E
θ1„νθ,σ

«

ˇ

ˇ

ˇ

ˇ

∇ϵ log ϕdΘ,σpϵq|ϵ“fpξqϵ
B
Bξ fpξqϵ

ˇ

ˇ

ˇ

ˇ

2
ff

(161)

ď L2
1,fcd

2
Θfpξq´2, (162)

where we exploited Assumptions 4.4 and 7.1.

Lemma G.11 ( p∇ξJP Bounded Variance). If the hyperpolicy νθ,σ satisfies Definition 2.3, under Assumption 5.3 and 4.4 and
using an exploration mapping function fp¨q such that Assumption 7.1 is fulfilled and a parameterization ξ for the exploration
amount σ, then the following holds:

Var
θ1„νθ,σ

”

p∇ξJPpθ1, σq
ı

ď R2
maxcd

2
ΘL

2
1,f

Np1 ´ γq2σ2
,

where σ “ fpξq.

Proof. We recall that the estimator at hand is:

p∇ξJPpθ, σq “ 1

N

N
ÿ

i“1

B
Bξ log νθ,σpθiqRpτiq,

where N is the number of parameter configuration tested (on one trajectory) at each iteration and σ “ fpξq. Thus, we can
compute the variance of such an estimator as:

Var
θ1„νθ,σ

”

p∇ξJPpθ1, σq
ı

“ 1

N
Var

θ1„νθ,σ

„ B
Bξ log νθ,σpθ1qRpτ1q

ȷ

(163)
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“ 1

N
E

θ1„νθ,σ

«

ˇ

ˇ

ˇ

ˇ

B
Bξ log νθ,σpθ1q

ˇ

ˇ

ˇ

ˇ

2

Rpτ1q2
ff

. (164)

We can conclude the proof by applying Lemma G.10 and by considering the fact that, given a trajectory τ , Rpτq is defined
as:

Rpτq “
T´1
ÿ

t“0

γtrpsτ,t,aτ,tq,

with rps,aq P r´Rmax, Rmaxs for every s P S and a P A.

Lemma G.12 (Bounded Policy Scores). If the policy πθ,σ satisfies Definition 2.2, under Assumption 5.3 and 4.4 and using
an exploration mapping function fp¨q such that Assumption 7.1 is fulfilled, then the following holds for every state s P S:

E
a„πθ,σp¨|sq

«

ˇ

ˇ

ˇ

ˇ

B
Bξ log πθ,σpa|sq

ˇ

ˇ

ˇ

ˇ

2
ff

ď cd2AL
2
1,fσ

´2,

where σ “ fpξq.

Proof. From Definition 2.2 and from Assumption 5.3, we know that if a „ πθ,σp¨|sq, then

a “ µθpsq ` σϵ “ µθpsq ` fpξqϵ, (165)

where ϵ „ ΦdA,1.

Moreover, we know that

πθ,σpa|sq “ ϕdA,σpa ´ µθpsqq “ ϕdA,σpfpξqϵq. (166)

Thus, we can write what follows:
B
Bξ log πθ,σpa|sq “ B

Bξ log ϕdA,σpfpξqϵq “ ∇ϵ log ϕdA,σpϵq|ϵ“fpξqϵ
B
Bξ fpξqϵ. (167)

By applying the expectation w.r.t. the sampled action a to the 2-norm squared of ∇ξ log πθ,σpa|sq, we obtain:

E
a„πθ,σp¨|sq

«

ˇ

ˇ

ˇ

ˇ

B
Bξ log πθ,σpa|sq

ˇ

ˇ

ˇ

ˇ

2
ff

“ E
θ1„πθ,σ

«

ˇ

ˇ

ˇ

ˇ

∇ϵ log ϕdA,σpϵq|ϵ“fpξqϵ
B
Bξ fpξqϵ

ˇ

ˇ

ˇ

ˇ

2
ff

(168)

ď L2
1,fcd

2
Afpξq´2, (169)

where we exploited Assumptions 4.4 and 7.1.

Lemma G.13 ( p∇ξJA Bounded Variance). If the policy πθ,σ satisfies Definition 2.2, under Assumption 5.3 and 4.4 and using
an exploration mapping function fp¨q such that Assumption 7.1 is fulfilled and a parameterization ξ for the exploration
amount σ, then the following holds:

Var
τ„pAp¨|pθ,σqq

”

p∇ξJApθ, σq
ı

ď R2
maxcd

2
AL

2
1,f

Np1 ´ γq3σ2
,

where σ “ fpξq.

Proof. We recall that the estimator at hand is:

p∇ξJApθ, σq :“ 1

N

N
ÿ

i“1

T´1
ÿ

t“0

˜

t
ÿ

k“0

B
Bξ log πθ,σpaτi,k|sτi,kq

¸

γtrpsτi,t,aτi,tq,

where N is the number of trajectories tested at each iteration and σ “ fpξq. Thus, we can compute the variance of such an
estimator as:

Var
τ„pAp¨|pθ,σqq

”

p∇ξJApθ, σq
ı

(170)

“ 1

N
Var

τ„pAp¨|pθ,σqq

«

T´1
ÿ

t“0

˜

t
ÿ

k“0

B
Bξ log πθ,σpaτ1,k|sτ1,kq

¸

γtrpsτ1,t,aτ1,tq
ff

(171)
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ď 1

N
E

τ„pAp¨|pθ,σqq

»

–

˜

T´1
ÿ

t“0

˜

t
ÿ

k“0

B
Bξ log πθ,σpaτ1,k|sτ1,kq

¸

γtrpsτ1,t,aτ1,tq
¸2

fi

fl (172)

ď 1

N
E

τ„pAp¨|pθ,σqq

»

–

˜

T´1
ÿ

t“0

γtrpsτ1,t,aτ1,tq2
¸

¨

˝

T´1
ÿ

t“0

γt

˜

t
ÿ

k“0

B
Bξ log πθ,σpaτ1,k|sτ1,kq

¸2
˛

‚

fi

fl (173)

ď R2
max

Np1 ´ γq E
τ„pAp¨|pθ,σqq

»

–

T´1
ÿ

t“0

γt

˜

t
ÿ

k“0

B
Bξ log πθ,σpaτ1,k|sτ1,kq

¸2
fi

fl (174)

ď R2
maxcd

2
AL

2
1,f

Np1 ´ γq3σ2
, (175)

where the second inequality is Cauchy-Schwarz, and the last one is by Lemma G.12.

Lemma 7.2 (Bounded p∇ξJ:pθ, fpξqq). If the (hyper)policy satisfies Definitions 2.2 or 2.3, under Assumptions 4.4 and 5.3,
using an exploration mapping fp¨q fulfilling Assumption 7.1, for any parameterization ξ, it holds that:

Varr p∇ξJ:pθ, fpξqqs ď V:,ξ
Nfpξq2 .

Proof. This lemma is the ensemble of Lemmas G.11 and G.13.

G.4. Last-Iterate Convergence Guarantees of SL-PG to Optimal Stochastic Policies

G.4.1. ADDITIONAL NOTATION

Before delving into the details of SL-PG last-iterate convergence guarantees, we introduce additional notation that will be
used in the subsequent proofs.

Being in the context of Section 7, we consider the total parameterization υ P RdΘ`1:

υ :“ pθ, ξqJ
, (176)

where θ is the vector of dimension dΘ representing the parameterization of the (hyper)policy.

SL-PG aims to maximize the objective:
rJ:pυq :“ J:pθ, fpξqq, (177)

where f : R Ñ rσmin, σmaxs is a stochasticity mapping satisfying Assumption 7.1.

The SL-PG algorithm updates υ as

υk`1 Ð υk ` δ p∇υ
rJ:pυkq, (178)

where δ ą 0 is the step size and p∇υ
rJ:pυkq is an unbiased estimator of ∇υ

rJ:pυkq (e.g., GPOMDP (AB) or PGPE (PB)).

In this context, we intend ∇υ
rJ:pυq to be a pdΘ ` 1q-dimensional vector:

∇υ
rJ:pυq :“

˜

B rJ:pυq
Bθ1 , ...,

B rJ:pυq
BθdΘ

,
B rJ:pυq

Bξ

¸J
. (179)

Moreover, we intend ∇θ
rJ:pυq and ∇ξ

rJ:pυq as

∇θ
rJ:pυq :“

˜

B rJ:pυq
Bθ1 , ...,

B rJ:pυq
BθdΘ

, 0

¸J
and ∇ξ

rJ:pυq :“
˜

0dΘ
,

B rJ:pυq
Bξ

¸J
, (180)

noticing that both of them have the same dimension of ∇υ
rJ:pυq
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G.4.2. CONVERGENCE

Theorem 7.3 (SL-PG Convergence). If the (hyper)policy satisfies Definitions 2.2 or 2.3, under Assumptions 4.1, 4.3, 4.4, 5.1
(PB) or 5.2 (AB), 5.3, 7.1, 7.2, and 7.3, running SL-PG for K iterations, with a suitable constant choice for the learning
rate δk, the output parameterization υK is such that:

rJ˚
: ´ Er rJ:pυKqs ď ϵ` βυ,

with a total sample complexity of:

NK “ rO
ˆ

16α4
υL2:,υV:,υ
ϵ3σ2

min

˙

,

where L2:,υ :“ L2 ` L2:,ξ and V:,υ :“ V:,θ ` V:,ξ.

Proof. Here, the goal is to find the minimum amount of trajectories NK needed, together with an appropriate choice of the
learning rate δ, to guarantee that the parameterization that SL-PG outputs in the last iterate υK is such that the following
quantity is bounded:

rJ:pυ˚q ´ E
”

rJ:pυKq
ı

. (181)

The first step is to bound the difference between rJ:pυk`1q and rJ:pυkq.

rJ:pυk`1q ´ rJ:pυkq (182)

ě
〈
υk`1 ´ υk,∇υ

rJ:pυkq
〉

´ L2:,υ
2

}υk`1 ´ υk}22 (183)

“ δ
〈

p∇υ
rJ:pυkq,∇υ

rJ:pυkq
〉

´ L2:,υ
2

δ2
›

›

›

p∇υ
rJ:pυkq

›

›

›

2

2
(184)

“ δ
〈

p∇θ
rJ:pυkq ` p∇ξ

rJ:pυkq,∇υ
rJ:pυkq

〉
´ L2:,υ

2
δ2

›

›

›

p∇θ
rJ:pυkq ` p∇ξ

rJ:pυkq
›

›

›

2

2
(185)

“ δ
〈

p∇θ
rJ:pυkq,∇υ

rJ:pυkq
〉

` δ
〈

p∇ξ
rJ:pυkq,∇υ

rJ:pυkq
〉

´ L2:,υ
2

δ2
›

›

›

p∇θ
rJ:pυkq

›

›

›

2

2
´ L2:,υ

2
δ2

›

›

›

p∇ξ
rJ:pυkq

›

›

›

2

2
, (186)

where in the first inequality we used the quadratic bound and then we just used the particular form of the vectors ∇υ
rJ:p¨q,

∇θ
rJ:p¨q, and ∇ξ

rJ:p¨q. Before carrying on with the proof, we recall that the holding of Lemmas 4.3 and 7.2 implies
›

›

›
∇2

υ
rJ:pυq

›

›

›
ď L2:,υ “ L2 ` L2:,ξ as explained in Section 7.

Let Fk denote a σ-algebra representing all information available at the beginning of the kth iteration, and let Ekr¨s be short
for Er¨|Fks. Now consider the filtration F “ pFkqK´1

k“0 and let pυkqK´1
k“0 be an F-adapted process.

We now apply the conditional expectation Ekr¨s:
E
k

”

rJ:pυk`1q ´ rJ:pυkq
ı

(187)

E
k

”

rJ:pυk`1q
ı

´ rJ:pυkq (188)

ě E
k

„

δ
〈

p∇θ
rJ:pυkq,∇υ

rJ:pυkq
〉

` δ
〈

p∇ξ
rJ:pυkq,∇υ

rJ:pυkq
〉

´ L2:,υ
2

δ2
›

›

›

p∇θ
rJ:pυkq

›

›

›

2

2
´ L2:,υ

2
δ2

›

›

›

p∇ξ
rJ:pυkq

›

›

›

2

2

ȷ

(189)

“ δ

ˆ

1 ´ L2:,υδ
2

˙

›

›

›
∇θ

rJ:pυkq
›

›

›

2

2
` δ

ˆ

1 ´ L2:,υδ
2

˙

›

›

›
∇ξ

rJ:pυkq
›

›

›

2

2
´ L2:,υδ2V:,θ

2Nfpξkq2 ´ L2:,υδ2V:,ξ
2Nfpξkq2 , (190)

where we employed the unbiasedness of the estimator and the variances bounds (Lemmas 4.3 and 7.2). Now we define
V:,υ :“ V:,θ ` V:,ξ. Thus, we rewrite the previous result as:

E
k

”

rJ:pυk`1q
ı

´ rJ:pυkq ě δ

ˆ

1 ´ L2:,υδ
2

˙

›

›

›
∇υ

rJ:pυkq
›

›

›

2

2
´ L2:,υV:,υδ2

2Nfpξkq2 . (191)
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Now that we bounded the improvement Ek

”

rJ:pυk`1q ´ rJ:pυkq
ı

, we can start handling the desired quantity:

rJ:pυ˚q ´ E
”

rJ:pυk`1q
ı

(192)

“ rJ:pυ˚q ´ E
”

rJ:pυkq
ı

´
´

E
”

rJ:pυk`1q ´ rJ:pυkq
ı¯

(193)

ď rJ:pυ˚q ´ E
”

rJ:pυkq
ı

´ E
„

δ

ˆ

1 ´ L2:,υδ
2

˙

›

›

›
∇υ

rJ:pυkq
›

›

›

2

2
´ L2:,υV:,υδ2

2Nfpξkq2
ȷ

(194)

“ rJ:pυ˚q ´ E
”

rJ:pυkq
ı

´ δ

ˆ

1 ´ L2:,υδ
2

˙

E
„

›

›

›
∇υ

rJ:pυkq
›

›

›

2

2

ȷ

` E
„

L2:,υV:,υδ2

2Nfpξkq2
ȷ

(195)

ď rJ:pυ˚q ´ E
”

rJ:pυkq
ı

´ δ

ˆ

1 ´ L2:,υδ
2

˙

E
„

›

›

›
∇υ

rJ:pυkq
›

›

›

2

2

ȷ

` L2:,υV:,υδ2

2Nσ2
min

, (196)

where we employed the fact that the stochasticity mapping function f allows the mapped ξ to assume as minimum value
σmin.

We can now employ Assumption 7.3 as:
›

›

›
∇υ

rJ:pυq
›

›

›

2
ě 1

αυ
max

!

0, rJ:pυ˚q ´ rJ:pυq ´ βυ

)

. (197)

Thus, we have the following result:

rJ:pυ˚q ´ E
”

rJ:pυk`1q
ı

(198)

ď rJ:pυ˚q ´ E
”

rJ:pυkq
ı

´ µδ

ˆ

1 ´ L2:,υδ
2

˙

E
„

max
!

0, rJ:pυ˚q ´ rJ:pυkq ´ βυ

)2
ȷ

` L2:,υV:,υδ2

2Nσ2
min

(199)

ď rJ:pυ˚q ´ E
”

rJ:pυkq
ı

´ µδ

ˆ

1 ´ L2:,υδ
2

˙

max
!

0,E
”

rJ:pυ˚q ´ rJ:pυkq ´ βυ

ı)2 ` L2:,υV:,υδ2

2Nσ2
min

, (200)

where we applied twice the Jensen’s inequality and where we defined µ :“ α´2
υ .

We now define rk :“ rJ:pυ˚q ´ E
”

rJ:pυkq
ı

´ βυ , thus we can rewrite the previous result as:

rk`1 ď rk ´ µδ

ˆ

1 ´ L2:,υδ
2

˙

max t0, rku2 ` L2:,υV:,υδ2

2Nσ2
min

. (201)

Selecting δ ď 1{L2:,υ , we have the following recursion:

rk`1 ď rk ´ µδ

2
max t0, rku2 ` L2:,υV:,υδ2

2Nσ2
min

. (202)

From this point on, the proof is the same as the one of Theorem F.1 by Montenegro et al. (2024). In particular, selecting a
constant step size of

δ “ ϵ2Nµσ2
min

4L2:,υV:,υ
, (203)

and running SL-PG for a number of iterations K such that

K ě 16L2:,υV:,υ
Nµ2ϵ3σ2

min

log
rJ:pυ˚q ´ rJ:pυ0q

ϵ
, (204)

it is guaranteed that

rJ:pυ˚q ´ E
”

rJ:pυKq
ı

ď ϵ` βυ. (205)
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G.4.3. ON THE INHERITANCE OF WEAK GRADIENT DOMINATION ON rJ:

Instead of assuming Assumption 7.3 to holds, it is possible to recover the same result by exploiting Theorem 4.2. However,
it is necessary to introduce the following assumptions.

Assumption G.1 (WGD J: w.r.t. ξ). With a stochasticity mapping fp¨q satisfying Assumption 7.1, there exist Af ą 0 and
Bf ě 0 such that, for every ξ P R, the following holds:

J˚
: ´ J:pθ˚pσq, σq ď Af

›

›

›

›

B
Bξ J:pθ˚pσq, σq

›

›

›

›

2

` Bf ,

where σ “ fpξq and J˚
: “ maxθ,ξ J:pθ, fpξqq.

Assumption G.2 (Bounded Distance of to the optimal θ). There exists ι ě 0 such that, for every θ P Θ, the following holds:

}θ˚pσq ´ θ}2 ď ιpJ:pθ˚pσq, σq ´ J:pθ, σqq.
Sufficient conditions are requiring that the function J:p¨, σq is quasi-convex in its optimum θ˚pσq (e.g., star-convex
functions, Lee & Valiant 2016).

The following result shows that under Assumptions G.1 and G.2, and the assumptions of Theorem 4.2 and Lemma G.9, it is
possible to recover the same condition imposed by Assumption 7.3.

Theorem G.14 (pθ, ξq Joint Weak Gradient Domination). Consider a (hyper)policy complying with Definitions 2.2 (AB)
or 2.3 (PB), and assume to be under regularity assumptions for the MDP (Asm. D.1) and the deterministic policy µθ

(Asm. D.2). Under Assumptions 4.1, 4.2, 5.1 (PB) or 5.2 (AB), 7.1, G.1, G.2, and 7.2, for every parameterization θ P Θ and
exploration parameterization ξ P R, it holds that:

rJ:pυ˚q ´ rJ:pυq ď A:,υ,f

›

›

›
∇υ

rJ:pυq
›

›

›

2
` B:,υ,f pfpξqq.

where A:,υ,f :“ 2αD p1 ` AfL3:,ξιq and B:,υ,f pfpξqq :“ βD ` β:pfpξqq p1 ` AfL3:,ξιq.

Proof. Under this set of Assumptions, we have that Theorem 4.2 holds, that is:

J:pθ˚pσq, σq ´ J:pθ, σq ď αD }∇θJ:pθ, σq}2 ` β:pσq, (206)

where β:pσq “ βD `D:σ, and αD and βD are the WGD constants of Assumption 4.2.

Moreover, we report Assumption G.1:

J:pθ˚pσ˚q, σ˚q ´ J:pθ˚pσq, σq ď Af

ˇ

ˇ

ˇ

ˇ

B
Bξ J:pθ˚pσq, σq

ˇ

ˇ

ˇ

ˇ

` Bf , (207)

where we use B
BξJ:pθ˚pσq, σq as a shortcut for B

BξJ:pθ, σq|θ“θ˚pσq.

Our goal is to find an upper bound to the quantity:
rJ:pυ˚q ´ rJ:pυq “ J:pθ˚pfpξ˚qq, fpξ˚qq ´ J:pθ, fpξqq, (208)

for every υ P RdΘ`1.

Thus, we can start from the latter quantity:

J:pθ˚pfpξ˚qq, fpξ˚qq ´ J:pθ, fpξqq (209)
“ J:pθ˚pfpξ˚qq, fpξ˚qq ´ J:pθ, fpξqq ˘ J:pθ˚pfpξqq, fpξqq (210)

ď Af

ˇ

ˇ

ˇ

ˇ

B
Bξ J:pθ˚pfpξqq, fpξqq

ˇ

ˇ

ˇ

ˇ

` αD }∇θJ:pθ, fpξqq}2 ` βD ` β:pfpξqq, (211)

where we just applied Assumption G.1 and the result of Theorem 4.2.

Now, we focus on the quantity
ˇ

ˇ

ˇ

B
BξJ:pθ˚pfpξqq, fpξqq

ˇ

ˇ

ˇ
. In particular, the following holds:

ˇ

ˇ

ˇ

ˇ

B
Bξ J:pθ˚pfpξqq, fpξqq

ˇ

ˇ

ˇ

ˇ

(212)

ď
ˇ

ˇ

ˇ

ˇ

B
Bξ J:pθ˚pfpξqq, fpξqq ´ B

Bξ J:pθ, fpξqq
ˇ

ˇ

ˇ

ˇ

`
ˇ

ˇ

ˇ

ˇ

B
Bξ J:pθ, fpξqq

ˇ

ˇ

ˇ

ˇ

(213)
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ď L3:,ξ }θ˚pfpξqq ´ θ}2 `
ˇ

ˇ

ˇ

ˇ

B
Bξ J:pθ, fpξqq

ˇ

ˇ

ˇ

ˇ

(214)

ď L3:,ξι |J:pθ˚pfpξqq, fpξqq ´ J:pθ, fpξqq| `
ˇ

ˇ

ˇ

ˇ

B
Bξ J:pθ, fpξqq

ˇ

ˇ

ˇ

ˇ

(215)

ď L3:,ξιαD }∇θJ:pθ, σq}2 ` L3:,ξιβ:pfpξqq `
ˇ

ˇ

ˇ

ˇ

B
Bξ J:pθ, fpξqq

ˇ

ˇ

ˇ

ˇ

, (216)

where in the second inequality we employed Lemma G.9, in the third inequality we employed Assumption G.2, and in the
last inequality we exploited the result of Theorem 4.2.

Given this last result, we have what follows:

J:pθ˚pfpξ˚qq, fpξ˚qq ´ J:pθ, fpξqq (217)

ď Af

ˇ

ˇ

ˇ

ˇ

B
Bξ J:pθ˚pfpξqq, fpξqq

ˇ

ˇ

ˇ

ˇ

` αD }∇θJ:pθ, fpξqq}2 ` βD ` β:pfpξqq (218)

ď Af

ˇ

ˇ

ˇ

ˇ

B
Bξ J:pθ, fpξqq

ˇ

ˇ

ˇ

ˇ

` pAfL3:,ξιαD ` αDq }∇θJ:pθ, σq}2 ` βD ` β:pfpξqq ` AfL3:,ξιβ:pfpξqq (219)

ď αD p1 ` AfL3:,ξιq
ˆ

ˇ

ˇ

ˇ

ˇ

B
Bξ J:pθ, fpξqq

ˇ

ˇ

ˇ

ˇ

` }∇θJ:pθ, σq}2
˙

` βD ` β:pfpξqq p1 ` AfL3:,ξιq . (220)

The last step to conclude the proof is to bound the term
ˇ

ˇ

ˇ

B
BξJ:pθ, fpξqq

ˇ

ˇ

ˇ
` }∇θJ:pθ, σq}2. To this end, we recall that

υ “ pθ, ξqJ and that:

∇υ
rJ:pυq :“

´ B rJ:pυq
Bθ1 , ...,

B rJ:pυq
BθdΘ ,

B rJ:pυq
Bξ

¯J
, ∇θ

rJ:pυq :“
´ B rJ:pυq

Bθ1 , ...,
B rJ:pυq
BθdΘ , 0

¯J
, ∇ξ

rJ:pυq :“
´

0dΘ
,

B rJ:pυq
Bξ

¯J
.

Thus, the following hold:
ˇ

ˇ

ˇ

ˇ

B
Bξ J:pθ, fpξqq

ˇ

ˇ

ˇ

ˇ

“
›

›

›
∇ξ

rJ:pυq
›

›

›

2
ď

›

›

›
∇υ

rJ:pυq
›

›

›

2
. (221)

because of the form of the treated gradients. Analogously, we have:

}∇θJ:pθ, σq}2 “
›

›

›
∇θ

rJ:pυq
›

›

›

2
ď

›

›

›
∇υ

rJ:pυq
›

›

›

2
. (222)

In light of these results, we can conclude what follows:

J:pθ˚pfpξ˚qq, fpξ˚qq ´ J:pθ, fpξqq (223)

“ rJ:pυ˚q ´ rJ:pυq (224)

ď αD p1 ` AfL3:,ξιq
ˆ

ˇ

ˇ

ˇ

ˇ

B
Bξ J:pθ, fpξqq

ˇ

ˇ

ˇ

ˇ

` }∇θJ:pθ, σq}2
˙

` βD ` β:pfpξqq p1 ` AfL3:,ξιq (225)

ď 2αD p1 ` AfL3:,ξιq
›

›

›
∇υ

rJ:pυq
›

›

›

2
` βD ` β:pfpξqq p1 ` AfL3:,ξιq , (226)

which concludes the proof.

G.4.4. CONVERGENCE UNDER THE CONDITIONS FOR WGD INHERITANCE ON rJ:

Theorem G.15 (SL-PG Convergence Under WGD Inheritance). If the (hyper)policy satisfies Definitions 2.2 or 2.3, the out-
put parameterization υK of SL-PG is such that: under Assumptions 4.1, 4.2, 4.3, 4.4, 5.1 (PB) or 5.2 (AB), 5.3, 7.1, 7.2, G.1,
and G.2, running SL-PG for K iterations, with a suitable choice for the learning rate δ, the output parameterization υK is
such that:

rJ˚
: ´ Er rJ:pυKqs ď ϵ` B:,υ,f pσmaxq,

with a total sample complexity of:

NK “ rO

˜

16A4:,υ,fL2:,υV:,υ
ϵ3σ2

min

¸

,
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where L2:,υ :“ L2 ` L2:,ξ and V:,υ :“ V:,θ ` V:,ξ.

Proof. The proof is the same as the one of Theorem 7.3, except for the fact that, instead employing Assumption 7.3 to
bound }∇υ

rJ:pυq}2, we use the result of Theorem G.14 as:
›

›

›
∇υ

rJ:pυq
›

›

›

2
ě 1

A:,υ,f
max

!

0, rJ˚
: ´ rJ:pυq ´ B:,υ,f pfpξqq

)

(227)

ě 1

A:,υ,f
max

!

0, rJ˚
: ´ rJ:pυq ´ B:,υ,f pσmaxq

)

, (228)

having exploited the fact that, by definition, the stochasticity mapping function fp¨q ensures that the maximum allowed value
for σ is σmax. Now, by defining rk :“ rJ˚

: ´Er rJ:pυkqs ´B:,υ,f pσmaxq, the proof continues as the one of Theorem 7.3.

Comment. It is worth noticing that this result comes at the cost of the very demanding Assumption G.2. Moreover, the
result suggests that in the final suboptimality there is always a term which is directly proportional to the maximum value
that the σ can assume due to the mapping fp¨q. With this analysis, this term, which comes from Theorems 4.2 and G.14,
would not disappear even under the assumption that all the ϵ-optimal stochastic (hyper)policies have the stochasticity less
than ϵ, thus setting σmin “ ϵ. To make this additional quantity disappear, one has to assume the (very) demanding strong
gradient domination on J: w.r.t. both θ and ξ.

38



Convergence Analysis of Policy Gradient Methods with Dynamic Stochasticity

AB and PB Configurations for Swimmer-v5

Environment Swimmer-v5 (Todorov et al., 2012)

Horizon T “ 200

Dimensions dA “ 2 dS “ 8 dΘ “ 16

(Hyper)policy Linear Gaussian

Learning rates (Adam, Kingma & Ba 2014) 0.01

Batch size N “ 100

PES Schedule A σmax “ 1 y “ 1 P “ 25 Kp “ 200

PES Schedule B σmax “ 1 y “ 0.5 P “ 5000 Kp “ 1

SL-PG σmax “ 1 σmin “ 0 K “ 5000

Static σ (AB and PB) σ P t1, 0.5, 0.04, 0.014u K “ 5000

Table 2. Experimental details for the numerical validation presented in Section 9.

H. Additional Experiments
H.1. Employed Policies and Hyperpolicies

Linear Deterministic Policy. A linear parametric deterministic policy µθ : S Ñ A samples the actions as at “ θJst,
where st is the observed state at time t and θ is the parameter vector.

Linear Gaussian Policy. A linear parametric gaussian policy πθ,σ : S ˆ A Ñ ∆pAq with variance σ2 samples the
actions as at „ N pθJst, σ2IdAq, where st is the observed state at time t and θ is the parameter vector. Notice that in this
case we consider θ P RdSˆdA . For this policy, the scores are the following:

∇θ log πθ,σpaq “ ppa´θJsqsJqJ

σ2 ; B
Bσ log πθ,σpaq “ }a´θJs}22´dAσ2

σ3 ; B
Bξ log πθ,σpaq “ }a´θJs}22´dAσ2

σ2 ,

where the considered parameterization for the stochasticity, i.e., σ “ eξ.

Gaussian Hyperpolicy. A parametric gaussian hyperpolicy νθ,σ P ∆pΘq with variance σ2 samples the parameters θ1
for the underlying linear deterministic parametric policy µθ as θ1 „ N pθ, σ2IdΘ

q, where θ is the parameter vector for the
hyperpolicy. For this hyperpolicy, the scores are the following:

∇θ log νθ,σpθ1q “ θ1´θ
σ2 ; B

Bσ log νθ,σpθ1q “ }θ1´θ}22´dΘσ2

σ3 ; B
Bξ log νθ,σpθ1q “ }θ1´θ}22´dΘσ2

σ2 ,

where the considered parameterization for the stochasticity, i.e., σ “ eξ.

H.2. Experiment: Swimmer (Details of Section 9)

Here, we report the details for the experiment presented in Section 9. In particular, Table 2 reports the experimental details,
Table 3 report the deterministic policy deployment scores, and Figures 3a and 3b report the values of J: and σ during the
learning process.

H.3. Experiment: Inverted Pendulum

Here, we present a similar experiment w.r.t. the one shown in Section 9. In particular, we analyze the behavior of PES and
SL-PG in both the AB and PB exploration domains, comparing them with their static stochasticity counterparts (GPOMDP
and PGPE) in the context of deploying deterministic policies. We conduct the evaluations in the InvertedPendulum-v5
environment, which is part of the MuJoCo (Todorov et al., 2012) control suite, using a horizon of T “ 200. All learning
rates are managed by the Adam (Kingma & Ba, 2014) optimizer.
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Figure 3. J: and σ behavior for PB and AB in Swimmer-v5 (5 runs, mean ˘95% C.I.).

Method PB ∆P AB ∆A

PES-A 61.14 ˘ 1.1 ´0.12 28.93 ˘ 9.89 0.44

SL-PG 61.43 ˘ 2.73 ´0.21 49.83 ˘ 13.38 ´1.19

PES-B 60.40 ˘ 2.31 ´0.27 29.24 ˘ 8.74 0.33

Table 3. Swimmer-v5: deterministic deployment performance (5 runs over 100 trajectories, mean ˘ std). ∆: “ JDpθKq ´ J:pθKq.

For both exploration paradigms, we present PES with two different schedules, both starting with σ “ 1. The first (A)
schedule consists of P “ 25 phases, each lasting Kp “ 50 iterations, with a schedule exponent of y “ 1. The second
(B) schedule includes P “ 1250 phases, each lasting Kp “ 1 iteration, with a schedule exponent of y “ 0.5. SL-PG
is executed for K “ 1250 iterations, using the common exponential parameterization for σ (i.e., σ “ eξ). The static
stochasticity counterparts are also run for K “ 1250 iterations, employing stochasticity levels σ P t1, 0.5, 0.04, 0.028u.
Here, σ “ 1 represents the maximum stochasticity in the PES schedules, while σ “ 0.04 and σ “ 0.028 correspond to the
minima of the first and second PES schedules, respectively.

Parameter-based. As shown by Figure 4a, in the PB exploration domain, PES-B (the one with the continuous schedule)
outperforms the other methods in terms of convergence to optimal performance, while PES-A (the one who mimics what
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AB and PB Configurations for InvertedPendulum-v5

Environment InvertedPendulum-v5 (Todorov et al., 2012)

Horizon T “ 200

Dimensions dA “ 1 dS “ 4 dΘ “ 4

(Hyper)policy Linear Gaussian

Learning rates (Adam, Kingma & Ba 2014) 0.01

Batch size N “ 100

PES Schedule A σmax “ 1 y “ 1 P “ 25 Kp “ 50

PES Schedule B σmax “ 1 y “ 0.5 P “ 1250 Kp “ 1

SL-PG σmax “ 1 σmin “ 0 K “ 1250

Static σ (AB and PB) σ P t1, 0.5, 0.04, 0.028u K “ 1250

Table 4. Experimental details for the numerical validation presented in Appendix H.3.

Method PB ∆P AB ∆A

PES-A 200 ˘ 0 0.08 200 ˘ 0 0.21

SL-PG 199.97 ˘ 0.06 0.6 200 ˘ 0 0.018

PES-B 198.37 ˘ 2.3 0.53 200 ˘ 0 0

Table 5. InvertedPendulum-v5: deterministic deployment performance (5 runs over 100 trajectories, mean ˘ std). Setting of Table 4.
∆: “ JDpθKq ´ J:pθKq.

prescribed by theory) exhibits similar behavior to SL-PG. In terms of deterministic deployment, PES-A is the one outputting
the best performing deterministic policy. In this case, the worst performing one PES-B, which employs a schedule not
compliant with what prescribed by the PES theoretical tractation.

Action-based. This pattern does not hold in the AB exploration domain, as illustrated in Figure 4b. In this case, the
GPOMDP instances with the lowest static stochasticity levels converge faster than their dynamic σ counterparts. However,
this faster convergence comes at the expense of manually tuning the stochasticity levels, which is not required for approaches
that employ a dynamic σ. For what concerns deterministic deployment, all the dynamic stochasticity methods reach the
optimal deterministic policy (see Table 5).

Final σ. In general, while the final stochasticity level of PES is controlled by the imposed schedule, the final stochasticity
of SL-PG remains uncertain until the end of the learning process, as it is learned via stochastic gradient ascent. In this
specific case, the final parameterization learned by PES-A, that follows what suggested by theory since Kp ą 1, ensures
that the loss incurred when switching off the noise is smaller compared to that incurred when using SL-PG or PES-B. This
difference, which surprisingly is not holding for the AB case, is highlighted in Table 5.

H.4. Reacher-v5 Study

Similarly to what done in Section 9, here we analyze the behavior of PES and SL-PG in both the AB and PB exploration
domains, comparing them with their static stochasticity counterparts (GPOMDP and PGPE) in the context of deploying
deterministic policies. This time, the evaluations are conducted in the Reacher-v5 environment, always part of the
MuJoCo (Todorov et al., 2012) control suite, using its default horizon T “ 50. All learning rates are managed by the
Adam (Kingma & Ba, 2014) optimizer.

For both exploration paradigms, we present PES with two different schedules, both starting with σ “ 0.5. The first schedule
(A) consists of P “ 25 phases, each lasting Kp “ 200 iterations, with a schedule exponent of y “ 1. The second schedule
(B) includes P “ 5000 phases, each lasting Kp “ 1 iteration, with a schedule exponent of y “ 0.5. SL-PG is executed
for K “ 5000 iterations, using the common exponential parameterization for σ (i.e., σ “ eξ). The static stochasticity
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Figure 4. J: and σ behavior for PB and AB in InvertedPendulum-v5 (5 runs, mean ˘95% C.I.).

counterparts are also run for K “ 5000 iterations, employing stochasticity levels σ P t0.5, 0.08, 0.002u. Here, σ “ 1
represents the maximum stochasticity in the PES schedules, while σ “ 0.002 correspond to the minimum of the first PES
schedule. All the experimental details are presented in Table 6.

Parameter-based. As shown in Figure 5a, in the PB exploration domain, PES-B (with the continuous schedule) outperforms
the other methods in terms of convergence to optimal performance, but the PGPE instance with fixed stochasticity σ “ σmin.
Also in this scenario, PES-A exhibits a slower performance convergence, this can be explained by the fact that, by
construction of the stochasticity schedule, it keeps the same σ value fore more iterations. This behavior is more similar to
the one prescribed by theoretical algorithm construction (Sec. 3). It is worth noticing that SL-PG outputs a parameterization
associated with a σK which is « 12 times larger than the final stochasticity of PES-A and « 35 times the final σ of PES-B.

Action-based. Figure 5b shows the same results in the AB exploration context. The figure highlights the need of having a
dynamic stochasticity schedule, since GPOMDP instances with fixed stochasticity levels do not manage to optimize the
parameters of the linear policy, except the one with σ “ 0.02. This last instance shows a similar behavior to PES-B, which,
at the end of the learning procedure, ensures to have a good parameterization for a smaller stochasticity σ “ 0.007. The
algorithm reaching the largest performance is PES-A, which benefits from keeping the stochasticity level fixed for more
than one iteration, however resulting in a good parameterization for a stochasticity σ “ 0.02. The slowest one to converge is
SL-PG, which output a good parameterization for a stochasticity σ « 0.08.

Final σ. In general, while the final stochasticity level of PES is controlled by the imposed schedule, the final stochasticity
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AB and PB Configurations for Reacher-v5

Environment Reacher-v5 (Todorov et al., 2012)

Horizon T “ 50

Dimensions dA “ 2 dS “ 10 dΘ “ 20

(Hyper)policy Linear Gaussian

Learning rates (Adam, Kingma & Ba 2014) 0.001

Batch size N “ 100

PES Schedule A σmax “ 0.5 y “ 1 P “ 25 Kp “ 200

PES Schedule B σmax “ 0.5 y “ 0.5 P “ 5000 Kp “ 1

SL-PG σmax “ 0.5 σmin “ 0 K “ 5000

Static σ (AB and PB) σ P t0.5, 0.08, 0.002u K “ 5000

Table 6. Experimental details for the numerical validation presented in Appendix H.4.

Method PB ∆P AB ∆A

PES-A ´11.47 ˘ 0.35 0.37 ´7.38 ˘ 0.2 0.02

SL-PG ´102.85 ˘ 8.1 187.13 ´6.83 ˘ 0.34 0.66

PES-B ´8.73 ˘ 0.29 0.06 ´9.66 ˘ 0.74 ´0.01

Table 7. Deterministic deployment performance (5 runs over 100 trajectories, mean ˘ std). Setting of Table 6. ∆: “ JDpθKq ´ J:pθKq.

of SL-PG remains uncertain until the end of the learning process, as it is learned via stochastic gradient ascent. Table 7
shows the deterministic deployment performances of the learned parameterization by PES-A, PES-B, and SL-PG. For the
AB case the best performing is PES-B, which ensures the lowest level of stochasticity at the end of the learning process.
Switching to the AB scenario, the best performing is SL-PG. This fact enforces the consideration that SL-PG cannot ensure
always to converge to a particular value of the stochasticity level, which can be crucial for the deterministic deployment
performance, as it is the case for this environment.

On the Semantic Difference between PB and AB. Finally, in this experiment it is possible to appreciate the semantic
difference between the PB and AB exploration paradigms. Indeed, Figures 5a and 5b highlight the different scale of
performance values JP and JA corresponding to hyperpolicies and policies w.r.t. the same stochasticity level σ.

H.5. PES Sensitivity Analysis: y Parameter

In this section, we conduct an experiment on the sensitivity of PES to the y parameter. We run PES in the InvertedPendulum-
v5 environment with a horizon T “ 100. The PES instances employ a schedule with σmax “ 1, Kp “ 40, and P “ 25.
Learning rates are managed by Adam and initialized at ζ “ 0.01. We recall that the parameter y controls the smoothness of
the schedule, determining, having fixed Kp, P , and σmax, the final value for the σ. In these experiments, we employed three
schedules, differing in the y value: (A) has y “ 1, (B) has y “ 0.5, finally (C) has y “ 0.1. The details for this experimental
setting are summarized in Table 8.

Figures 6a and 6b show that, in both AB and PB exploration domains, it is possible to see that PES-C is the one showing
the poorest convergence speed. Moreover, its final performance is the lowest one. The best performing one i PES-A, which
mimics the behavior prescribed by theory. As also observed in the experiments conducted in Section 9, and Appendices H.3
and H.4, a smaller value for y should be associated with phases running a smaller amount of iterations. This is in order to
provide a final value for σ that is the same across schedules, given a total amount of iterations K “ řP´1

p“0 Kp.
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Figure 5. J: and σ behavior for PB and AB in Reacher-v5 (5 runs, mean ˘95% C.I.).

AB and PB Configurations for PES Sensitivity Study on y

Environment InvertedPendulum-v5 (Todorov et al., 2012)

Horizon T “ 100

Dimensions dA “ 1 dS “ 4 dΘ “ 4

(Hyper)policy Linear Gaussian

Learning rates (Adam, Kingma & Ba 2014) 0.01

Batch size N “ 100

PES Schedule A σmax “ 1 y “ 1 P “ 25 Kp “ 40

PES Schedule B σmax “ 1 y “ 0.5 P “ 25 Kp “ 40

PES Schedule C σmax “ 1 y “ 0.1 P “ 25 Kp “ 40

Table 8. Experimental details for the numerical validation presented in Appendix H.5.
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Figure 6. J: and σ behavior for PB and AB in InvertedPendulum-v5 (5 runs, mean ˘95% C.I.).

H.6. PES Sensitivity Analysis: Kp and P Parameters

In this section, we conduct an experiment on the sensitivity of PES to the Kp and P parameters. We run PES in the
InvertedPendulum-v5 environment with a horizon T “ 100. The PES instances employ a schedule with σmax “ 1 and
y “ 1. Learning rates are managed by Adam and initialized at ζ “ 0.01. We recall that the parameters Kp and P control the
total amount of iterations done by the algorithm. Specifically, Kp specifies the number of iterations in which PG subroutines
are run with a fixed value of stochasticity σ. Such parameters, together with the selection of y and σmax, regulate the
smoothness of the schedule and the final value for the σ. In these experiments, we employed three schedules, differing in the
pKp, P q values: (A) has p40, 25q, (B) has p10, 100q, finally (C) has p1, 1000q. The details for this experimental setting are
summarized in Table 9.

Figures 7a and 7b show that, in both AB and PB exploration domains, it is possible to see that PES-C is the one showing
the poorest convergence speed. In particular, such a schedule presents an unstable behavior at convergence. The best
performing one i PES-A, which mimics the behavior prescribed by theory. As also observed in the experiments conducted
in Section 9, Appendices H.3 and H.4, a smaller value for Kp should be paired with a smoother schedule (i.e., smaller y).
Indeed, by frequently reducing the stochasticity, it has to be reduced smoothly, since PES has not the opportunity to find a
good parameterization for every fixed σ.
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AB and PB Configurations for PES Sensitivity Study on Kp and P

Environment InvertedPendulum-v5 (Todorov et al., 2012)

Horizon T “ 100

Dimensions dA “ 1 dS “ 4 dΘ “ 4

(Hyper)policy Linear Gaussian

Learning rates (Adam, Kingma & Ba 2014) 0.01

Batch size N “ 100

PES Schedule A σmax “ 1 y “ 1 P “ 25 Kp “ 40

PES Schedule B σmax “ 1 y “ 1 P “ 10 Kp “ 100

PES Schedule C σmax “ 1 y “ 1 P “ 1000 Kp “ 1

Table 9. Experimental details for the numerical validation presented in Appendix H.6.
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Figure 7. J: and σ behavior for PB and AB in InvertedPendulum-v5 (5 runs, mean ˘95% C.I.).
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H.7. Computational Resources

All the experiments were run on a 2019 16-inches MacBook Pro. The machine was equipped as follows:

CPU RAM GPU
Intel Core i7 (6 cores, 2.6 GHz) 16 GB 2667 MHz DDR4 Intel UHD Graphics 630 1536 MB

In particular, N “ 100 trajectories of the MuJoCo environments with T “ 100 scored « 2 iterations per second. All the
performances are to be considered with a parallelization over 10 CPU cores.
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