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Abstract

Mainstream research in theoretical RL is currently
focused on designing online learning algorithms
with regret bounds that match the corresponding
regret lower bound up to multiplicative constants
(and, sometimes, logarithmic terms). In this posi-
tion paper, we constructively question this trend,
arguing that algorithms should be designed to
at least minimize the amount of unnecessary ex-
ploration, and we highlight the significant role
constants play in algorithms’ actual performances.
This trend also exacerbates the misalignment be-
tween theoretical researchers and practitioners.
As an emblematic example, we consider the case
of regret minimization in finite-horizon tabular
MDPs. Starting from the well-known UCBVI
algorithm, we improve the bonus terms and the
corresponding regret analysis. Additionally, we
compare our version of UCBVI with both its
original version and the state-of-the-art MVP al-
gorithm. Our empirical validation successfully
demonstrates how improving the multiplicative
constants has significant positive effects on the
actual empirical performances of the algorithm un-
der analysis. This raises the question of whether
ignoring constants when assessing whether algo-
rithms match is the proper approach.

1. Introduction
Reinforcement Learning (RL, Sutton & Barto, 2018) has
emerged as a powerful methodology for addressing sequen-
tial decision-making problems under uncertainty. Besides
the successful applications of RL in the last decades, in-
cluding robotic locomotion (Kober et al., 2013), continu-
ous system control (Schulman et al., 2015; Lillicrap et al.,
2016; Haarnoja et al., 2018), autonomous driving (Kiran
et al., 2021), and games (Mnih et al., 2015; Silver et al.,
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2017), RL has been subject to a lot of attention from the
research community from the theoretical standpoint, obtain-
ing significant understanding on its fundamental statistical
challenges (Azar et al., 2017; Domingues et al., 2021).

Taking inspiration from the multi-armed bandit (MAB) lit-
erature (Lattimore & Szepesvári, 2020), theoretical research
in RL has focused on characterizing online RL algorithms
through the cumulative regret, which represents the subop-
timality of the played policy summed over a given horizon
of interaction. This performance index is particularly mean-
ingful as it quantifies how quickly the learning algorithm
converges to the optimal policy. The conventional path in
this literature consists of (i) characterizing the statistical
complexity of the problem by deriving regret lower bounds
and (ii) designing and analyzing algorithms to provide re-
gret upper bounds. The comparison between upper bounds
and lower bounds allows to establish whether the problem
is closed. It is conventionally accepted that a problem is
closed when upper and lower bounds match in the charac-
teristic parameters of the problem, apart from constant (and,
sometimes, logarithmic) multiplicative factors.

Consider, for instance, the emblematic case of finite-horizon
tabular RL, where we have a well-established lower bound
in the order of Ωp

?
HSAT q, where S is the number of

states, A is the number of actions, H is the horizon of
the episode, and T “ HK where K is the number of
episodes (Domingues et al., 2021).1 At present, we have
learning algorithms that match this lower bound. The first
approach that succeeded in achieving order-optimal regret
is UCBVI (Azar et al., 2017), combining the classical value
iteration approach with the famous optimism in the face
of uncertainty mechanism, borrowed from bandits. The
algorithm is very intuitive (although its analysis is quite
convoluted) and manages to achieve the same order of
rOp

?
HSAT q under the assumption that the time horizon

T is sufficiently large (T ě OpH3S3Aq).2 This latter lim-
itation has been recently overcome by MVP (Zhang et al.,

1In this paper, we consider stage-independent transition prob-
abilities. For stage-dependent ones, the lower bound presents an
additional

?
H multiplicative term. From the algorithmic perspec-

tive, we can easily adapt the upper bound results by considering
an MDP with an augmented state space of size SH .

2The Op¨q notation ignores constants, while rOp¨q also ignores
logarithmic factors.
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2024) at the price of a less intuitive algorithm that is forced
to discard previously collected sample because of the use of
a doubling trick. Thus, in the sense defined above, we can
say that finite-horizon tabular RL is a closed problem.

In this paper, we constructively question this statement.
Indeed, as intuition suggests, ignoring multiplicative con-
stants when evaluating whether an algorithm matches
the problem’s lower bound may lead to disappointing
results when using such an algorithm. Constants matter
in two key moments:

(i) Algorithm design: the exploration strategy of the al-
gorithm should be designed to enforce the minimal
exploration required to achieve the desired regret per-
formance. For example, in an optimistic algorithm like
UCBVI (Azar et al., 2017), the exploration bonuses
should be as small as possible;

(ii) Algorithm analysis: the analysis of the algorithm
should be conducted using the most accurate analytical
tools possible in order to obtain a regret upper bound
that closely approximates the actual regret suffered by
the algorithm.

While (ii) impacts the regret bounds and, to a certain extent,
can be considered a secondary requirement, (i) has far more
dramatic effects. Indeed, an inaccurate and overly conserva-
tive design of the exploration strategy significantly affects
the algorithm’s empirical performances, wasting samples
and ultimately leading to unnecessary over-exploration.

To support these claims, in this paper, we will consider
as a case study the UCBVI algorithm (Azar et al., 2017),
and we compare it with the state of the art for this setting,
MVP (Zhang et al., 2024). MVP employs a doubling trick,
that, while convenient in terms of regret analysis, negatively
affects the efficiency of the algorithm in practice, leading
to an inevitable over-exploration and a higher regret. We
will provide an improvement of UCBVI, in its advanced
solution with Bernstein-Freedman bonus, with the goal of (i)
deriving an exploration bonus that is as tight as possible and
(ii) conducting a regret upper bound analysis that generates
the smallest constants possible. We show empirically how
a more careful design of the exploration bonus delivers
dramatic improvements in the empirical performance with a
reduction of the regret by a factor of 1.87 on average.

Additionally, in Appendix A, we support our discussion by
reporting works from the MAB literature that devise algo-
rithms optimizing both constants and lower order terms, thus
demonstrating an interest in their empirical performance
which is well reflected in their experimental validation.

2. Preliminaries
In this section, we briefly introduce the notation and con-
cepts employed in the rest of this work.

Notation. Given a measurable set X , we denote with
∆pX q the set of probability measures over X . For n P N,
we denote the set t1, . . . , nu as JnK. We denote the L1 norm
of a vector as } ¨ }1.

Markov Decision Processes. An undiscounted, finite-
horizon Markov Decision Process (MDP, Puterman, 1994)
is a tuple M :“ pS,A, P,R,Hq, where S is the state space,
A is the action space, P : S ˆ A Ñ ∆pSq represents the
state transition probability, R : S ˆ A Ñ R represents
the reward function, and H P Ną0 is the length of each
episode.3

We assume the state space and the action space to be finite
sets, and we denote their cardinalities as |S| “ S and |A| “

A. We assume that the state transition probability and the
reward do not depend on the stage. Moreover, we assume the
reward to be deterministic, known, and bounded in r0, 1s.4

Interaction with the Environment. The agent interacts
with the environment in a sequence of K episodes. Denote
as xk,h the state occupied by the agent at stage h P JHK
of episode k P JKK, and as aπk

k,h the action played by the
agent at stage h of episode k according to the policy πk. We
assume the policies to be deterministic and stage-dependent,
i.e., π : S ˆ JHK Ñ A.

The interaction of the k-th episode starts from state xk,1 P

S, then, the agent selects which action to play as aπk

k,h “

πkpxk,h, hq for h P JHK, and observes a sequence of next-
states and reward, until the end of the episode.

The function V π
h : S Ñ R denotes the value function at

stage h P JHK, such that V π
h pxq represents the expected

sum of the H ´ h returns received under policy π starting
from state x P S . Under the assumptions above, there exists
a deterministic policy π˚ which attains the best possible
value function V ˚

h pxq :“ supπ V
π
h pxq for every state x P S .

We measure the performance of a learning algorithm A after
K episodes by means of the cumulative regret:

RegpA,Kq :“
K
ÿ

i“1

V ˚
1 pxi,1q ´ V πi

1 pxi,1q.

We denote as T “ KH the total number of interactions.

3. A Refined UCBVI Algorithm and Analysis
In this section, we consider the UCBVI algorithm, intro-
duced in (Azar et al., 2017), for which we provide a more

3Let x, y P S and a P A, we denote as P py|x, aq the probabil-
ity of observing y as the next state after playing action a in state x,
and Rpx, aq the reward obtained after playing action a in state x.

4The assumption on the knowledge of the reward can be re-
moved without relevant drawbacks on the algorithm’s theoretical
guarantees, as learning the stochastic transition model is more
challenging than learning the reward function.
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Algorithm 1: UCBVI.

1 Initialize: Nkpx, a, yq “ 0, Nkpx, aq “ 0, N 1
k,hpxq “ 0, @px, a, yq P S ˆ A ˆ S

2 Q0,hpx, aq “ H ´ h ` 1, @px, a, hq P S ˆ A ˆ JHK
3 for k P JKK do
4 Estimate pPkpy|x, aq “ Nkpx, a, yq{Nkpx, aq

5 Initialize Vk,H`1pxq “ 0, @x P S
6 for h “ tH,H ´ 1, . . . , 1u do
7 for x P S do
8 Qk,hpx, aq “ mintQk´1,hpx, aq, Rpx, aq `

ř

yPS
pPkpy|x, aqVk,h`1pyq ` bk,hpx, aqu, @a P A

9 Vk,hpxq “ maxaPA Qk,hpx, aq

10 end
11 end
12 Agent observes state xk,1

13 for h P JHK do
14 Agent plays action ak,h P argmaxaPA Qk,hpxk,h, aq

15 Environment returns reward rk,h and next state xk,h`1

16 Increment counters Nkpxk,h, ak,h, xk,h`1q, Nkpxk,h, ak,hq, N 1
k,hpxk,hq

17 end
18 end

compact (but equivalent) pseudocode in Algorithm 1. In
Theorems 3.1 and 3.2, we provide results on the regret upper
bound under the usage of bonuses defined via the Chernoff-
Hoeffding and the Bernstein-Freedman inequalities, respec-
tively. Our contribution consists of refining the analysis to
obtain tighter bonuses and, as a direct consequence, tighter
regret bounds.

Regret Bounds. We now state the results of the refined
regret upper bound analysis. Let us start with the Chernoff-
Hoeffding version, taking the opportunity to fix some typos
of the original analysis of (Azar et al., 2017).

Theorem 3.1 (Regret for UCBVI with Chernoff-Hoeffding
bound). Let δ P p0, 1q. Considering:5

bk,hpx, aq “
2HL

a

maxtNkpx, aq, 1u
,

then, w.p. at least 1´δ, the regret of UCBVI-CH is bounded
by:

RegpUCBVI-CH,Kq ď 10eHL
?
SAT `

8

3
eH2S2AL2,

where L “ ln p5HSAT {δq. For T ě H2S3A, this bound
translates to rOpH

?
SAT q.

Theorem 3.1 should be compared to Theorem 1 of (Azar
et al., 2017). Since the analysis is a refinement of the origi-
nal analysis in terms of constants, the order of the regret does

5We assume that, by definition, bk,Hps, aq “ 0, as at the
last stage there is no need for exploration and the rewards are
deterministic.

not change between the two theorems. However, our analy-
sis provides a smaller value for the constants.6 Moreover,
observe how the minimum value of T for which the regret
bound holds according to our analysis is H times higher
than the one reported in the original theorem. This is due to
the fact that the minimum T in the statement of Theorem 1
of (Azar et al., 2017) is incorrect, although the derivation
in the appendix provides the same minimum value of T we
obtain.

Let us move to the Bernstein-Freedman bonus.

Theorem 3.2 (Regret for UCBVI with Bernstein-Freedman
bound). Let δ P p0, 1q. Considering:5

bk,hpx, aq “

d

4LVary„P̂kp¨|x,aq
pVk,h`1pyqq

maxtNkpx, aq, 1u
looooooooooooooooooomooooooooooooooooooon

(A)

`

`
7HL

3maxtNkpx, aq ´ 1, 1u
loooooooooooooomoooooooooooooon

(B)

`

`

g

f

f

e

4
ř

yPS

´

P̂ py|x, aq ¨ min
!

842H3S2AL2

maxt1,N 1
k,h`1pyqu

, H2
)¯

maxtNkpx, aq, 1u
looooooooooooooooooooooooooooooooomooooooooooooooooooooooooooooooooon

(C)

,

then, w.p. at least 1 ´ δ, the regret of UCBVI-BF-I is

6To the best of the authors’ knowledge, the original analysis of
(Azar et al., 2017) is missing a multiplicative e factor in the regret
bound.

3



Position: Constants are Critical in Regret Bounds for Reinforcement Learning

bounded by:

RegpUCBVI-BF-I,Kq ď 24eL
?
HSAT`

` 616eH2S2AL2 ` 4e
?
H2TL,

where L “ lnp5HSAT {δq. For T ě H3S3A and SA ě

H , this bound translates to rOp
?
HSAT q.

Theorem 3.2 should be compared to Theorem 2 of (Azar
et al., 2017). Again, as the analysis is a refinement in terms
of constants, the order of the regret does not change. More-
over, also the minimum value of T under which the regret
bound holds in unchanged between the two analyses. It is
important to notice, however, the strictly smaller constant
terms of our analysis w.r.t. the ones of (Azar et al., 2017).6

In term (A) we show a multiplicative factor of
?
4 instead

of
?
8, in term (B) we have a multiplicative term 7 instead

of 14, and in term (C) we have a
?
4 multiplicative fac-

tor instead of
?
8 and a multiplicative term 842 inside the

minimum instead of 1002. Such a reduction in the constant
values directly affects the behavior of the algorithm by re-
ducing the confidence intervals and reducing, in turn, the
unnecessary exploration.

The reader shall refer to Appendices E and F for the proofs
of Theorems 3.1 and 3.2, respectively. The derivations pro-
vided in the appendices closely follow the proofs of (Azar
et al., 2017), focusing on lowering the constant terms. A
full description of the notation employed throughout the
paper is reported in Appendix B. Both proofs are conducted
under the condition that concentration inequalities hold for
the next state estimator and its variance. Those conditions
fall under event E , which is presented in Appendix B.4
of (Azar et al., 2017) and restated in Appendix C. Finally,
additional lemmas necessary to show the regret decomposi-
tion and to bound the summation of the terms it comprises
are demonstrated in Appendix D.

4. Numerical Validation
In this section, we numerically compare the performances
of UCBVI, both with the Chernoff-Hoeffding and Bernstein-
Freedman bonuses of (Azar et al., 2017) and with the im-
proved Bernstein-Freedman bonus of this paper, against the
MVP algorithm.7

In order to fairly compare to the MVP algorithm, all the
Nk,hpx, aq terms are considered as Nkpx, aq, removing the
discriminant of the stage from the algorithm, and the c2
constant (which refers to the uncertainty in the estimation
of the rewards) is set to 0, to remove the exploration factor
needed due to the stochasticity of the reward in the original

7The code to reproduce the experiments can be found at:
https://github.com/marcomussi/position constants.

paper. The resulting exploration bound is:

bMVPk,h px, aq “
460

9

d

Vary„P̂kp¨|x,aq
pVk,h`1pyqq log 1

δ

maxtNpx, aq, 1u
`

`
544

9

H log 1
δ

maxtNpx, aq, 1u
.

4.1. Illustrative Environments

As a first experimental evaluation, we consider a set of illus-
trative environments. We consider an MDP with parameters
S “ 3, A “ 3, H P t5, 10u, and we consider a number of
episodes K P t105, 106u.

We evaluate each experiment by averaging over 10 runs.
In each run, the rewards and transition probabilities of the
MDP are randomly generated. Then, the clairvoyant opti-
mum is calculated for the purpose of regret computation,
and the algorithms are evaluated.

Results. Figure 1 shows the cumulative regret of the
evaluated algorithms in the first experimental evaluation for
different values of H and K. From these results, we can
observe that UCBVIwith the Chernoff-Hoeffding bonus and
MVP begin to show a sub-linear regret for K “ 106, whereas
both versions of UCBVIwith the Bernstein-Freedman bonus
greatly outperform the other algorithms in all the evalu-
ated scenarios. In particular, the use of a tighter Bernstein-
Freedman bonus (UCBVI-BF-I) translates into a cumula-
tive regret that is, although of the same order, lower than
with the usage of a larger bonus (UCBVI-BF), highlight-
ing the fundamental importance of lower order terms and
constants in empirical performance. A further discussion is
postponed to Section 5.8

4.2. RiverSwim

We now consider the RiverSwim environment (Strehl &
Littman, 2008). This environment emulates a swimmer
that has to swim against the current, where the agent has
2 options: try to swim to the other side or turn back. In
this scenario, the rewards and the transition probabilities
are designed such that the optimal policy corresponds to
trying to swim and reach the other side of the “river”. This
is considered a challenging benchmark for exploration. We
consider the scenario with S “ 5 and H “ 10. The reward
model and the transition probability are designed such that
the suboptimality gap between the optimal action and the
other one in the initial state is very low („0.1, with a scale
of the problem in the order of H “ 10).

Results. Figure 2 compares the results when using MVP
and UCBVI in its original version (UCBVI-BF) and the

8In Appendix G, we provide additional results on environments
with larger state and action spaces.
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(b) H “ 5, K “ 106.
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(c) H “ 10, K “ 105.
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(d) H “ 10, K “ 106.

Figure 1. Performances in terms of cumulative regret in toy environments with S “ 3 states and A “ 3 actions (10 runs, mean ˘ 95%
C.I.).

one we propose with tighter bounds (UCBVI-BF-I). MVP
confirms its poor empirical performance, failing to deliver a
sublinear trend for the considered horizon. Instead, UCBVI,
in both versions, shows a clear sublinear trend, with the
improved version (UCBVI-BF-I) showing a cumulative
regret approximately half of the original one (UCBVI-BF).

5. Discussion
In this section, we discuss the results we have obtained from
both theoretical and empirical standpoints. A summary of
the improvements, expressed in terms of improvement ratios
in the bonuses, regret upper bounds, and empirical regret,
is reported in Table 1. First, we compare our versions of
the UCBVI algorithms with the original ones from (Azar
et al., 2017). The algorithmic structure remains the same,
though we re-derived the bonus terms to make them as tight
as possible, resulting in an improvement of 7{2 and

?
2 for

the Chernoff-Hoeffding and Bernstein-Freedman bonuses,
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Figure 2. Performances in terms of cumulative regret in the River-
Swim environment with S “ 5 states and horizon H “ 10 (4 runs,
mean ˘ 95% C.I.).
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Bonus ratio Regret upper bound ratio Empirical regret ratio
CH 7{2 2 -
BF

?
2 5{4 1.87 ˘ 0.03

Table 1. Improvement ratios in bonuses, regret bounds, and empirical regret between our analysis and the original (Azar et al., 2017).

in the dominant terms, respectively. This reduction in over-
exploration has significant empirical effects, as shown in the
experiments in Section 4, where, as reported in Table 1, we
achieve a reduction in the empirical regret by a factor of 1.87.
Additionally, this impacts the regret analysis, where we were
able to reduce the regret bound by a factor of 2 and 5{4 for
the Chernoff-Hoeffding and Bernstein-Freedman bonuses,
respectively, w.r.t. dominant terms. However, lower order
terms also have an impact on the performance, and through
a refined analysis, we were able to reduce them by a factor
of „90 and „4 for the Chernoff-Hoeffding and Bernstein-
Freedman bonuses, respectively.

Indeed, it is important to highlight that the analyses of these
algorithms rely on a well-established set of tools, primar-
ily represented by concentration bounds for martingales.
This is particularly evident in the algorithmic approach of
MVP (Zhang et al., 2024). The algorithm employs a dou-
bling trick, which is known for its sample inefficiency, as
it requires discarding previously collected samples, albeit
at the cost of only a multiplicative constant in the final re-
gret (Besson & Kaufmann, 2018). This seems to contradict
the intuition commonly held in machine learning that the
more samples, the better, raising the question of whether the
current probabilistic tools are strong enough to effectively
capture the properties of the estimators involved.

As a first step towards mitigating this issue, algorithm de-
signers should incorporate not only upper bounds but also
fixed-algorithm regret lower bounds. These lower bounds
illustrate the minimum regret that the algorithm can incur un-
der the most challenging scenarios. This approach provides
valuable insight into the tightness of both the algorithm and
its analysis, enabling a deeper understanding of its perfor-
mances and limitations.

Moreover, we conjecture that, if the performance difference
ascribable to tighter constants and lower order terms is con-
siderable in tabular RL environments, it will be exacerbated
when considering more complex algorithms, such as deep
RL ones. We believe that, with the necessary mathemati-
cal tools and due precautions, it could be possible to apply
refinements similar to those we discussed in this paper to
such complex settings. Two possible directions to achieve
such a result, in the authors’ opinion, are (i) to try to study
the theoretical guarantees of existing algorithms to gain a
deeper knowledge of the settings and in turn allow the defi-
nition of better-performing algorithms and (ii) to research

novel mathematical tools, which may enable the analysis of
complex settings.

6. Alternative Views
In contrast with the perspectives presented in this work,
some alternative views may exist.

Firstly, one could argue that the significance of an algo-
rithm, such as MVP, designed to achieve certain theoretical
guarantees, extends beyond the tightness of those guaran-
tees (especially regarding constants). Such algorithms may
introduce (i) novel technical tools (e.g., concentration in-
equalities) and (ii) innovative algorithmic solutions, which
could hold independent interest.

Secondly, it may be argued that pursuing algorithms with
tight theoretical guarantees should not be regarded as the
optimal path for advancing this field. Worst-case guarantees
are often overly conservative, focusing on ensuring perfor-
mance in pathological problem instances that rarely occur
in practice. Consequently, a substantial portion of the scien-
tific community is shifting toward prioritizing the empirical
performance of algorithms to effectively address real-world
problems. These algorithms, while potentially lacking gen-
eral theoretical guarantees, often perform as intended in
practical problems.

7. Conclusions
In conclusion, the objective of this paper is not to undervalue
the research efforts aimed at reducing the regret order of
state-of-the-art algorithms. Instead, it seeks to highlight the
importance of considering lower-order terms and constants
when transitioning algorithms from theoretical frameworks
to experimental settings. We hope this position paper serves
to reduce the gap between theoretical guarantees and real-
world performance, leading to a more integrated view within
the RL community.

Impact Statement
This position paper explores the current advancements and
future directions in the field of Machine Learning (ML).
Our work aims to provide an analysis of emerging trends,
challenges, and opportunities in ML. There are many poten-
tial societal consequences of our work, none which we feel
must be specifically highlighted here.
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A. Additional Examples in the Bandit Literature
In this section, we present and discuss examples from the MAB literature of works that, by focusing on deriving tighter
constants and lower-order terms, achieve significant performance improvements.

Multi-Armed Bandits. In the MAB setting, an agent selects an arm to pull and receives a scalar reward as feedback.
(Auer et al., 2002) propose the well-known UCB1 algorithm, which adopts the optimism in the face of uncertainty principle
to guide the exploration of the agent. The original version of UCB1 derives its confidence bound via an argument based
on Boole’s inequality, later using such a confidence bound to derive its regret bound. Later, (Bubeck, 2010) develop an
improved version of the algorithm and, through a more convoluted analysis, improve the confidence bound by a factor 4
thanks to arguments based on Martingales and to a Peeling argument. As a result, the confidence bound of (Auer et al.,
2002) contains a

a

2 logpT q{n term, where T is the learning horizon and n is the number of times an arm has been pulled,
whereas the confidence bound of (Bubeck, 2010) contains a

a

α logptq{n term, where t is the current round, and provides
a regret bound for any α ą 1{2. This modification does not change the order of the regret, which is equal for both the
minimax and instance-dependent perspectives (up to constants). However, this refinement has the paramount effect of
reducing unnecessary exploration, thus significantly improving the empirical performance of the algorithm. In support of
this argument, in Figure 3 we show a comparison between the two versions of the UCB1 algorithm, for a varying number
of actions A P t3, 5, 10u and time horizon T P t104, 5 ¨ 104, 105u. This simple experiment demonstrates the impact that
improvements can have on the empirical performance of an algorithm, even if they cannot be observed in the order of the
regret. The two versions of the UCB1 algorithm discussed above work in the settings in which the reward is drawn from a
subgaussian distribution.

Additionally, in the specific case in which the reward is sampled from a Bernoulli distribution, (Garivier & Cappé, 2011)
further improves the performance achievable by an agent. The authors propose the KL-UCB algorithm, an optimistic
algorithm that employs the Kullback-Leibler (KL) divergence to compute the upper confidence bound of each arm at
each round. Through a tight analysis, the authors derive an asymptotically optimal regret bound. Moreover, the authors
demonstrate the superior empirical performance of their algorithm against several baselines, among which the original
version of UCB1, in different scenarios.

Linear Bandits. Abbasi-Yadkori et al. (2011) study Linear Bandits, i.e., the setting in which the agent selects an action
Xt P Rd and receives a reward Yt “ xXt, θ˚y ` ηt, where θ˚ P Rd is an unknown parameter that the agent wants to
estimate, and ηt is a zero-mean random noise. The authors improve on the work of Dani et al. (2008), modifying it to
employ a novel confidence set, which reduces the regret bound of a

a

logpT q multiplicative factor, where T is the learning
horizon. Although improving the analysis by a lower-order term, the authors then show that the empirical improvement is
far more significant, thus demonstrating that modifications affecting lower-order terms in the regret analysis can have a
meaningful impact on the practical performance of an algorithm.
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(a) A “ 3, T “ 104.
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(b) A “ 5, T “ 104.
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(c) A “ 10, T “ 104.
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(d) A “ 3, T “ 5 ¨ 104.
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(e) A “ 5, T “ 5 ¨ 104.
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(f) A “ 10, T “ 5 ¨ 104.
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(g) A “ 3, T “ 105.
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(h) A “ 5, T “ 105.
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(i) A “ 10, T “ 105.

Figure 3. Performances in terms of cumulative regret for a stochastic bandit problem with A P t3, 5, 10u for T P t104, 5 ¨ 104, 105u (50
runs, mean ˘ 95% C.I.).
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B. Notation
In this section, we collect the notation used throughout the main paper and the appendices with the related meaning.

Symbol Meaning

S State space
A Action space
P Transition distribution
R Reward function
H Length of the episode
K Total number of episodes
T Total number of steps
Tk Total number of steps up to episode k

S Cardinality of the state space
A Cardinality of the action space
xk,h State occupied at stage h of episode k

aπk,h Action played at stage h of episode k under policy π

Rπpxq Reward obtained by playing according to policy π in state x

Nkpx, aq Number of visits to state-action pair px, aq up to episode k

Nkpx, a, yq Number of transitions to state y from state x after playing action a, up to episode k

N 1
k,hpxq Number of visits to state x at stage h up to episode k

pPk Estimated transition distribution
bk,h Exploration bonus
b1
k,hpxq mint 842H3S2AL2

N 1
k,hpxq

, H2u

πk Policy played during episode k

π˚ Optimal policy
Qk,h Optimistic state-action value function
V ˚
h Value function of the optimal policy at stage h

V π
h Value function under policy π at stage h

Vk,h Optimistic estimator of the optimal value function at stage h of episode k

∆k,hpxq Regret in state x, at stage h of episode k, following policy πk

r∆k,hpxq Pseudo-regret in state x, at stage h of episode k, following policy πk

RegpUCBVI-CH, kq Regret of UCBVI using Chernoff-Hoeffding bonus after k episodes
ĄRegpUCBVI-CH, kq Pseudo-regret of UCBVI using Chernoff-Hoeffding bonus after k episodes
RegpUCBVI-BF-I, kq Regret of UCBVI using Bernstein-Freedman bonus after k episodes
ĄRegpUCBVI-BF-I, kq Pseudo-regret of UCBVI using Bernstein-Freedman bonus after k episodes
E Concentration inequalities event
Ω,Ωk,h Optimism events
ε, ε Martingale differences sequences
rkstyp, rkstyp,x Sets of typical episodes
Hk,h History of the interactions up to, and including, stage h of episode k

L Logarithmic term lnp5HSAT {δq

Vπk

h px, aq Next-state variance of V πk

V˚
h Next-state variance of V ˚

pVk,h Empirical next-state variance of Vk,h

pV˚
k,h Empirical next-state variance of V ˚

ξk,jpx, aq State-action wise model error ξk,jpx, aq :“
ř

yPSr pPkpy|x, aq ´ P py|x, aqsV ˚
h`1pyq

Table 2. Table of notation.
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We define the empirical next state variance of V as:

pVk,h`1px, aq :“ Var
y„ pPkp¨|x,aq

rVk,h`1pyqs.

We define the next state variance of V ˚ as:

V˚
h`1px, aq :“ Var

y„P p¨|x,aq
rV ˚

h`1pyqs.

We define the next state variance of V π as:

Vπ
h`1px, aq :“ Var

y„P p¨|x,aq
rV π

h`1pyqs.

Finally, we define the empirical next state variance of V ˚ as:

pV˚
k,h`1px, aq :“ Var

y„ pPkp¨|x,aq

rV ˚
h`1pyqs.

C. High Probability Events
In this section, we restate the high probability event E under which the concentration inequalities hold, presented in
Appendix B.4 of (Azar et al., 2017).

Event E is defined as:

E :“ E
pP

č č

kPJKK
hPJHK
xPS

„

Eaz
´

F
r∆,k,h, H, L

¯

č

Eaz
ˆ

F 1
r∆,k,h

,
1

?
L
,L

˙

č

Eaz
´

F
r∆,k,h,x, H, L

¯

č

Eaz
ˆ

F 1
r∆,k,h,x

,
1

?
L
,L

˙

č

Efr
`

GV,k,h, H
4T,H3, L

˘

č

Efr
`

GV,k,h,x, H
5N 1

k,hpxq, H3, L
˘

č

Eaz
`

Fb1,k,h, H
2, L

˘

č

Eaz
`

Fb1,k,h,x, H
2, L

˘

ȷ

We refer the reader to Lemma 1 of (Azar et al., 2017) for the proof that event E holds with high probability. Let, for ease of
reading x “ xi,j , x1 “ xi,j`1, and a “ aπi

i,j We now restate the definition of the events that compose E :

E
pP
:“

!

pPkpy|x, aq P Ppk, h,Nkpx, aq, x, a, yq,@k P JKK, h P JHK, px, a, yq P S ˆ A ˆ S
)

,

where Ppk, h, n, x, a, yq is defined as the subset of the set of all probability distributions P over S such that:
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Ppk, h, n, x, a, yq :“

#

rP p¨|x, aq P P : } rP p¨|x, aq ´ P p¨|x, aq}1 ď 2

c

SL

n
, (1)

|
ÿ

yPS
p rP py|x, aq ´ P py|x, aqqV ˚

h pyq|

ď min

¨

˝

d

2pV˚
k,h`1px, aqL

n
`

7HL

3pn ´ 1q
,

c

2V˚
h`1px, aqL

n
`

2HL

3n

˛

‚

(2)

| rP py|x, aq ´ P py|x, aq| ď

c

2pp1 ´ pqL

n
`

2L

3n
,

+

, (3)

where Equation (1) follows by applying the result of Theorem 2.1 of (Weissman et al., 2003), Equation (2) follows by
applying both Bernstein’s inequality (see, e.g., Cesa-Bianchi & Lugosi, 2006) and the empirical Bernstein inequality (Maurer
& Pontil, 2009) ,and Equation (3) follows by applying Lemma D.1.

Eaz
´

F
r∆,k,h, H, L

¯

:“

#

k
ÿ

i“1

H´1
ÿ

j“h

«

ÿ

yPS
P py|x, aqr∆i,j`1pyq ´ r∆i,j`1px1q

ff

ď 2
a

kpH ´ hqH2L

+

,

Eaz
ˆ

F 1
r∆,k,h

,
1

?
L
,L

˙

:“

" k
ÿ

i“1

H
ÿ

j“h

„

ÿ

yPS
P py|x, aq

d

Ipy P rysi,jq

Nipx, aqP py|x, aq
r∆i,j`1pyq

ȷ

´

d

Ipy P rysi,jq

Nipx, aqP py|x, aq
r∆i,j`1px1q ď 2

d

kpH ´ hq
1

?
L
2L

*

,

Eaz
´

F
r∆,k,h,x, H, L

¯

:“

#

k
ÿ

i“1

Ipxi,h “ xq

H´1
ÿ

j“h

«

ÿ

yPS
P py|x, aqr∆i,j`1pyq ´ r∆i,j`1px1q

ff

ď 2
b

N 1
k,hpxqpH ´ hqH2L

+

,

Eaz
ˆ

F 1
r∆,k,h,x

,
1

?
L
,L

˙

:“

#

k
ÿ

i“1

Ipxi,h “ xq

«

H
ÿ

j“h

„

ÿ

yPS
P py|x, aq

d

Ipy P rysi,jq

Nipx, aqP py|x, aq
r∆i,j`1pyq

ȷ

´

d

Ipy P rysi,jq

Nipx, aqP py|x, aq
r∆i,j`1px1q

ff

ď 2

d

N 1
k,hpxqpH ´ hq

1
?
L
2L

+

,

Efr
`

GV,k,h, H
4T,H3, L

˘

:“

#

k
ÿ

i“1

E

«

H´1
ÿ

j“h

Vπk
j`1px, aq|Hk,h

ff

´

k
ÿ

i“1

H´1
ÿ

j“h

Vπk
j`1px, aq

+

ď 2
a

H4TkL `
4H3L

3
,

Efr
`

GV,k,h,x, H
5N 1

k,hpxq, H3, L
˘

:“

#

k
ÿ

i“1

Ipxi,h “ xqE

«

H´1
ÿ

j“h

Vπk
j`1px, aq|Hk,h

ff

´

k
ÿ

i“1

Ipxi,h “ xq

H´1
ÿ

j“h

Vπk
j`1px, aq

+

ď 2
b

H5N 1
k,hpxqL `

4H3L

3
,
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Eaz
`

Fb1,k,h, H
2, L

˘

:“

#

k
ÿ

i“1

H´1
ÿ

j“h

ÿ

yPS
P py|x, aqb1

i,j`1pyq ´ b1
i,j`1px1q

+

ď 2
a

kpH ´ hqH4L

Eaz
`

Fb1,k,h,x, H
2, L

˘

:“

#

k
ÿ

i“1

Ipxi,h “ xq

„H´1
ÿ

j“h

ÿ

yPS
P py|x, aqb1

i,j`1pyq ´ b1
i,j`1px1q

ȷ

+

ď 2
b

N 1
k,hpxqpH ´ hqH4L

D. Technical Lemmas
Lemma D.1 (Bernstein inequality for Bernoulli random variables). Let p be the parameter of a Bernoulli random variable,
and let pp be its estimator. Let δ ą 0. Then, w.p. at least 1 ´ δ, it holds that:

|pp ´ p| ď

c

2pp1 ´ pqL

n
`

2L

3n
,

where n represents the number of observations, and L “ lnp2{δq.

Proof. Let tYiui“1...,n be the set of i.i.d. realizations of a Bernoulli with parameter p. Define the auxiliary random variable:

Xi “
Yi

n
.

Observe that X1, . . . , Xn are independent random variables, and that 0 ď Xi ď 1{n. Let Sn be their sum, and En be the
expected value of Sn:

Sn “

n
ÿ

i“1

Xi “ pp,

En “ ErSns “

n
ÿ

i“1

ErXis “ p.

Let Vn be the variance of Sn:

Vn “ VarrSns “

n
ÿ

i“1

VarrXis “

n
ÿ

i“1

ˆ

1p1 ´ pq

n2

˙

“
pp1 ´ pq

n
.

By applying Bernstein’s inequality, we obtain that:

Prp|Sn ´ En| ą ϵq ă 2 exp

ˆ

´
ϵ2{2

Vn ` Cpϵ{3q

˙

, (4)

where C is the range of values of the addends in Sn (i.e., C “ 1{n). By setting this probability to be equal to δ, we can
derive that:

ϵ2

2
“ Vn ln

ˆ

2

δ

˙

`
ϵ

3n
ln

ˆ

2

δ

˙

.
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Let L “ lnp2{δq, by solving the second order polynomial we get that:

ϵ “
L

3n
˘

c

L2

9n2
` 2VnL.

We can discard the equation with the minus, as it would result in ϵ ă 0, and consequently in the inequality in Equation (4)
holding w.p. 1. As such, we derive that:

ϵ “
L

3n
`

c

L2

9n2
` 2VnL

ď
L

3n
`

c

L2

9n2
`

c

2pp1 ´ pqL

n

“

c

2pp1 ´ pqL

n
`

2L

3n
,

thus completing the proof.

Lemma D.2 (Regret decomposition upper bound). Let k P JKK and h P JHK. Assume events E and Ωk,h hold. Then the
regret from stage h onward of all episodes up to k can be upper bounded as follows:

k
ÿ

i“1

∆i,hpxi,hq ď

k
ÿ

i“1

r∆i,hpxi,hq ďe
k
ÿ

i“1

H´1
ÿ

j“h

”

εi,j ` 2
?
Lεi,j ` bi,jpxi,j , a

πi
i,jq

` ξi,jpxi,j , a
πi
i,jq `

8H2SL

3Nipxi,j , a
πi
i,jq

ı

.

Proof. We begin the proof by considering a single value of k P JKK. Under Ωk,h, we observe that:

∆k,hpxk,hq “ V ˚
h pxk,hq ´ V πk

h pxk,hq

ď Vk,hpxk,hq ´ V πk

h pxk,hq

“ r∆k,hpxk,hq.

As such, we bound the pseudo-regret r∆k,hpxk,hq:
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r∆k,hpxk,hq “ Vk,hpxk,hq ´ V πk

h pxk,hq

“ bk,hpxk,h, a
πk

k,hq `
ÿ

yPS

pPkpy|xk,h, a
πk

k,hqVk,h`1pyq ´
ÿ

yPS
P py|xk,h, a

πk

k,hqV πk

h`1pyq

“ bk,hpxk,h, a
πk

k,hq `
ÿ

yPS

”

pPkpy|xk,h, a
πk

k,hq ´ P py|xk,h, a
πk

k,hq

ı

Vk,h`1pyq

`
ÿ

yPS
P py|xk,h, a

πk

k,hq
“

Vk,h`1pyq ´ V πk

h`1pyq
‰

“ bk,hpxk,h, a
πk

k,hq `
ÿ

yPS

”

pPkpy|xk,h, a
πk

k,hq ´ P py|xk,h, a
πk

k,hq

ı

V ˚
h`1pyq

`
ÿ

yPS

”

pPkpy|xk,h, a
πk

k,hq ´ P py|xk,h, a
πk

k,hq

ı

“

Vk,h`1pyq ´ V ˚
h`1pyq

‰

`
ÿ

yPS
P py|xk,h, a

πk

k,hqr∆k,h`1pyq

“ r∆k,h`1pxk,h`1q ` bk,hpxk,h, a
πk

k,hq ` εk,h (5)
ÿ

yPS

”

pPkpy|xk,h, a
πk

k,hq ´ P py|xk,h, a
πk

k,hq

ı

V ˚
h`1pyq

`
ÿ

yPS

”

pPkpy|xk,h, a
πk

k,hq ´ P py|xk,h, a
πk

k,hq

ı

“

Vk,h`1pyq ´ V ˚
h`1pyq

‰

ď r∆k,h`1pxk,h`1q ` bk,hpxk,h, a
πk

k,hq ` ξk,hpxk,h, a
πk

k,hq

` εk,h `
ÿ

yPS

”

pPkpy|xk,h, a
πk

k,hq ´ P py|xk,h, a
πk

k,hq

ı

“

Vk,h`1pyq ´ V ˚
h`1pyq

‰

looooooooooooooooooooooooooooooooooooooooomooooooooooooooooooooooooooooooooooooooooon

paq

, (6)

where, in Equation (5) we apply the definition εk,h :“ P p¨|xk,h, a
πk

k,hqT r∆k,h`1p¨q ´ r∆k,h`1pxk,h`1q, and in Equation (6)
we apply the definition of ξk,hpxk,h, a

πk

k,hq:

ξk,hpxk,h, a
πk

k,hq “
ÿ

yPS

”

pPkpy|xk,h, a
πk

k,hq ´ P py|xk,h, a
πk

k,hq

ı

V ˚
h`1pyq.

Let Hk,h be the history of the interactions up to, and including, stage h of episode k. Observing that |εk,h| ď H ď `8 and
Erεk,h|Hk,hs “ 0, we can derive that εk,h is a Martingale difference sequence.

We now focus on bounding term paq:

paq “
ÿ

yPS

”

pPkpy|xk,h, a
πk

k,hq ´ P py|xk,h, a
πk

k,hq

ı

“

Vk,h`1pyq ´ V ˚
h`1pyq

‰

ď
ÿ

yPS

«
d

2P py|xk,h, a
πk

k,hqp1 ´ P py|xk,h, a
πk

k,hqqL

Nkpxk,h, a
πk

k,hq
`

2L

3Nkpxk,h, a
πk

k,hq

ff

r∆k,h`1pyq (7)

ď
ÿ

yPS

d

2P py|xk,h, a
πk

k,hqL

Nkpxk,h, a
πk

k,hq
r∆k,h`1pyq `

2L

3Nkpxk,h, a
πk

k,hq

ÿ

yPS

r∆k,h`1pyq (8)

ď
?
2L

ÿ

yPS

d

2P py|xk,h, a
πk

k,hqL

Nkpxk,h, a
πk

k,hq
r∆k,h`1pyq

looooooooooooooooooooomooooooooooooooooooooon

pbq

`
2SHL

3Nkpxk,h, a
πk

k,hq
, (9)
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where Equation (7) is obtained by applying Lemma D.1 to bound pPk ´ P , Equation (8) is obtained by splitting the terms
and observing that 1 ´ P py|x, aq ď 1 for every x, y P S and a P A, and finally Equation (9) is obtained by upper bounding
r∆k,h`1pyq with H . To bound term pbq, we first need to define the following set of states:

rysk,h :“ ty P S : Nkpxk,h, a
πk

k,hqP py|xk,h, a
πk

k,hq ě 2H2Lu.

As such, we can rewrite:

pbq “
ÿ

yPrysk,h

d

2P py|xk,h, a
πk

k,hqL

Nkpxk,h, a
πk

k,hq
r∆k,h`1pyq

loooooooooooooooooooooooomoooooooooooooooooooooooon

pcq

`
ÿ

yRrysk,h

d

2P py|xk,h, a
πk

k,hqL

Nkpxk,h, a
πk

k,hq
r∆k,h`1pyq

loooooooooooooooooooooooomoooooooooooooooooooooooon

pdq

. (10)

We now bound term pcq as:

pcq “
ÿ

yPrysk,h

d

2P py|xk,h, a
πk

k,hqL

Nkpxk,h, a
πk

k,hq
r∆k,h`1pyq

“
ÿ

yPrysk,h

P py|xk,h, a
πk

k,hq

d

1

Nkpxk,h, a
πk

k,hqP py|xk,h, a
πk

k,hq
r∆k,h`1pyq

“ εk,h `

d

Ipxk,h`1 P rysk,hq

Nkpxk,h, a
πk

k,hqP py|xk,h, a
πk

k,hq
r∆k,h`1pxk,h`1q (11)

ď εk,h `

c

1

2H2L
r∆k,h`1pxk,h`1q, (12)

where Equation (11) is obtained by applying the definition of εk,h:

εk,h :“
ÿ

yPS
P py|xk,h, a

πk

k,hq

d

Ipy P rysk,hq

Nkpxk,h, a
πk

k,hqP py|xk,h, a
πk

k,hq
r∆k,h`1pyq

´

d

Ipy P rysk,hq

Nkpxk,h, a
πk

k,hqP py|xk,h, a
πk

k,hq
r∆k,h`1pxk,h`1q,

and Equation (12) is obtained by bounding the indicator function with 1, and by applying the definition of rysk,h. With the
same reasoning of εk,h, we can prove that εk,h is also a Martingale difference sequence.

We can now bound term pdq as follows:

pdq “
ÿ

yRrysk,h

d

P py|xk,h, a
πk

k,hq

Nkpxk,h, a
πk

k,hq
r∆k,h`1pyq

“
ÿ

yRrysk,h

d

Nkpxk,h, a
πk

k,hqP py|xk,h, a
πk

k,hq

pNkpxk,h, a
πk

k,hqq2
r∆k,h`1pyq

ď
H2S

?
2L

Nkpxk,h, a
πk

k,hq
, (13)
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where Equation (13) is obtained by bounding r∆k,h`1pyq with H , and by applying the definition of rysk,h. We can now plug
the bounds of pcq and pdq into Equation (10) to obtain that:

pbq ď εk,h `

c

1

2H2L
r∆k,h`1pxk,h`1q `

H2S
?
2L

Nkpxk,h, a
πk

k,hq
.

By plugging the bound of pbq into Equation (9), we obtain that:

paq ď
?
2Lεk,h `

1

H
r∆k,h`1pxk,h`1q `

8H2SL

3Nkpxk,h, a
πk

k,hq
.

Finally, substituting the bound on paq into Equation (6), we obtain that:

r∆k,hpxk,hq ď

ˆ

1 `
1

H

˙

r∆k,h`1pxk,h`1q ` bk,hpxk,h, a
πk

k,hq ` ξk,hpxk,h, a
πk

k,hq ` εk,h `
?
2Lεk,h `

8H2SL

3Nkpxk,h, a
πk

k,hq
.

We now apply an inductive argument on r∆k,hpxk,hq to isolate the term.

Observing that r∆k,H`1pxk,H`1q “ 0 by definition, we can rewrite:

r∆k,hpxk,hq ď

H´1
ÿ

j“h

γj´h

«

bk,jpxk,j , a
πk

k,jq ` ξk,jpxk,j , a
πk

k,jq ` εk,j `
?
2Lεk,j `

8H2SL

3Nkpxk,j , a
πk

k,jq

ff

,

where γj´h “
`

1 ` 1
H

˘j´h
. Notice that the summation is limited to H ´ 1. This will be recurrent throughout the paper and

is due to the fact that, the reward being deterministic, there is no uncertainty at h “ H . As such, we can assume that the
policies πk for k P JKK always play greedily at the last stage of each episode.

Observing that 1 ` 1
H ą 1, we trivially derive that γj´h ď γH for j P Jh,HK. Recalling that limxÑ`8

`

1 ` 1
x

˘x
“ e, we

can bound γH ď e, and rewrite:

r∆k,hpxk,hq ď e
H´1
ÿ

j“h

«

bk,jpxk,j , a
πk

k,jq ` ξk,jpxk,j , a
πk

k,jq ` εk,j `
?
2Lεk,j `

8H2SL

3Nkpxk,j , a
πk

k,jq

ff

, (14)

To conclude the proof, we need now to show that this holds for any value of k P JKK. Recalling the definition of Ωk,h:

Ωk,h :“
␣

Vi,jpxq ě V ˚
j pxq,@pi, jq P rk, hshist, x P S

(

,

where rk, hshist :“ tpi, jq : i P JKK, j P JHK, pi ă kq _ pi “ k, j ě hqu, we observe that, if Ωk,h holds, then also the
events Ωi,j hold for pi, jq P rk, hshist. As such, we can sum up the previous bound of Equation (14) over all the episodes
i P JkK, thus concluding the proof.

Lemma D.3. Let k P JKK and h P JHK. Let events E and Ωk,h hold. Then the following bounds hold:

k
ÿ

i“1

H
ÿ

j“h

εi,j ď 2
a

H2TkL,

k
ÿ

i“1

H
ÿ

j“h

εi,j ď 2
a

Tk,

where Tk “ kH .
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Proof. Let us first recall the definitions of εi,j and εi,j :

εi,j :“ P p¨|xi,j , a
πi
i,jqT r∆i,j`1p¨q ´ r∆i,j`1pxi,j`1q,

εi,j :“
ÿ

yPS
P py|xi,j , a

πi
i,jq

d

Ipy P rysi,jq

Nipxi,j , a
πi
i,jqP py|xi,j , a

πi
i,jq

r∆i,j`1pyq ´

d

Ipy P rysi,jq

Nipxi,j , a
πi
i,jqP py|xi,j , a

πi
i,jq

r∆i,j`1pxi,j`1q,

where:

rysk,h :“ ty P S : Nkpxk,h, a
πk

k,hqP py|xk,h, a
πk

k,hq ě 2H2Lu.

Under event E the following events hold:

EazpF
r∆,k,h, H, Lq, and EazpF 1

r∆,k,h
, 1{

?
L,Lq.

Event EazpF
r∆,k,h, H, Lq is defined as the event such that:

k
ÿ

i“1

H´1
ÿ

j“h

«

ÿ

yPS
P py|xi,j , a

πi
i,jqr∆i,j`1pyq ´ r∆i,j`1pxi,j`1q

ff

ď 2
a

kpH ´ 1 ´ hqH2L

ď 2
a

H2TkL.

Under this event, we can apply the definition of εi,j and derive that:

k
ÿ

i“1

H´1
ÿ

j“h

εi,j ď 2
a

H2TkL.

Event EazpF 1
r∆,k,h

, 1{
?
L,Lq, on the other hand, is defined as the event such that:

k
ÿ

i“1

H
ÿ

j“h

„

ÿ

yPS
P py|xi,j , a

πi
i,jq

d

Ipy P rysi,jq

Nipxi,j , a
πi
i,jqP py|xi,j , a

πi
i,jq

r∆i,j`1pyq

ȷ

´

d

Ipy P rysi,jq

Nipxi,j , a
πi
i,jqP py|xi,j , a

πi
i,jq

r∆i,j`1pxi,j`1q

ď 2

d

kpH ´ hq
1

?
L
2L

ď 2
a

Tk.

Under this event, we can apply the definition of εi,j and derive that:

k
ÿ

i“1

H´1
ÿ

j“h

εi,j ď 2
a

Tk,

thus concluding the proof.
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Lemma D.4. Let k P JKK, h P JHK, and x P S. Let events E and Ωk,h hold. Then the following bounds hold:

k
ÿ

i“1

Ipxi,h “ xq

H
ÿ

j“h

εi,j ď 2
a

H2TkL,

k
ÿ

i“1

Ipxi,h “ xq

H
ÿ

j“h

εi,j ď 2
a

Tk,

where Tk “ kH .

Proof. In a similar way to the proof of Lemma D.3, we recall the definitions of εi,j and εi,j :

εi,j :“ P p¨|xi,j , a
πi
i,jqT r∆i,j`1p¨q ´ r∆i,j`1pxi,j`1q,

εi,j :“
ÿ

yPS
P py|xi,j , a

πi
i,jq

d

Ipy P rysi,jq

Nipxi,j , a
πi
i,jqP py|xi,j , a

πi
i,jq

r∆i,j`1pyq

´

d

Ipy P rysi,jq

Nipxi,j , a
πi
i,jqP py|xi,j , a

πi
i,jq

r∆i,j`1pxi,j`1q,

where:

rysk,h :“ ty P S : Nkpxk,h, a
πk

k,hqP py|xk,h, a
πk

k,hq ě 2H2Lu.

Under event E the following events hold:

EazpF
r∆,k,h,x, H, Lq, and EazpF 1

r∆,k,h,x
, 1{

?
L,Lq.

Event EazpF
r∆,k,h,x, H, Lq is defined as the event such that:

k
ÿ

i“1

Ipxi,h “ xq

H´1
ÿ

j“h

«

ÿ

yPS
P py|xi,j , a

πi
i,jqr∆i,j`1pyq ´ r∆i,j`1pxi,j`1q

ff

ď 2
b

H3N 1
k,hpxqL.

Under this event, we can apply the definition of εi,j and derive that:

k
ÿ

i“1

Ipxi,h “ xq

H´1
ÿ

j“h

εi,j ď 2
b

H3N 1
k,hpxqL.

Event EazpF 1
r∆,k,h,x

, 1{
?
L,Lq, on the other hand, is defined as the event such that:

k
ÿ

i“1

Ipxi,h “ xq

H
ÿ

j“h

„

ÿ

yPS
P py|xi,j , a

πi
i,jq

d

Ipy P rysi,jq

Nipxi,j , a
πi
i,jqP py|xi,j , a

πi
i,jq

r∆i,j`1pyq

ȷ

´

d

Ipy P rysi,jq

Nipxi,j , a
πi
i,jqP py|xi,j , a

πi
i,jq

r∆i,j`1pxi,j`1q

ď 2

d

N 1
k,hpxqpH ´ hq

1
?
L
2L

ď 2
b

HN 1
k,hpxq.
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Under this event, we can apply the definition of εi,j and derive that:

k
ÿ

i“1

Ipxi,h “ xq

H´1
ÿ

j“h

εi,j ď 2
b

HN 1
k,hpxq,

thus concluding the proof.

Lemma D.5. Let k P JKK and h P JHK. Let πk be the policy followed during episode k. Under the events E and Ωk,h, the
following holds for every x P S:

k
ÿ

i“1

H´1
ÿ

j“h

Vπk
j`1pxi,j , a

πi
i,jq ď HTk ` 2

a

H4TkL `
4

3
H3L,

k
ÿ

i“1

Ipxi,h “ xq

H´1
ÿ

j“h

Vπk
j`1pxi,j , a

πi
i,jq ď H2N 1

k,hpxq ` 2
b

H5N 1
k,hpxqL `

4

3
H3L.

Proof. We begin the proof by restating the definition of Vπk
j`1pxi,j , a

πi
i,jq:

Vπk
j`1pxi,j , a

πi
i,jq :“ Var

y„P p¨|xi,j ,a
πi
i,jq

rV πk
j`1pyqs

Under event E , the following events hold:

EfrpG´V,k,h, H
4Tk, H

3, Lq and EfrpG´V,k,h,x, H
5N 1

k,h, H
3, Lq.

Event EfrpG´V,k,h, H
4Tk, H

3, Lq is defined as the event such that:

k
ÿ

i“1

H´1
ÿ

j“h

Vπk
j`1pxi,j , a

πi
i,jq ´

k
ÿ

i“1

E

«

H´1
ÿ

j“h

Vπk
j`1pxi,j , a

πi
i,jq|Hk,h

ff

ď 2
a

H4TkL `
4H3L

3
,

which implies that:

k
ÿ

i“1

H´1
ÿ

j“h

Vπk
j`1pxi,j , a

πi
i,jq ď

k
ÿ

i“1

E

«

H´1
ÿ

j“h

Vπk
j`1pxi,j , a

πi
i,jq|Hk,h

ff

` 2
a

H4TkL `
4H3L

3
. (15)

On the other hand, event EfrpG´V,k,h,x, H
5N 1

k,h, H
3, Lq is defined as the event such that:

k
ÿ

i“1

Ipxi,h “ xq

H´1
ÿ

j“h

Vπk
j`1pxi,j , a

πi
i,jq ´

k
ÿ

i“1

Ipxi,h “ xqE

«

H´1
ÿ

j“h

Vπk
j`1pxi,j , a

πi
i,jq|Hk,h

ff

ď 2
b

H5N 1
k,hpxqL `

4H3L

3
,

which implies that:
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k
ÿ

i“1

Ipxi,h “ xq

H´1
ÿ

j“h

Vπk
j`1pxi,j , a

πi
i,jq ď

k
ÿ

i“1

Ipxi,h “ xqE

«

H´1
ÿ

j“h

Vπk
j`1pxi,j , a

πi
i,jq|Hk,h

ff

` 2
b

H5N 1
k,hpxqL `

4H3L

3
.

(16)

Observe that by applying the Law of Total Variance (LTV) (see e.g., Theorem 9.5.4 of Blitzstein & Hwang, 2019), we can
write:

Var
xi,h`1,...,xi,H´1

«

H´1
ÿ

j“h

Rπpxi,jq

ff

“ Var
xi,h`1

«

E
xi,h`2,...,xi,H´1

«

H´1
ÿ

j“h

Rπpxi,jq

ˇ

ˇ

ˇ

ˇ

xi,h`1

ffff

looooooooooooooooooooooooooooomooooooooooooooooooooooooooooon

paq

` E
xi,h`1

»

—

—

—

—

—

–

Var
xi,h`2,...,xi,H´1

«

H´1
ÿ

j“h

Rπpxi,jq

ˇ

ˇ

ˇ

ˇ

xi,h`1

ff

looooooooooooooooooooooomooooooooooooooooooooooon

pbq

fi

ffi

ffi

ffi

ffi

ffi

fl

.

(17)

Term paq can be rewritten as:

paq “ Var
xi,h`1

«

Rπpxi,hq ` E
xi,h`2,...,xi,H´1

«

H´1
ÿ

j“h`1

Rπpxi,jq

ˇ

ˇ

ˇ

ˇ

xi,h`1

ffff

“ Var
xi,h`1

“

V πk

h`1pxi,h`1q
‰

(18)

“ Vπk

h`1pxi,h, a
πi

i,hq, (19)

where Equation (18) is obtained by observing that Rπpxi,hq has zero variance w.r.t. xi,h`1, and by applying the definition
of value function.

We can then recursively apply the LTV to term pbq and, considering the expectation over the trajectory generated following
policy π from stage h onward, we can write:

Var
xi,h`1,...,xi,H´1

«

H´1
ÿ

j“h

Rπpxi,jq

ff

“ E

«

H´1
ÿ

j“h

Vπk
j`1pxi,j , a

πi
i,jq

ff

. (20)

By applying the result of Equation (20) to Equations (15) and (16), we get:

k
ÿ

i“1

E

«

H´1
ÿ

j“h

Vπk
j`1pxi,j , a

πi
i,jq|Hk,h

ff

“

k
ÿ

i“1

Var

«

H´1
ÿ

j“h`1

Rπpxi,jq

ff

ď kpH ´ hq2

ď HTk, (21)

and:
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k
ÿ

i“1

Ipxi,h “ xqE

«

H´1
ÿ

j“h

Vπk
j`1pxi,j , a

πi
i,jq|Hk,h

ff

“

k
ÿ

i“1

Ipxi,h “ xqVar

«

H´1
ÿ

j“h`1

Rπpxi,jq

ff

ď N 1
k,hpxqpH ´ hq2

ď H2N 1
k,hpxq. (22)

Finally, we can plug Equations (21) and (22) into Equations (15) and (16), respectively, obtaining:

k
ÿ

i“1

H´1
ÿ

j“h

Vπk
j`1pxi,j , a

πi
i,jq ď HTk ` 2

a

H4TkL `
4

3
H3L,

k
ÿ

i“1

Ipxi,h “ xq

H´1
ÿ

j“h

Vπk
j`1pxi,j , a

πi
i,jq ď H2N 1

k,hpxq ` 2
b

H5N 1
k,hpxqL `

4

3
H3L,

thus concluding the proof.

Lemma D.6. Let k P JKK and h P JHK. Let πk be the policy played during episode k. Under the events E and Ωk,h, the
following holds for every x P S:

k
ÿ

i“1

H´1
ÿ

j“h

`

V˚
j`1pxi,j , a

πi
i,jq ´ Vπk

j`1pxi,j , a
πi
i,jq

˘

ď 2H
k
ÿ

i“1

H´1
ÿ

j“h

r∆i,jpxi,jq ` 4H2
a

TkL,

k
ÿ

i“1

Ipxi,h “ xq

H´1
ÿ

j“h

`

V˚
j`1pxi,j , a

πi
i,jq ´ Vπk

j`1pxi,j , a
πi
i,jq

˘

ď 2H
k
ÿ

i“1

Ipxi,h “ xq

H´1
ÿ

j“h

r∆i,hpxi,hq ` 4H2
b

HN 1
k,hpxqL.

Proof. We demonstrate the result by providing an upper bound to V˚
j`1 ´ Vπk

j`1 first, and then bounding its summation over
episodes and stages. We can demonstrate that:

V˚
j`1pxi,j , a

πi
i,jq ´ Vπk

j`1pxi,j , a
πi
i,jq “ Var

y„P p¨|xi,j ,a
πi
i,jq

rV ˚
j`1pyqs ´ Var

y„P p¨|xi,j ,a
πi
i,jq

rV π
j`1pyqs

ď Ey„P p¨|xi,j ,a
πi
i,jqrpV ˚

j`1pyqq2 ´ pV π
j`1pyqq2s (23)

ď 2HEy„P p¨|xi,j ,a
πi
i,jqrV ˚

j`1pyq ´ V π
j`1pyqs, (24)

where Equation (23) is obtained by applying the definition of variance and observing that V ˚
j`1pxq ě V π

j`1pxq by definition,
and Equation (24) is obtained by expanding the square and by observing that V π

j`1pxq ď V ˚
j`1pxq ď H .

Using the argument of Equation (24), we obtain the following inequalities:

k
ÿ

i“1

H´1
ÿ

j“h

`

V˚
j`1pxi,j , a

πi
i,jq ´ Vπk

j`1pxi,j , a
πi
i,jq

˘

ď 2H
k
ÿ

i“1

H´1
ÿ

j“h

Ey„P p¨|xi,j ,a
πi
i,jqr∆i,j`1pyqs

looooooooooooooooooooomooooooooooooooooooooon

paq

,
(25)

k
ÿ

i“1

Ipxi,h “ xq

H´1
ÿ

j“h

`

V˚
j`1pxi,j , a

πi
i,jq ´ Vπk

j`1pxi,j , a
πi
i,jq

˘

ď 2H
k
ÿ

i“1

Ipxi,h “ xq

H´1
ÿ

j“h

Ey„P p¨|xi,j ,a
πi
i,jqr∆i,j`1pyqs

looooooooooooooooooooooooooooomooooooooooooooooooooooooooooon

pbq

.
(26)

22



Position: Constants are Critical in Regret Bounds for Reinforcement Learning

We now bound term paq as follows:

paq ď

k
ÿ

i“1

H´1
ÿ

j“h

Ey„P p¨|xi,j ,a
πi
i,jqrr∆i,j`1pyqs (27)

ď 2
a

H2TkL `

k
ÿ

i“1

H´1
ÿ

j“h

r∆i,j`1pxi,j`1q (28)

where Equation (27) is obtained because, under Ωk,h, it holds that V ˚
j`1pyq ď Vi,j`1pyq. Equation (28) is obtained by

considering that, under event E , the event EazpF
r∆,k,h, H, Lq holds, as shown in Lemma D.3.

Following a similar procedure, we bound term pbq by considering event EazpF
r∆,k,h,x, H, Lq, obtaining:

pbq ď 2H
b

HN 1
k,hpxqL `

k
ÿ

i“1

Ipxi,h “ xq

H´1
ÿ

j“h

r∆i,j`1pxi,j`1q. (29)

We can then plug Equations (28) and (29) into Equations (25) and (26), respectively, to write:

k
ÿ

i“1

H´1
ÿ

j“h

`

V˚
j`1pxi,j , a

πi
i,jq ´ Vπk

j`1pxi,j , a
πi
i,jq

˘

ď 2H
k
ÿ

i“1

H´1
ÿ

j“h

r∆i,jpxi,jq ` 4H2
a

TkL,

k
ÿ

i“1

Ipxi,h “ xq

H´1
ÿ

j“h

`

V˚
j`1pxi,j , a

πi
i,jq ´ Vπk

j`1pxi,j , a
πi
i,jq

˘

ď 2H
k
ÿ

i“1

Ipxi,h “ xq

H´1
ÿ

j“h

r∆i,hpxi,hq ` 4H2
b

HN 1
k,hpxqL,

thus concluding the proof.

Lemma D.7. Let k P JKK and h P JHK. Let πk denote the policy followed during episode k. Under events E and Ωk,h, the
following inequalities hold for every x P S:

k
ÿ

i“1

H´1
ÿ

j“h

pVi,j`1pxi,j , a
πi
i,jq ´ Vπi

j`1pxi,j , a
πi
i,jq ď 7H2S

a

ATkL ` 2H
k
ÿ

i“1

H´1
ÿ

j“h

r∆i,j`1pxi,j`1q,

k
ÿ

i“1

Ipxi,j “ xq

H´1
ÿ

j“h

pVi,j`1pxi,j , a
πi
i,jq ´ Vπi

j`1pxi,j , a
πi
i,jq

ď 7H2S
b

HAN 1
k,hpxqL ` 2H

k
ÿ

i“1

Ipxi,h “ xq

H´1
ÿ

j“h

r∆i,j`1pxi,j`1q.

Proof. Similarly to the proof of Lemma D.6, we demonstrate the result by providing an upper bound to pVi,j`1 ´ Vπk
j`1 first,

and then bounding its summation over episodes and stages.
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pVi,j`1pxi,j , a
πi
i,jq ´ Vπi

j`1pxi,j , a
πi
i,jq

“ Var
y„ pPip¨|xi,j ,a

πi
i,jq

rVi,j`1pyqs ´ Var
y„P p¨|xi,j ,a

πi
i,jq

rV πi
j`1pyqs

“ Ey„ pPip¨|xi,j ,a
πi
i,jq

rpVi,j`1pyqq2s ´ Ey„ pPip¨|xi,j ,a
πi
i,jq

rVi,j`1pyqs2

´ Ey„P p¨|xi,j ,a
πi
i,jqrpV πi

j`1pyqq2s ` Ey„P p¨|xi,j ,a
πi
i,jqrV πi

j`1pyqs2

ď Ey„ pPip¨|xi,j ,a
πi
i,jq

rpVi,j`1pyqq2s ´ Ey„P p¨|xi,j ,a
πi
i,jqrV πi

j`1pyqs2

` Ey„P p¨|xi,j ,a
πi
i,jqrV ˚

j`1pyqs2 ´ Ey„ pPip¨|xi,j ,a
πi
i,jq

rV ˚
j`1pyqs2

(30)

ď Ey„ pPip¨|xi,j ,a
πi
i,jq

rpVi,j`1pyqq2s ´ Ey„P p¨|xi,j ,a
πi
i,jqrpVi,j`1pyqq2s

` Ey„P p¨|xi,j ,a
πi
i,jqrpVi,j`1pyqq2s ´ Ey„P p¨|xi,j ,a

πi
i,jqrV πi

j`1pyqs2

` 2H
ÿ

yPS
pP py|xi,j , a

πi
i,jq ´ pPipy|xi,j , a

πi
i,jqqV ˚

j`1pyq

(31)

ď Ey„ pPip¨|xi,j ,a
πi
i,jq

rpVi,j`1pyqq2s ´ Ey„P p¨|xi,j ,a
πi
i,jqrpVi,j`1pyqq2s

` Ey„P p¨|xi,j ,a
πi
i,jqrpVi,j`1pyqq2s ´ Ey„P p¨|xi,j ,a

πi
i,jqrV πi

j`1pyqs2 ` 4H

d

H2L

Nipxi,j , a
πi
i,jq

(32)

where Equation (30) follows from the fact that, under Ωk,h, Vi,jpyq ě V ˚
j pyq ě V πi

j pyq. Equation (31) is obtained by
adding and subtracting Ey„P p¨|xi,j ,a

πi
i,jqrpVi,j`1pyqq2s, and by observing that V ˚

j pyq ď H . Equation (32) is obtained by
bounding the model error via Hoeffding’s inequality.

Putting this result into the double summation, we get:

k
ÿ

i“1

H´1
ÿ

j“h

pVi,j`1pxi,j , a
πi
i,jq ´ Vπi

j`1pxi,j , a
πi
i,jq

ď

k
ÿ

i“1

H´1
ÿ

j“h

”

Ey„ pPip¨|xi,j ,a
πi
i,jq

rpVi,j`1pyqq2s ´ Ey„P p¨|xi,j ,a
πi
i,jqrpVi,j`1pyqq2s

ı

looooooooooooooooooooooooooooooooooooooooooooooomooooooooooooooooooooooooooooooooooooooooooooooon

paq

`

k
ÿ

i“1

H´1
ÿ

j“h

Ey„P p¨|xi,j ,a
πi
i,jqrpVi,j`1pyqq2s ´ Ey„P p¨|xi,j ,a

πi
i,jqrV πi

j`1pyqs2

looooooooooooooooooooooooooooooooooooooooooomooooooooooooooooooooooooooooooooooooooooooon

pbq

`

k
ÿ

i“1

H´1
ÿ

j“h

4H

d

H2L

Nipxi,j , a
πi
i,jq

loooooooooooooooomoooooooooooooooon

pcq

.

(33)

We begin by bounding term paq:
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paq ď

k
ÿ

i“1

H´1
ÿ

j“h

H2} pPip¨|xi,j , a
πi
i,jq ´ P p¨|xi,j , a

πi
i,jq}1

ď

k
ÿ

i“1

H´1
ÿ

j“h

2H2

d

SL

Nipxi,j , a
πi
i,jq

(34)

“ 2H2
?
SL

ÿ

xPS

ÿ

aPA

Nipx,aq
ÿ

n“1

n´1{2

ď 2H2
?
SL

ÿ

xPS

ÿ

aPA

kH
SA
ÿ

n“1

n´1{2

ď H2S
a

ATkL,

where Equation (34) follows by applying the result of Theorem 2.1 of (Weissman et al., 2003), which holds under event E .

We now bound term pbq:

pbq “

k
ÿ

i“1

H´1
ÿ

j“h

Ey„P p¨|xi,j ,a
πi
i,jqrpVi,j`1pyq ` V πk

j`1pyqqpVi,j`1pyq ´ V πk
j`1pyqqs

ď 2H
k
ÿ

i“1

H´1
ÿ

j“h

Ey„P p¨|xi,j ,a
πi
i,jqrr∆i,j`1pyqs

ď 2Hp

k
ÿ

i“1

H´1
ÿ

j“h

r∆i,j`1pxi,j`1q ` 2H
a

TkLq, (35)

where Equation (35) is obtained because under events E , also event EazpF
r∆,k,h, H, Lq holds. We now bound term pcq:

pcq ď 4H2
?
L
ÿ

xPS

ÿ

aPA

kH
SA
ÿ

n“1

n´1{2

ď 2H2
a

SATkL.

Finally, by plugging the bounds of terms paq, pbq, and pcq into Equation (33), we get:

k
ÿ

i“1

H´1
ÿ

j“h

pVi,j`1pxi,j , a
πi
i,jq ´ Vπi

j`1pxi,j , a
πi
i,jq

ď H2S
a

ATkL ` 2H
k
ÿ

i“1

H´1
ÿ

j“h

r∆i,j`1pxi,j`1q

` 4H2
a

TkL ` 2H2
a

SATkL

ď 7H2S
a

ATkL ` 2H
k
ÿ

i“1

H´1
ÿ

j“h

r∆i,j`1pxi,j`1q.

Using the same procedure, we can bound the following summation as:
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k
ÿ

i“1

Ipxi,j “ xq

H´1
ÿ

j“h

pVi,j`1pxi,j , a
πi
i,jq ´ Vπi

j`1pxi,j , a
πi
i,jq

ď 7H2S
b

HAN 1
k,hpxqL ` 2H

k
ÿ

i“1

Ipxi,h “ xq

H´1
ÿ

j“h

r∆i,j`1pxi,j`1q,

thus concluding the proof.

Lemma D.8 (Summation over typical episodes of state-action wise model errors). Let k P JKK and h P JHK. Let πk be the
policy followed during episode k. Under events E and Ωk,h, the following inequalities hold for every x P S:

k
ÿ

i“1

Ipi P rkstypq

H´1
ÿ

j“h

“

pPip¨|xi,j , a
πi
i,jq ´ P p¨|xi,j , a

πi
i,jq

‰T
V ˚
j`1p¨q

ď
a

6HSATkL2 `
2

3
HSAL2

` 2

g

f

f

eHSAL2p

k
ÿ

i“1

H´1
ÿ

j“h

r∆i,jpxi,jqq,

(36)

k
ÿ

i“1

Ipi P rkstyp,x, xi,h “ xq

H´1
ÿ

j“h

“

pPip¨|xi,j , a
πi
i,jq ´ P p¨|xi,j , a

πi
i,jq

‰T
V ˚
j`1p¨q

ď

b

6H2SAN 1
k,hpxqL2 `

2

3
HSAL2

` 2

g

f

f

eHSAL2p

k
ÿ

i“1

Ipxi,h “ xq

H´1
ÿ

j“h

r∆i,jpxi,jqq,

(37)

where:

rkstyp :“ ti P JkK : pxi,h, a
πi

i,hq P rpx, aqsk, i ě 250HS2AL,@h P JHKu,

rkstyp,x :“ ti P JkK : pxi,h, a
πi

i,hq P rpx, aqsk, N
1
k,hpxq ě 250HS2AL,@h P JHKu,

rpx, aqsk :“ tpx, aq P S ˆ A : Nkpx, aq ě H,N 1
k,hpxq ě H,@h P JHKu.

Proof. We begin by demonstrating the bound of Equation (36):
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k
ÿ

i“1

Ipi P rkstypq

H´1
ÿ

j“h

“

pPip¨|xi,j , a
πi
i,jq ´ P p¨|xi,j , a

πi
i,jq

‰T
V ˚
j`1p¨q

ď

k
ÿ

i“1

Ipi P rkstypq

H´1
ÿ

j“h

«
d

2V˚
j`1pxi,j , a

πi
i,jqL

Nipxi,j , a
πi
i,jq

`
2HL

3Nipxi,j , a
πi
i,jq

ff

(38)

ď
?
2L

g

f

f

f

f

f

e

k
ÿ

i“1

H´1
ÿ

j“h

V˚
j`1pxi,j , a

πi
i,jq

looooooooooooomooooooooooooon

paq

g

f

f

f

f

f

e

k
ÿ

i“1

Ipi P rkstypq

H´1
ÿ

j“h

1

Nipxi,j , a
πi
i,jq

looooooooooooooooooooomooooooooooooooooooooon

pbq

`

k
ÿ

i“1

Ipi P rkstypq

H´1
ÿ

j“h

2HL

3Nipxi,j , a
πi
i,jq

looooooooooooooooooooomooooooooooooooooooooon

pcq

,

(39)

where Equation (38) is obtained by applying Bernstein’s inequality (see, e.g., Cesa-Bianchi & Lugosi, 2006), and Equa-
tion (39) is obtained by apllying Cauchy-Schwarz’s inequality. We now bound terms paq, pbq, and pcq.

By adding and subtracting Vπi
j`1pxi,j , a

πi
i,jq to term paq, we can rewrite it as:

paq “

k
ÿ

i“1

H´1
ÿ

j“h

Vπi
j`1pxi,j , a

πi
i,jq

looooooooooooomooooooooooooon

pdq

`

k
ÿ

i“1

H´1
ÿ

j“h

`

V˚
j`1pxi,j , a

πi
i,jq ´ Vπi

j`1pxi,j , a
πi
i,jq

˘

looooooooooooooooooooooooooomooooooooooooooooooooooooooon

peq

.

As events E and Ωk,h hold, we can apply Lemmas D.5 and D.6 to bound terms pdq and peq, respectively, thus obtaining:

paq ď HTk ` 2H2
a

TkL `
4

3
H3L ` 2H

k
ÿ

i“1

H´1
ÿ

j“h

r∆i,jpxi,jq ` 4H2
a

TkL

ď 3TkH ` 2H
k
ÿ

i“1

H´1
ÿ

j“h

r∆i,jpxi,jq, (40)

where Equation (40) holds under the condition of rkstyp.

We now bound terms pbq and pcq as follows:

pbq ď
ÿ

xPS

ÿ

aPA

kH
ÿ

n“1

n´1

ď SAL, (41)

pcq ď
2

3
HL

ÿ

xPS

ÿ

aPA

kH
ÿ

n“1

n´1

ď
2

3
HSAL2. (42)

Finally, by plugging the results of Equations (40), (41), and (42) into Equation (39), we get:
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k
ÿ

i“1

Ipi P rkstypq

H´1
ÿ

j“h

“

pPip¨|xi,j , a
πi
i,jq ´ P p¨|xi,j , a

πi
i,jq

‰T
V ˚
j`1p¨q

ď
?
2L

g

f

f

e3TkH ` 2H
k
ÿ

i“1

H´1
ÿ

j“h

r∆i,jpxi,jq
?
SAL `

2

3
HSAL2 (43)

ď
a

6HSATkL2 ` 2

g

f

f

eHSAL2p

k
ÿ

i“1

H´1
ÿ

j“h

r∆i,jpxi,jqq `
2

3
HSAL2, (44)

where Equation (44) is obtained by computing the product of the square roots and by the subadditivity of the square root.
Following the same procedure, we can obtain the upper bound of Equation (37) by substituting terms Tk with HN 1

k,hpxq,

and terms
řk

i“1

řH´1
j“h

r∆i,jpxi,jq with
řk

i“1 Ipxi,h “ xq
řH´1

j“h
r∆i,jpxi,jq.

Lemma D.9 (Summation over typical episodes of bonus terms). Let k P JKK and h P JHK. Let πk be the policy followed
during episode k. Let the UCB bonus be defined as:

bk,hpx, aq “

d

4LVary„ pPkp¨|x,aq
rVk,h`1pyqs

Nkpx, aq
`

7HL

3pNkpx, aq ´ 1q

`

g

f

f

e

4mintEy„ pPkp¨|x,aq
r 84

2H3S2AL2

N 1
k,h`1pyq

s, H2u

Nkpx, aq
.

Under the events E and Ωk,h the following inequalities hold for every x P S:

k
ÿ

i“1

Ipi P rkstypq

H´1
ÿ

j“h

bi,jpxi,j , a
πi
i,jq

ď
a

28HSATkL2 `
7

3
HSAL2 ` 2

?
842H3S4A2L4

`

g

f

f

e8HSAL2

k
ÿ

i“1

H´1
ÿ

j“h

r∆i,j`1pxi,j`1q,

(45)

k
ÿ

i“1

Ipi P rkstyp,x,xi,h “ xq

H´1
ÿ

j“h

bi,jpxi,j , a
πi
i,jq

ď

b

28H2SAN 1
k,hpxqL2 `

7

3
HSAL2 ` 2

?
842H3S4A2L4

`

g

f

f

e8HSAL2

k
ÿ

i“1

Ipxi,h “ xq

H´1
ÿ

j“h

r∆i,j`1pxi,j`1q,

(46)

where:

rkstyp :“ ti P JkK : pxi,h, a
πi

i,hq P rpx, aqsk, i ě 250HS2AL,@h P JHKu,

rkstyp,x :“ ti P JkK : pxi,h, a
πi

i,hq P rpx, aqsk, N
1
k,hpxq ě 250HS2AL,@h P JHKu,

rpx, aqsk :“ tpx, aq P S ˆ A : Nkpx, aq ě H,N 1
k,hpxq ě H,@h P JHKu.
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Proof. We begin by demonstrating the bound of Equation (45). We can rewrite the summation as:

k
ÿ

i“1

Ipi P rkstypq

H´1
ÿ

j“h

bi,jpxi,j , a
πi
i,jq “

k
ÿ

i“1

Ipi P rkstypq

H´1
ÿ

j“h

g

f

f

e

4LpVi,j`1pxi,j , a
πi
i,jq

Nipxi,j , a
πi
i,jq

looooooooooooooooooooooooooomooooooooooooooooooooooooooon

paq

`

k
ÿ

i“1

Ipi P rkstypq

H´1
ÿ

j“h

7HL

3pNipxi,j , a
πi
i,jq ´ 1q

loooooooooooooooooooooooooomoooooooooooooooooooooooooon

pbq

`

k
ÿ

i“1

Ipi P rkstypq

H´1
ÿ

j“h

g

f

f

e

4Ey„ pPip¨|xi,j ,a
πi
i,jq

b1
i,j`1pyq

Nipxi,j , a
πi
i,jq

looooooooooooooooooooooooooooooomooooooooooooooooooooooooooooooon

pcq

,

(47)

where b1
i,j`1pyq “ mint 842H2S2AL2

N 1
i,j`1pyq

, H2u. First of all, we observe that we can bound term pbq by using a pigeonhole
argument as:

pbq ď
7

3
HSAL2. (48)

We now bound term paq. By applying Cauchy-Schwarz’s inequality, we obtain:

paq ď
?
4L

g

f

f

f

f

f

e

k
ÿ

i“1

H´1
ÿ

j“h

pVi,j`1pxi,j , a
πi
i,jq

loooooooooooooomoooooooooooooon

pdq

g

f

f

f

f

f

e

k
ÿ

i“1

Ipi P rkstypq

H´1
ÿ

j“h

1

Nipxi,j , a
πi
i,jq

looooooooooooooooooooomooooooooooooooooooooon

peq

. (49)

By applying the same argument as that of Equation (41) of Lemma D.8, we bound term peq with SAL.

We can rewrite term pdq as follows:

pdq “

k
ÿ

i“1

H`1
ÿ

j“h

V πi
j`1pxi,j , a

πi
i,jq

looooooooooooomooooooooooooon

pfq

`

k
ÿ

i“1

H´1
ÿ

j“h

rpVi,j`1pxi,j , a
πi
i,jq ´ Vπi

j`1pxi,j , a
πi
i,j`1qs

looooooooooooooooooooooooooooomooooooooooooooooooooooooooooon

pgq

(50)

Under events E and Ωk,h, we can apply Lemmas D.5 and D.7 to upper bound terms pfq and pgq respectively, obtaining the
following:

pfq ď HTk ` 2
a

H4TkL `
4H3L

3
,

pgq ď 7H2S
a

ATkL ` 2H
k
ÿ

i“1

H´1
ÿ

j“h

r∆i,j`1pxi,j`1q.

Plugging the bounds of pfq and pgq into Equation (50), we get:
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pdq ď HTk ` 2
a

H4TkL `
4H3L

3
` 7H2S

a

ATkL ` 2H
k
ÿ

i“1

H´1
ÿ

j“h

r∆i,j`1pxi,j`1q

ď 4HTk ` 2H
k
ÿ

i“1

H´1
ÿ

j“h

r∆i,j`1pxi,j`1q, (51)

where Equation (51) holds under the condition of rkstyp. Combining the bounds of terms pdq and peq, we can rewrite
Equation (49) as:

paq ď
?
4L

g

f

f

e4HTk ` 2H
k
ÿ

i“1

H´1
ÿ

j“h

r∆i,j`1pxi,j`1q
?
SAL

ď
a

16HSATkL2 `

g

f

f

e8HSAL2

k
ÿ

i“1

H´1
ÿ

j“h

r∆i,j`1pxi,j`1q, (52)

where Equation (52) is obtained by expanding the products and applying the subadditivity of the square root.

To bound term pcq, we apply Cauchy-Schwarz’s inequality, obtaining:

pcq ď 2

g

f

f

f

f

f

e

k
ÿ

i“1

H´1
ÿ

j“h

Ey„ pPip¨|xi,j ,a
πi
i,jq

b1
i,j`1pyq

loooooooooooooooooooomoooooooooooooooooooon

phq

g

f

f

f

f

f

e

k
ÿ

i“1

Ipi P rkstypq

H´1
ÿ

j“h

1

Nipxi,j , a
πi
i,jq

looooooooooooooooooooomooooooooooooooooooooon

piq

. (53)

Similar to term peq, we can bound term piq with SAL. We now bound term phq. We can rewrite the term as:

phq “

k
ÿ

i“1

H´1
ÿ

j“h

ÿ

yPS

pPipy|xi,j , a
πi
i,jqb1

i,j`1pyq

“

k
ÿ

i“1

H´1
ÿ

j“h

ÿ

yPS
p pPipy|xi,j , a

πi
i,jq ´ P py|xi,j , a

πi
i,jqqb1

i,j`1pyq

loooooooooooooooooooooooooooooooooomoooooooooooooooooooooooooooooooooon

pjq

`

k
ÿ

i“1

H´1
ÿ

j“h

ÿ

yPS
P py|xi,j , a

πi
i,jqb1

i,j`1pyq

“ pjq `

k
ÿ

i“1

H´1
ÿ

j“h

Ey„P p¨|xi,j ,a
πi
i,jqb

1
i,j`1pyq ´ b1

i,j`1pxi,j`1q

looooooooooooooooooooooooooooooomooooooooooooooooooooooooooooooon

pkq

`

k
ÿ

i“1

H´1
ÿ

j“h

b1
i,j“1pxi,j`1q

loooooooooooomoooooooooooon

plq

. (54)

We bound term pjq as follows:
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pjq ď H2
k
ÿ

i“1

H´1
ÿ

j“h

} pPip¨|xi,j , a
πi
i,jq ´ P p¨|xi,j , a

πi
i,jq}1 (55)

ď 2H2
?
SL

k
ÿ

i“1

H´1
ÿ

j“h

pNipxi,j , a
πi
i,jqq´1{2 (56)

ď 2H2
?
SL

ÿ

xPS

ÿ

aPA

kH
SA
ÿ

n“1

n´1{2

ď H2S
a

ATkL, (57)

where Equation (55) is obtained by bounding b1
i,j`1pyq with H2, Equation (56) follows by applying the result of Theorem 2.1

of (Weissman et al., 2003), which holds under event E , and Equation (57) follows from a derivation similar to that of term
paq of Lemma D.7.

To bound term pkq, we first observe that it is a Martingale difference sequence, and as such we can bound it via the event
EazpFb1,k,h, H

2, Lq, which holds under E , obtaining:

pkq ď 2H2
a

TkL.

By applying the definition of b1, we can bound term plq as:

plq ď 842H3S2AL2
k
ÿ

i“1

H´1
ÿ

j“h

1

N 1
i,j`1pxi,j`1q

ď 842H3S2AL2
ÿ

xPS

T
ÿ

n“1

n´1

ď 842H3S3AL3.

Plugging the bounds of terms pjq, pkq, and plq into Equation (54), we get:

phq ď H2S
a

ATkL ` 2H2
a

TkL ` 842H3S3AL3.

By applying the bounds of terms phq and piq to Equation (53), we get:

pcq ď 2

b

H2S
a

ATkL ` 2H2
a

TkL ` 842H3S3AL3
?
SAL

ď 2
a

3HSATkL ` 2
?
842H3S4A2L4, (58)

where Equation (58) is obtained by expanding the products, applying the subadditivity of the square root, and applying the
definition of rkstyp.

Finally, we can combine the bounds of terms paq, pbq, and pcq into Equation (47), obtaining the following bound:
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k
ÿ

i“1

Ipi P rkstypq

H´1
ÿ

j“h

bi,jpxi,j , a
πi
i,jq

ď
a

16HSATkL2 `

g

f

f

e8HSAL2

k
ÿ

i“1

H´1
ÿ

j“h

r∆i,j`1pxi,j`1q

`
7

3
HSAL2 ` 2

a

3HSATkL ` 2
?
842H3S4A2L4

ď
a

28HSATkL2 `
7

3
HSAL2

`

g

f

f

e8HSAL2

k
ÿ

i“1

H´1
ÿ

j“h

r∆i,j`1pxi,j`1q ` 2
?
842H3S4A2L4,

thus demonstrating the result of Equation (45). By following the same procedure, we can obtain an upper bound to
řk

i“1 Ipi P rkstyp,x, xi,h “ xq
řH´1

j“h bi,jpxi,j , a
πi
i,jq as:

k
ÿ

i“1

Ipi P rkstyp,x,xi,h “ xq

H´1
ÿ

j“h

bi,jpxi,j , a
πi
i,jq

ď

b

28H2SAN 1
k,hpxqL2 `

7

3
HSAL2

`

g

f

f

e8HSAL2

k
ÿ

i“1

Ipxi,h “ xq

H´1
ÿ

j“h

r∆i,j`1pxi,j`1q ` 2
?
842H3S4A2L4,

thus concluding the proof. Following the same procedure, we can obtain the upper bound of Equation (46) by substituting
terms Tk with HN 1

k,hpxq and terms
řk

i“1

řH´1
j“h

r∆i,jpxi,jq with
řk

i“1 Ipxi,h “ xq
řH´1

j“h
r∆i,jpxi,jq.

E. Proof of Theorem 3.1
Theorem 3.1 (Regret for UCBVI with Chernoff-Hoeffding bound). Let δ P p0, 1q. Considering:9

bk,hpx, aq “
2HL

a

maxtNkpx, aq, 1u
,

then, w.p. at least 1 ´ δ, the regret of UCBVI-CH is bounded by:

RegpUCBVI-CH,Kq ď 10eHL
?
SAT `

8

3
eH2S2AL2,

where L “ ln p5HSAT {δq. For T ě H2S3A, this bound translates to rOpH
?
SAT q.

We begin the proof by demonstrating optimism under the UCBVI-CH algorithm (i.e., every optimistic value function
is an upper bound of the true optimal value function), which requires us to show that, with high probability, the event
Ω :“ tVk,hpxq ě V ˚

h pxq,@k P JKK, h P JHK, x P Su.
Lemma E.1 (Optimism under Chernoff-Hoeffding bonus). Let the optimistic bonus be defined as:

bk,hpx, aq “
2HL

a

Nkpx, aq
.

9We assume that, by definition, bk,Hps, aq “ 0, as at the last stage there is no need for exploration and the rewards are deterministic.
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Then, under event E , the following event holds:

Ω :“ tVk,hpxq ě V ˚
h pxq,@k P JKK, h P JHK, x P Su.

Proof. We demonstrate the result by induction. Let Vk,h be the optimistic value function at stage h computed using the
history up to the end of episode k ´ 1, and let V ˚

h be the true optimal value function at stage h.

By definition, Vk,H`1pxq “ V ˚
H`1pxq “ 0 for every x P S, and thus the inequality Vk,H`1 ě V ˚

H`1 trivially holds. To
prove the inductive step, we need to demonstrate that, if Vk,h`1 ě V ˚

h`1 holds, then it also holds that Vk,h ě V ˚
h . We can

drive this result as follows:

Vk,hpxq ´ V ˚
h “ max

aPA
Qk,hpx, aq ´ V ˚

h pxq

ě Qk,hpx, aπ
˚

k,hq ´ V ˚
h pxq

“
ÿ

yPS

pPkpy|x, aπ
˚

k,hqVk,h`1pyq ` bk,hpx, aπ
˚

k,hq ´
ÿ

yPS
P py|x, aπ

˚

k,hqV ˚
h`1pyq

ě
ÿ

yPS

”

pPkpy|x, aπ
˚

k,hq ´ P py|x, aπ
˚

k,hqV ˚
h`1pyq

ı

` bk,hpx, aπ
˚

k,hq (59)

ě bk,hpx, aπ
˚

k,hq ´ 2

d

H2L

Nkpxk,h, aπ
˚

k,hq
(60)

ě 2

d

H2L

Nkpxk,h, aπ
˚

k,hq
´ 2

d

H2L

Nkpxk,h, aπ
˚

k,hq

ě 0,

where Equation (59) follows by the inductive hypothesis, Equation (60) is obtained because, under E , we can bound
| pPkpy|x, aπ

˚

k,hq ´ P py|x, aπ
˚

k,hqV ˚
h`1pyq| by applying Azuma-Hoeffding’s inequality, allowing us to simplify terms and show

optimism.

Our objective is to bound the regret after K episodes (i.e., RegpUCBVI-CH,Kq). We can observe that, under event Ω, it
holds that:

RegpUCBVI-CH,Kq “
ÿ

kPJKK

V ˚
1 pxk,1q ´ V πk

1 pxk,1q

ď
ÿ

kPJKK

Vk,1pxk,1q ´ V πk
1 pxk,1q

“
ÿ

kPJKK

r∆k,1pxk,1q

“ ĄRegpUCBVI-CH,Kq.

As such, we can now focus on finding an upper bound to ĄRegpUCBVI-CH,Kq. By applying Lemma D.2, we can write:

ĄRegpUCBVI-CH,Kq “
ÿ

kPJKK

r∆k,1pxk,1q

ď e
K
ÿ

i“1

H´1
ÿ

j“1

„

εi,j ` 2
?
Lεi,j ` bi,jpxi,j , a

πi
i,jq ` ξi,jpxi,j , a

πi
i,jq `

8H2SL

3Nipxi,j , a
πi
i,jq

ȷ

. (61)
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To find an upper bound to the regret, we can thus bound the summation of each of the terms individually.

By applying Lemma D.3, we obtain the following bounds:

K
ÿ

i“1

H´1
ÿ

j“1

εi,j ď 2
?
H2TL,

K
ÿ

i“1

H´1
ÿ

j“1

2
?
Lεi,j ď 4

?
TL.

Then, we can derive the following bound:

K
ÿ

i“1

H
ÿ

j“1

8H2SL

3Nipxi,j , a
πi
i,jq

“
8

3
H2SL

ÿ

xPS

ÿ

aPA

NKpx,aq
ÿ

n“1

n´1 (62)

ď
8

3
H2SL

ÿ

xPS

ÿ

aPA

KH
SA
ÿ

n“1

n´1 (63)

ď
8

3
H2S2AL2

where Equation (62) is obtained by rearranging the terms to isolate the summation of n´1 for n from 1 to NKpx, aq (i.e.,
the total number of times each state-action pair has been observed up to the end of episode K), and Equation (63) derives
from the observation that the summation can be upper bounded by considering a uniform state-action visit distribution. This
derivation produces the same result as applying the well-known pigeonhole principle.

By applying a similar reasoning, we bound the remaining summations over the bonus terms:

K
ÿ

i“1

H
ÿ

j“1

bi,jpxi,jq “

K
ÿ

i“1

H
ÿ

j“1

2H

d

L

Nipxi,j , a
πi
i,jq

“ 2H
?
L
ÿ

xPS

ÿ

aPA

NKpx,aq
ÿ

n“1

n´1{2

ď 2H
?
L
ÿ

xPS

ÿ

aPA

KH
SA
ÿ

n“1

n´1{2

ď 2
?
H2SATL,

and over the model error terms:
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K
ÿ

i“1

H
ÿ

j“1

ξi,jpxi,j , a
πi
i,jq ď

K
ÿ

i“1

H
ÿ

j“1

2H

d

L

Nipxi,j , a
πi
i,jq

(64)

“ 2H
?
L
ÿ

xPS

ÿ

aPA

NKpx,aq
ÿ

n“1

n´1{2

ď 2HL
ÿ

xPS

ÿ

aPA

KH
SA
ÿ

n“1

n´1{2

ď 2
?
H2SATL,

where Equation (64) is obtained by bounding ξi,jpxi,j , a
πi
i,jq using the Chernoff-Hoeffding inequality. Finally, we can put all

the bounds together and rewrite Equation (61) as:

ĄRegpUCBVI-CH,Kq ď e

„

2
?
H2TL ` 4

?
TL ` 2

?
H2SATL ` 2

?
H2SATL `

8

3
H2S2AL2

ȷ

ď e

„

10
?
H2SATL `

8

3
H2S2AL2

ȷ

,

thus completing the proof.

F. Proof of Theorem 3.2
Theorem 3.2 (Regret for UCBVI with Bernstein-Freedman bound). Let δ P p0, 1q. Considering:5

bk,hpx, aq “

d

4LVary„P̂kp¨|x,aq
pVk,h`1pyqq

maxtNkpx, aq, 1u
looooooooooooooooooomooooooooooooooooooon

(A)

`

`
7HL

3maxtNkpx, aq ´ 1, 1u
loooooooooooooomoooooooooooooon

(B)

`

`

g

f

f

e

4
ř

yPS

´

P̂ py|x, aq ¨ min
!

842H3S2AL2

maxt1,N 1
k,h`1pyqu

, H2
)¯

maxtNkpx, aq, 1u
looooooooooooooooooooooooooooooooomooooooooooooooooooooooooooooooooon

(C)

,

then, w.p. at least 1 ´ δ, the regret of UCBVI-BF-I is bounded by:

RegpUCBVI-BF-I,Kq ď 24eL
?
HSAT`

` 616eH2S2AL2 ` 4e
?
H2TL,

where L “ lnp5HSAT {δq. For T ě H3S3A and SA ě H , this bound translates to rOp
?
HSAT q.

Similarly to the proof of Theorem 3.1 in Appendix E, in order to demonstrate the upper bound of UCBVI-BF-I, we first
need to demonstrate optimism. However, in order to remove the additional

?
H term, we are required to both demonstrate

optimism as well as to bound by how much the optimistic value function estimator exceeds the true optimal value function.

We start by observing that:
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RegpUCBVI-BF-I,Kq “
ÿ

kPJKK

V ˚
1 pxk,1q ´ V πk

1 pxk,1q

ď
ÿ

kPJKK

Vk,1pxk,1q ´ V πk
1 pxk,1q

“
ÿ

kPJKK

r∆k,1pxk,1q

“ ĄRegpUCBVI-BF-I,Kq.

According to Lemma D.2, under the events E and Ωk,h, we can decompose the pseudo-regret as:

k
ÿ

i“1

r∆i,hpxi,hq ď e
k
ÿ

i“1

H´1
ÿ

j“h

«

εi,j ` 2
?
Lεi,j ` bi,jpxi,j , a

πi
i,jq ` ξi,jpxi,j , a

πi
i,jq `

8H2SL

3Nipxi,j , a
πi
i,jq

ff

. (65)

We also define, by trivially modifying the derivation of Lemma D.2, the pseudo-regret considering only the episodes in
which, at stage h P JHK a specific state x P S was occupied:

k
ÿ

i“1

Ipxi,h “ xq∆i,hpxi,hq ď

k
ÿ

i“1

Ipxi,h “ xqr∆i,hpxi,hq

ď e
k
ÿ

i“1

Ipxi,h “ xq

H´1
ÿ

j“h

„

εi,j ` 2
?
Lεi,j ` bi,jpxi,j , a

πi
i,jq

` ξi,jpxi,j , a
πi
i,jq `

8H2SL

3Nipxi,j , a
πi
i,jq

ȷ

.

(66)

By applying Lemmas D.3 and D.4, we can upper bound Equations (65) and (66) as:

k
ÿ

i“1

r∆i,hpxi,hq ď e
k
ÿ

i“1

H´1
ÿ

j“h

«

bi,jpxi,j , a
πi
i,jq ` ξi,jpxi,j , a

πi
i,jq `

8H2SL

3Nipxi,j , a
πi
i,jq

ff

` 2e
a

H2TkL ` 4e
a

TkL

“ Uk,h,

and:

k
ÿ

i“1

Ipxi,h “ xqr∆i,hpxi,hq ď e
k
ÿ

i“1

Ipxi,h “ xq

H´1
ÿ

j“h

«

bi,jpxi,j , a
πi
i,jq ` ξi,jpxi,j , a

πi
i,jq `

8H2SL

3Nipxi,j , a
πi
i,jq

ff

` 2e
b

H3N 1
k,hpxqL ` 4e

b

HN 1
k,hpxqL

“ Uk,h,x,

where we denote the upper bounds of
řk

i“1
r∆i,hpxi,hq and

řk
i“1 Ipxi,h “ xqr∆i,hpxi,hq as Uk,h and Uk,h,x, respectively,

for ease of notation.

We now demonstrate optimism, which requires us to show that, with high probability, the event Ωk,h holds.
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Lemma F.1 (Optimism under Bernstein-Freedman bonus). Let the optimistic bonus be defined as:

bk,hpx, aq “

d

4LVary„ pPkp¨|x,aq
rVk,h`1pyqs

Nkpx, aq
`

7HL

3pNkpx, aq ´ 1q

`

g

f

f

e

4mintEy„ pPkp¨|x,aq
r 84

2H3S2AL2

N 1
k,h`1pyq

s, H2u

Nkpx, aq
.

Then, under event E , the following set of events hold:

Ωk,h :“
␣

Vi,jpxq ě V ˚
j pxq,@pi, jq P rk, hshist, x P S

(

,

for k P JKK and h P JHK, where:

rk, hshist :“ tpi, jq P JKK ˆ JHK : i ă k _ pi “ h, j ě hqu .

Proof. We demonstrate the result by induction. We begin by observing that Vk,H`1pxq “ V ˚
H`1pxq “ 0 for every k P JKK

and x P S . To prove the induction, we need to prove that, if Ωk,h holds, then also Ωk,h´1 holds. We prove this for a generic
k P JKK, and we can then apply this procedure for increasing values of k, starting from k “ 1.

If Ωk,h holds, then Vk,hpxq ě V ˚
h pxq for every x P S. We now bound the estimation error due to the optimistic approach:

Vk,hpxq ´ V ˚
h pxq “

1

N 1
k,hpxq

k
ÿ

i“1

Ipxi,h “ xqpVk,hpxq ´ V ˚
h pxqq

ď
1

N 1
k,hpxq

k
ÿ

i“1

Ipxi,h “ xqpVi,hpxq ´ V πi

h pxqq (67)

“
1

N 1
k,hpxq

k
ÿ

i“1

Ipxi,h “ xqr∆i,hpxi,hq, (68)

where Equation (67) follows from the fact that Vk,h is monotonically decreasing in k by definition, and by observing that
V ˚
h ě V πi

h .

Recalling the upper bound of
řk

i“1 Ipxi,h “ xqr∆i,hpxi,hq:

k
ÿ

i“1

Ipxi,h “ xqr∆i,hpxi,hq ď Uk,h,x

“ e
k
ÿ

i“1

Ipxi,h “ xq

H´1
ÿ

j“h

„

bi,jpxi,j , a
πi
i,jq ` ξi,jpxi,j , a

πi
i,jq

`
8H2SL

3Nipxi,j , a
πi
i,jq

ȷ

` 2e
b

H3N 1
k,hpxqL ` 4e

b

HN 1
k,hpxqL,

we now bound the summations over the terms in the summation over episodes and stages. By applying Lemma D.9, we can
bound the summation over typical episodes of the bonus terms as:
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k
ÿ

i“1

Ipi P rkstyp,x,xi,h “ xq

H´1
ÿ

j“h

bi,jpxi,j , a
πi
i,jq

ď

b

28H2SAN 1
k,hpxqL2 `

7

3
HSAL2 ` 2

?
842H3S4A2L4

`

b

8H2SAL2Uk,h,x,

by observing that
řk

i“1 Ipxi,h “ xq∆i,hpxi,hq ď Uk,h,x and that the series of Uk,h,x terms is decreasing in h, as each
term Uk,h,x is a summation of elements which includes the next term, and as such we can upper bound

řH´1
j“h Uk,j,x with

HUk,h,x.

In a similar way, we can apply the result of Lemma D.8 to bound the summation over typical episodes of the state-action
wise model error terms as:

k
ÿ

i“1

Ipi P rkstyp,x, xi,h “ xq

H´1
ÿ

j“h

“

pPip¨|xi,j , a
πi
i,jq ´ P p¨|xi,j , a

πi
i,jq

‰T
V ˚
j`1p¨q

ď

b

6H2SAN 1
k,hpxqL2 `

2

3
HSAL2

` 2
b

H2SAL2Uk,h,x.

With the same procedure as in the proof of Lemma E.1, we obtain the following upper bound:

K
ÿ

i“1

H
ÿ

j“1

8H2SL

3Nipxi,j , a
πi
i,jq

ď
8

3
H2S2AL2. (69)

By combining these result, and accounting for the regret on non-typical episodes, we can write:

k
ÿ

i“1

Ipxi,h “ xq∆i,hpxi,hq ď Uk,h,x

ď e

„

b

28H2SAN 1
k,hpxqL2 `

7

3
HSAL2 ` 168

?
H3S4A2L4

`

b

8H2SAL2Uk,h,x `

b

6H2SAN 1
k,hpxqL2 `

2

3
HSAL2

` 2
b

H2SAL2Uk,h,x `
8

3
H2S2AL2 ` 2

b

H3N 1
k,hpxqL

` 4
b

HN 1
k,hpxqL ` 100H2S2AL2

ȷ

ď e

„

12
b

H2SAN 1
k,hpxqL2 ` 5

b

H2SAL2Uk,h,x

`
821

3
H2S2AL2 ` 2

b

H3N 1
k,hpxqL

ȷ

.

Letting:

38



Position: Constants are Critical in Regret Bounds for Reinforcement Learning

α “ e

„

12
b

H2SAN 1
k,hpxqL2 `

821

3
H2S2AL2 ` 2

b

H3N 1
k,hpxqL

ȷ

,

β “ 5e
?
H2S2AL2,

we can solve for Uk,h,x and obtain the following upper bound:

Uk,h,x ď β2 ` 2α,

which we can write as:

Uk,h,x ď 25e2H2S2AL2 ` 24e
b

H2SAN 1
k,hpxqL2 `

1642

3
eH2S2AL2 ` 4e

b

H3N 1
k,hpxqL

ď 24e
b

H2SAN 1
k,hpxqL2 `

1846

3
eH2S2AL2 ` 4e

b

H3N 1
k,hpxqL

ď 28e
b

H2SAN 1
k,hpxqL2 `

1846

3
eH2S2AL2 (70)

ď 28 ¨
12

11
e
b

H3S2AN 1
k,hpxqL2 (71)

ď 84
b

H3S2AN 1
k,hpxqL2,

where Equation (70) holds if SA ě H , and Equations (71) holds under the condition of rkstyp,x.

Plugging this result into Equation (68), and observing that the error cannot be greater than H , we get the following upper
bound to the estimation error due to the optimistic approach:

Vk,hpxq ´ V ˚
h pxq ď min

#

84

d

H3S2AL2

N 1
k,hpxq

, H

+

. (72)

Using this result, we now prove that Vk,h´1pxq ě V ˚
h´1pxq. Let us recall the definition of Vk,h´1pxq:

Vk,h´1pxq “ min
␣

Vk´1,h´1pxq, H, T πk

h´1Vk,h

(

,

where T πk

h´1Vk,h :“ Rπkpxk,h´1q ` bk,h´1pxk,h´1, a
πk

k,h´1q `Ey„ pPkp¨|xk,h´1,a
πk
k,h´1q

Vk,hpyq. Observe that, if Vk,h´1pxq “

H , the optimism holds trivially. Also, if Vk,h´1pxq “ Vk´1,h´1pxq, the optimism hold trivially under Ωk,h. As such, we
only need to demonstrate the case in which Vk,h´1pxq “ T πk

h´1Vk,h. As such, we derive the following:

39



Position: Constants are Critical in Regret Bounds for Reinforcement Learning

Vk,h´1pxq ´ V ˚
h´1pxq “ max

aPA

#

Rpx, aq ` bk,h´1px, aq `
ÿ

yPS

pPkpy|x, aqVk,hpyq

+

´ Rpx, aπ
˚

k,h´1q ´
ÿ

yPS
P py|x, aπ

˚

k,h´1qV ˚
h pyq

ě bk,h´1px, aπ
˚

k,h´1q `
ÿ

yPS

pPkpy|x, aπ
˚

k,h´1qVk,hpyq

´
ÿ

yPS
P py|x, aπ

˚

k,h´1qV ˚
h pyq

“ bk,h´1px, aπ
˚

k,h´1q `
ÿ

yPS

pPkpy|x, aπ
˚

k,h´1q rVk,hpyq ´ V ˚
h pyqs

`
ÿ

yPS

”

pPkpy|x, aπ
˚

k,h´1q ´ P py|x, aπ
˚

k,h´1q

ı

V ˚
h pyq

ě bk,h´1px, aπ
˚

k,h´1q `
ÿ

yPS

pPkpy|x, aπ
˚

k,h´1q rVk,hpyq ´ V ˚
h pyqs (73)

where Equation (73) follows from the induction assumption.

Under event E , we can apply the empirical Bernstein inequality (Maurer & Pontil, 2009):

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

yPS

”

pPkpy|x, aq ´ P py|x, aq

ı

V ˚
h pyq

ˇ

ˇ

ˇ

ˇ

ˇ

ď

d

2pV˚
k,hpx, aqL

Nkpx, aq
`

7HL

3pNkpx, aq ´ 1q
,

where pV˚
k,hpx, aq :“ Vary„ pPkp¨|x,aq

rV ˚
h pyqs. As such, we obtain:

Vk,h´1pxq ´ V ˚
h´1pxq ě bk,h´1px, aπ

˚

k,h´1q ´

g

f

f

e

2pV˚
k,hpx, aπ

˚

k,h´1qL

Nkpx, aπ
˚

k,h´1q
´

7HL

3pNkpx, aπ
˚

k,h´1q ´ 1q

“

g

f

f

e

4pVk,hpx, aπ
˚

k,h´1qL

Nkpx, aπ
˚

k,h´1q
`

g

f

f

e

4LE
y„ pPkp¨|x,aπ˚

k,h´1q
b1
k,hpyq

Nkpx, aπ
˚

k,h´1q

´

g

f

f

e

2pV˚
k,hpx, aπ

˚

k,h´1qL

Nkpx, aπ
˚

k,h´1q
.

(74)

We now bound pV˚
k,h in terms of pVk,h. Observing that:

VarrXs “ ErX ´ ErXss2

“ ErX ˘ Y ´ ErXs ˘ ErY ss2

“ ErpX ´ Y q ´ ErX ´ Y s ` Y ´ ErY ss2

ď 2ErpX ´ Y q ´ ErX ´ Y ss2 ` 2ErY ´ ErY ss2

“ VarrX ´ Y s ` 2VarrY s,

we can then rewrite:
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pV˚
k,hpx, aπ

˚

k,h´1q ď 2pVk,hpx, aπ
˚

k,h´1q ` 2 Var
y„ pPkp¨|x,aπ˚

k,h´1q

rV ˚
h pyq ´ Vk,hpyqs

ď 2pVk,hpx, aπ
˚

k,h´1q ` 2
ÿ

yPS

pPkp¨|x, aπ
˚

k,h´1qpVk,hpyq ´ V ˚
y q2.

By plugging this result into Equation (74), we get:

Vk,h´1pxq ´ V ˚
h´1pxq ě

g

f

f

e

4LE
y„ pPkp¨|x,aπ˚

k,h´1q
b1
k,hpyq

Nkpx, aπ
˚

k,h´1q
´

g

f

f

e

4LE
y„ pPkp¨|x,aπ˚

k,h´1q
pVk,hpyq ´ V ˚

h pyqq2

Nkpx, aπ
˚

k,h´1q
.

By applying the result of Equation (72) and the definition of b1
k,hpyq, we finally obtain that Vk,h´1pxq ´ V ˚

h´1pxq ě 0, thus
demonstrating optimism.

Having demonstrated optimism, we now prove the upper bound of the regret RegpUCBVI-BF-I,Kq:

ĄRegpUCBVI-BF-I,Kq ď UK,1

“ e

„

?
28HSATL2 `

7

3
HSAL2 ` 2

?
842H3S4A2L4

`
a

8HSAL2UK1 `
?
6HSATL2 `

2

3
HSAL2

` 2
b

HSAL2UK,1 `
8

3
H2S2AL2 ` 2

?
H2TL

` 4
?
TL ` 100H2S2AL

ȷ

(75)

ď e

„

12
?
HSATL2 ` 5

b

H2SAL2UK,1 `
821

3
H2S2AL2 ` 2

?
H2TL

ȷ

where Equation (75) is obtained by applying the results of Lemmas D.9 and D.8, by applying the result of Equation (69),
and by accounting for the regret of non-typical episodes.

As done in Lemma F.1, by letting:

α “ e

„

12
?
HSATL2 `

821

3
H2S2AL2 ` 2

?
H2TL

ȷ

,

β “ 5e
?
H2S2AL2,

we can solve for UK,1 and obtain:

ĄRegpUCBVI-BF-I,Kq ď 24e
?
HSATL2 `

1846

3
eH2S2AL2 ` 4e

?
H2TL

ď 24e
?
HSATL2 ` 616eH2S2AL2 ` 4e

?
H2TL

thus completing the proof.
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G. Additional Illustrative Experiments
In this section, we report additional experiments for the illustrative environment presented in Section 4.1, comparing the
UCBVI-BF, UCBVI-BF-I, and MVP algorithms in the case of larger state and action spaces. In particular, we compare
the three algorithms in environments with state and action spaces with cardinalities S,A P t3, 5, 10u, time horizon H “ 5
(Figure 4) and H “ 10 (Figure 5), and number of episodes K “ 105. The results are averaged over 5 runs, with a 95%
confidence interval.

As we can see from the figures, both UCBVI-BF and UCBVI-BF-I outperform MVP in all the evaluated settings. Ad-
ditionally, we can observe that the performance gap between UCBVI-BF and UCBVI-BF-I increases with the size of
the environment, showing that the reduction in unnecessary exploration of UCBVI-BF-I provides a greater performance
improvement in larger environments.
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Figure 4. Performances in terms of cumulative regret in toy environments with S P t3, 5, 10u states and A P t3, 5, 10u actions for H “ 5
and K “ 105 (5 runs, mean ˘ 95% C.I.).
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Figure 5. Performances in terms of cumulative regret in toy environments with S P t3, 5, 10u states and A P t3, 5, 10u actions for
H “ 10 and K “ 105 (5 runs, mean ˘ 95% C.I.).
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