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Abstract
The success of sequential decision-making ap-
proaches, such as reinforcement learning (RL), is
closely tied to the availability of a reward feed-
back. However, designing a reward function that
encodes the desired objective is a challenging
task. In this work, we address a more realistic
scenario: sequential decision making with prefer-
ence feedback provided, for instance, by a human
expert. We aim to build a theoretical basis link-
ing preferences, (non-Markovian) utilities, and
(Markovian) rewards, and we study the connec-
tions between them. First, we model preference
feedback using a partial (pre)order over trajecto-
ries, enabling the presence of incomparabilities
that are common when preferences are provided
by humans but are surprisingly overlooked in ex-
isting works. Second, to provide a theoretical
justification for a common practice, we investi-
gate how a preference relation can be approxi-
mated by a multi-objective utility. We introduce a
notion of preference-utility compatibility and ana-
lyze the computational complexity of this transfor-
mation, showing that constructing the minimum-
dimensional utility is NP-hard. Third, we propose
a novel concept of preference-based policy domi-
nance that does not rely on utilities or rewards and
discuss the computational complexity of assessing
it. Fourth, we develop a computationally efficient
algorithm to approximate a utility using (Marko-
vian) rewards and quantify the error in terms of
the suboptimality of the optimal policy induced
by the approximating reward. This work aims to
lay the foundation for a principled approach to
sequential decision making from preference feed-
back, with promising potential applications in RL
from human feedback.
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1. Introduction
In the last decade, reinforcement learning (RL, Sutton
& Barto, 2018) has demonstrated great success tackling
sequential decision-making under uncertainty with no-
table results in industrial plant control (Nian et al., 2020),
robotics (Kober et al., 2013), clinical trials (Coronato
et al., 2020), autonomous driving (Kiran et al., 2021),
videogames (Mnih et al., 2015), and, more recently, lan-
guage models (Du et al., 2023). In RL, the learning process
is guided by a numerical feedback (i.e., a reward function).
The reward is often defined informally as “the most succinct
description of a task” (Ng & Russell, 2000). More formally,
the power of a reward function is apparent since it allows,
under the Markovian property of the environment (Puter-
man, 2014), to approach the learning problem with desirable
computational (Papadimitriou & Tsitsiklis, 1987; Littman,
1995) and statistical (Azar et al., 2012) properties.

Nevertheless, the limits of learning with a reward are well
known. In the common practice, the reward function is
typically designed by a system expert who leverages their
domain knowledge to capture the intuitive notion of “solving
the task”. However, in many real-world scenarios, crafting
a reward function that appropriately encodes the desired
objective can be challenging. Indeed, rewards should go
beyond merely capturing the desired behavior to enhance
their generalizability, interpretability, and transferability to
new environments (Ng & Russell, 2000). Defining a reward,
often referred to as reward engineering (Dewey, 2014), is
typically a trial-and-error process involving successive re-
finements since the behavior learned by the agent can be
highly sensitive to misspecifications of the reward (Pan et al.,
2022). As such, the choice of the reward function has a crit-
ical impact on the success of the agent in learning how to
solve the task. Even accepting the availability of a reward
function, the community has recently questioned whether a
reward function is truly an appropriate mathematical tool to
encode the notion of a goal. The debate dates back twenty
years, when Sutton postulated that “all of what we mean by
goals and purposes can be well thought of as maximization
of the expected value of the cumulative sum of a received
scalar signal (reward)” (Sutton, 2004). More recently, this
hypothesis has been under investigation, although a defini-

1



Towards Theoretical Understanding of Sequential Decision Making with Preference Feedback

tive answer is currently lacking (Silver et al., 2021; Glukhov,
2022; Vamplew et al., 2023; Bowling et al., 2023).

Why not get rid of the reward? One solution is to ask a hu-
man expert for feedback on the agent’s behavior rather than
requiring them to define a numerical reward function. The
agent can then learn a behavior that aligns with the expert’s
preferences. In the literature, this paradigm is known as
preference-based reinforcement learning (PbRL, Fürnkranz
et al., 2012). Although PbRL dates back more than twenty
years, it has received renewed attention from the community
thanks to the rise of large language models (LLMs, Zhao
et al., 2023a). Indeed, modern LLMs are (pre-)trained using
large amounts of data collected by eliciting pairwise human
preferences (Ramachandran et al., 2017; Radford, 2018). An
established approach for leveraging human preferences is
reinforcement learning from human feedback (RLHF, Chris-
tiano et al., 2017; Stiennon et al., 2020; Bai et al., 2022;
Ouyang et al., 2022), which consists of two steps: first, pref-
erences over trajectories are used to learn a reward model,
and then, RL is applied using the recovered reward func-
tion. In addition to its remarkable empirical performance,
RLHF has recently gained a theoretical understanding (Xu
et al., 2020; Chen et al., 2022; Saha et al., 2023; Zhan
et al., 2024a;b). Nevertheless, these works are closely tied
to the assumption of the existence of an underlying (hid-
den) numerical signal (either a proper reward function or a
utility defined over trajectories), of which the preferences
expressed by the human are an indirect stochastic manifesta-
tion.1 More in general, estimating a scalar numerical signal,
like in RLHF, from preferences hinders the complexity of
the human feedback such as the possible multi-objective
nature of the human behavior (Hayes et al., 2022). Other
approaches focus on learning the policy directly from pref-
erences without going through a reward model (An et al.,
2023; Zhao et al., 2023b; Rafailov et al., 2024; Azar et al.,
2024). Despite the promising results, these approaches, sim-
ilar to RLHF, are based on a probabilistic model of human
preferences that the learned policy tries to replicate.

Despite the wide variety of approaches, to the best of the
authors’ knowledge, there is still limited theoretical un-
derstanding of the challenges and opportunities involved
in learning from preference feedback. In the PbRL litera-
ture (Wirth et al., 2017), an agent can roughly operate in
three ways: (i) learn the policy directly from preferences,
(ii) estimate a surrogate utility (i.e., a non-Markovian re-
ward) defined over trajectories, or (iii) derive a (Markovian)
reward function. Moving from (i) to (iii), we trade off rep-
resentational power with tractability. On the one hand, (i)
constitutes a more general approach where no numerical
signal needs to be modeled, and as such, could inherently

1A classical assumption is that the probability of one trajectory
being preferred over another is proportional to some function of
the difference in utility between the two (Saha et al., 2023).

represent incomparabilities (i.e., situations where the human
expert is unable to compare certain pairs of trajectories).
However, the definition of optimality, as we will discuss
later in the paper, may pose important computational lim-
itations. On the other hand, (ii) and (iii) are based on a
numerical signal and, for this reason, introduce a bias2 and
the need for multi-objective signals (Hayes et al., 2022)
to model incomparabilities. The positive counterpart of
using a numerical signal is that optimality notions (e.g.,
Pareto optimality, Censor 1977) are well-defined. Neverthe-
less, planning with general utilities (ii) is still intractable,
whereas when using rewards (iii) coupled with the Markov
property, the computation of the optimal policy can be done
efficiently (Papadimitriou & Tsitsiklis, 1987).

In this paper, we aim to take a step toward the theoretical un-
derstanding of sequential decision-making with preference
feedback. Specifically, we seek to understand: (a) What
can be learned when no assumptions are made beyond the
fact that the human provides preference feedback? This
involves introducing and studying notions of dominance
and optimality. (b) How can we approximate preferences
with a utility, making the fewest assumptions? This requires
defining a notion of compatibility between preference rela-
tions and utilities (Evren & Ok, 2011) and studying whether
constructing a compatible utility can be done efficiently. (c)
How can we convert a utility to a reward function? This
includes analyzing the level of approximation and the com-
putational tractability of the conversion.

Unlike RLHF, we will make no assumptions about the exis-
tence of an underlying reward function or the existence
of a probabilistic model guiding the human preference-
generation process. Our main goal is to establish a theoret-
ical basis to design, in future works, statistically efficient
algorithms for learning with preference feedback.

Original Contributions. The contributions of the paper
are summarized as follows:

• In Section 3, we define three augmentations of the Markov
decision process without rewards setting to include pref-
erences, utilities and rewards.

• In Section 4, we define the notion of compatibility be-
tween a (partial) preorder that we use to represent prefer-
ences and a (multi-dimensional) utility function. We study
the computational complexity of constructing compatible
utilities. Moreover, we propose a heuristic to compute a
compatible utility in polynomial time.

• In Section 5, we define the concepts of dominance and
optimality for policies when only preferences are involved,
discussing their computational properties, and deriving a
method to verify policy dominance w.r.t. a preorder.

2Intuitively, with preferences, we can only say if a trajectory is
better than another; whereas with a utility or reward, we have to
encode how much a trajectory is better than another.
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• In Section 6, we study the problem of jointly comput-
ing a (non-Markovian) compatible utility and its (Marko-
vian) approximation induced by rewards and we provide
a bound to the distance of the induced Pareto frontiers.

Related works are reported in Section 7 and omitted proofs
can be found in Appendix A.

2. Preliminaries
In this section, we provide the background that will be
employed in the following sections.

Notation. Given a,bPN with aăb, we define JaK :“
t1,2, . . . ,au and Ja,bK :“ta,a`1, . . . , bu. For cPR, we use
the notation pcq` :“maxt0, cu. Given a finite set X , we
denote as ∆pX q the probability simplex over X , with PpX q
its power set, and with |X | its cardinality. For a matrix A,
we indicate with }A}F its Frobenius norm and with Id the
identity matrix of order d.

(Pre)Order Relations. Let X be a set and ĺXĎX ˆX be a
(binary) relation, if px,yqPĺX , we use the notation xĺX y.
A relation ĺX is a (partial) preorder if it is: (i) reflexive (i.e.,
xĺX x) and (ii) transitive (i.e., xĺX y^yĺX zñxĺX z).
A (partial) order is a preorder that is (iii) antisymmetric
(i.e., xĺX y^yĺX xñx“y). We write xăX y if xĺX y
and not yĺX x. x and y are incomparable, and we denote it
as x∥X y, if neither xĺX y nor yĺX x; otherwise they are
comparable. Moreover, x and y are equivalent if xĺX y and
yĺX x, and we denote it as x—X y. —X is an equivalence
relation that induces a partial order over the quotient set
X {—X , i.e., rxsĺrX s{—X rys if xĺX y. A (pre)order is total
when every pair of distinct elements is comparable (i.e.,
@x,yPX : xĺX y_yĺX x). We sometimes denote total
(pre)orders with the symbol ďX .

Linear Extensions, Order Dimension, and Width. Let
ĺXPX ˆX be an order relation and ďXPX ˆX be a to-
tal order, ďX is a linear extension of ĺX if ĺXĎďX (i.e.,
xĺX yñxďX y). A set tďX ,iuiPJdK of total orders is a
realizer of an order ĺX if ĺX“

Ş

iPJdKďX ,i (which im-
plies that all ďX ,i are linear extensions of ĺX ). The order
dimension (Dushnik & Miller, 1941; Trotter, 1992) of the
order ĺX is the least cardinality of a realizer of ĺX , i.e.,
dimpĺX q :“mintdPN : DtďX ,iuiPJdK realizer of ĺX u. If
ĺ is a preorder, we define its dimension as the dimen-
sion of the partial order induced over the quotient set, i.e.,
dimpĺX q :“dimpĺX {—X q. It is known that for |X |ě3,
computing the order dimension is NP-hard (Yannakakis,
1982; Felsner et al., 2017). Furthermore, unless NP =
ZPP, there exists no polynomial-time algorithm to ap-
proximate the order dimension with a factor of Op|X |1´ϵq,
for every ϵą0 (Chalermsook et al., 2013). An antichain
(resp. chain) is a subset of X such that any two dis-
tinct elements are incomparable (resp. all elements are

comparable). The width is the maximum cardinality of
an antichain widthpĺX q :“maxt|Y| : YĎX s.t. @x,yPY :
x‰yñ x∥X yu. It is known that dimpĺX qďwidthpĺX q

(Dilworth, 1987).

Component-wise Order. For real vectors v,wPRd, we
define the component-wise (or Pareto) partial order as vĺ

wô@iPJdK : viďwi. According to previous definition, we
have văwô@iPJdK : viďwi^Dj PJdK : vjăwj .

Sorting function. Let ďX be a total order, a bijection
ψď :J|X |KÑX is a sorting function if for every i, j PJ|X |K,
we have iějôψďpiqďX ψďpjq. ψď (which is unique)
sorts the elements of X according to the total orderďX . Let
f :XÑR and ďX be a total order, whenever clear from the
context, we abbreviate fpiq :“fpψďX piqq.

Markov Decision Process without Rewards. A finite-
horizon Markov decision process without reward (MDP\R,
Abbeel & Ng, 2004) is a tuple pS,A,H,p,µq, where S
and A are the finite (|S|“:S and |A|“:A) state and ac-
tion spaces, H PN is the horizon, p“pphqhPJHK defined
for every hPJHK as ph :SˆAÑ∆pSq is the transition
model that for every state sPS , action aPA, stage hPJHK,
and next state s1 PS provides the probability phps

1|s,aq
to reach s1 by playing action a in state s at stage h, and
µP∆pSq is the initial-state distribution such that µpsq pro-
vides the probability that the interaction starts in s. A tra-
jectory of length hPJHK is τ :“psi,aiqiPJhK, representing
sequence of state-action pairs belonging to the set of tra-
jectories ThĎpSˆAqh with cardinality |Th|ďpSAqh. If
the length is not specified, it is assumed to be h“H (i.e.,
T “TH ). The agent behavior is modeled with a history-
dependent policy π“pπhqhPJHK defined for every hPJHK
as πh :Th´1ˆSÑ∆pAq that, for every trajectory τ PTh´1

of length hPJHK, state sPS , and action aPA, provides the
probability πhpa|τ,sq to play action a after having observed
trajectory τ and state s. A policy is Markovian if it depends
on the current state only and, in such a case, we abbreviate
with πhpa|sq. We denote with Π the set of history-dependent
policies. A policy πPΠ induces a trajectory distribution:

dπpτq“µps1q
H

ź

h“1

πhpah|τh´1,shqphpsh`1|sh,ahq, (1)

where τl“ps1,a1, . . . ,sl,alq denotes the prefix of length
lPJHK of trajectory τ“ps1,a1, . . . ,sH ,aHq.

3. Setting
In this section, we introduce three augmentations of MDP\R
defined in terms of preference relations, utility function, and
Markovian cumulative reward function.

Preference-based MDP. Let ĺT ĎT ˆT be a pre-
order over trajectories T . We define a preference-based
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Markov decision process (PbMDP) as the tuple M“

pS,A,H,p,µ,ĺT q obtained by pairing an MDP\R with
a preorder relation ĺT defining preferences over the trajec-
tories.3 The use of a preorder relation allows formalizing
when a trajectory τ 1 is preferred over τ , i.e., τĺT τ

1, but
also accounting for both equivalent τ—T τ and incompara-
ble τ ∥T τ 1 trajectories with τ,τ 1 PT . We will introduce the
optimality conditions for a PbMDP in Section 5.

Utility-based MDP. Let mPN and u :T ÑRm be a multi-
dimensional utility function, i.e., a function mapping a tra-
jectory τ PT to a vector upτq“pu1pτq, . . . ,umpτqqJ of m
real numbers. A utility-based Markov decision process
(UtilMDP) is defined as the tuple M“pS,A,H,p,µ,uq
obtained by pairing an MDP\R with a utility function u.
Let πPΠ be a policy, its expected utility is defined as:

Jpπ;uq :“
ÿ

τPT
dπpτqupτq“xdπ,uy. (2)

Let π,π1 PΠ be two policies, we say that π u-Pareto strictly
dominates π1 (resp. π u-Pareto weakly dominates π1) if
Jpπ;uqąJpπ1;uq (resp. Jpπ;uqľJpπ1;uq). We define
the set of u-Pareto optimal policies (i.e., the Pareto frontier)
as the set of policies that are not u-Pareto strictly dom-
inated by any other policy, i.e., Π˚puq :“tπPΠ :␣Dπ1 P

Π s.t. Jpπ1;uqąJpπ;uqu. Given a utility u, the u-Pareto
dominance induces a partial preorder relation ĺuPΠˆΠ
over the policy space, of which the set of Pareto optimal
policies Π˚puq are the maximal elements. If m“1, a u-
optimal policy is any policy maximizing the expected utility,
i.e., π˚ PΠ˚puq :“argmaxπPΠJpπ;uq.

Reward-based MDP. Let mPN and r“prhqhPJHK be
defined for every hPJHK as rh :SˆAÑRm be a multi-
dimensional reward function, i.e., a function mapping for ev-
ery stage hPJHK, state sPS and action aPA to a vector of
rhps,aq“prh,1ps,aq, . . . , rh,mps,aqq

J of m real numbers.
A (reward-based) Markov decision process (MDP) is de-
fined as the tuple M“pS,A,H,p,µ,rq obtained by pairing
an MDP\R with a reward function r. It is always possible
to define a utility from a reward by means of the trajectory
return, defined for every τ“ps1,a1, . . . ,sH ,aHqPT as:

urpτq :“
H
ÿ

h“1

rhpsh,ahq. (3)

Let πPΠ be a policy, its expected return is defined as
Jpπ;rq :“Jpπ;urq. The concept of r-Pareto dominance,
the set of r-Pareto optimal policies Π˚prq, and, in the case
of m“1, the set of optimal policies Π˚prq, are defined as
for the UtilMDP, by means of the return utility ur. It is
well-known that in MDPs there always exist (Pareto) opti-
mal policies which are Markovian (Puterman, 2014).

3In agreement with the literature (Ok, 2002), we use preorders
to represent the informal notion of “preference relation”.

4. Representing Preferences with Utilities
In this section, we show how preferences can be represented
using utilities. We define the notion of compatibility be-
tween preferences and (possibly multi-dimensional) utilities,
starting with the simpler case of total preorders and, then,
moving to partial preorders. We also discuss the computa-
tional aspects of constructing a compatible utility from a
preorder. The content of this section will be necessary to
define the notion of optimality presented in Section 5.

The use of utilities to represent preferences dates back to
(Von Neumann & Morgenstern, 1947), which shows that
any rational agent defines their preferences in terms of an
underlying utility function. Then, (Debreu, 1954) shows
the existence of a scalar utility that represents a total order.
Subsequently, (Ok, 2002; Evren & Ok, 2011) extend this
result by proving the existence of a multi-dimensional utility
that represents a partial (pre)order relation.

Compatible Utilities. We start with the total preorder case.

Definition 4.1 (Compatible Utility – Total Preorder). Let
ďT be a total preorder over T and let u :T ÑR be a scalar
utility function. u is compatible with ďT if for every τ,τ 1 P

T it holds that τďT τ
1ôupτqďupτ 1q.

Thus, if τăT τ
1 (i.e., τ 1 is strictly preferred over τ ) then

upτqăupτ 1q and if τ—T τ
1 (i.e., τ 1 and τ are equivalent)

then upτq“upτ 1q. Utilities compatible with total preorders
clearly exist and a simplistic way to derive a compatible
utility is to order the trajectories according to ďT and map
each one to a real number, e.g., upψďT piqq“upiq“|T |´
i. Similarly, given a utility u, it is simple to derive the
corresponding preorder by applying Definition 4.1. We
now move to the partial preorder case, following (Ok, 2002,
Equation 2).

Definition 4.2 (Compatible Utility – Partial Preorder). Let
ĺT be a preorder over T and let u :T ÑRm with mPN be
a multi-dimensional utility. u is compatible with ĺT if for
every τ,τ 1 PT it holds that τĺT τ

1ôupτqĺupτ 1q.

Some comments are in order. First, we note that, differently
from Definition 4.1, we employ multi-dimensional utilities
made of m components. Second, we use the component-
wise order of the utility to define the compatibility. Precisely,
if τăT τ

1 (i.e., τ 1 strictly preferred over τ ) then @iPJMK :
uipτqďuipτ

1q and Dj PJmK :ujpτqăujpτ 1q. If, instead,
τ—T τ

1 (i.e., τ and τ 1 are equivalent), we set the utilities
to the same value @iPJmK :uipτq“uipτ 1q. Finally, τ ∥T τ 1

(i.e., τ and τ 1 are incomparable) corresponds to the condi-
tion Di, j PJmK : i‰j^uipτqąuipτ 1q^ujpτqăujpτ

1q.

While deriving the preorder from the multi-dimensional
utility can be done directly by applying Definition 4.2; dif-
ferently from the total preorder case, the construction of a
compatible utility from the preorder is not straightforward.
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τ1 τ2

τ6τ4 τ5

τ3 τ7

(a) DAG G of ĺT .

τ1 τ2 τ6

τ3 τ7 τ5

τ4

(b) A minimum path
cover tCiuiPJ3K.

τ3 τ7 τ1 τ4 τ5 τ2 τ6

τ1 τ2 τ4 τ3 τ7 τ5 τ6

τ1 τ2 τ3 τ7 τ4 τ5 τ6

(c) A realizer tďT ,iuiPJ3K constructed from the minimum path
cover tCiuiPJ3K.

Figure 1. Example of a partial order on the set T “tτ1, . . . , τ7u having width w“3, a minimum path cover, and a realizer.

The following result shows that the minimum value of m is
the order dimension of the preorder.

Theorem 4.1. Let ĺT PT ˆT be a preorder over T . Then:

(i) there exists a dimpĺT q-dimensional compatible utility;
(ii) no m-dimensional compatible utilities with mă

dimpĺT q exist.

The proof of the theorem follows from the application of
Definitions 4.1 and 4.2 and from the definition of order di-
mension. Clearly, one can define utilities with more than
dimpĺT q dimensions and, in any case, having fixed m, in-
finitely many compatible utilities exist (e.g., by performing
translations or rescaling with positive factors). We call min-
imal a dimpĺT q-dimensional utility. The following result
shows that computing minimal utilities is hard.

Theorem 4.2. Let ĺT be a preorder over T . The construc-
tion of a minimal utility u compatible with ĺT is NP-hard.

The theorem follows from the NP-hardness of computing
the order dimension. Due to the inapproximability results,
it is not possible to compute in polynomial time compatible
utilities with a number of dimensions Op|T |1´ϵdimpĺT qq

for ϵą0 in the worst case (Chalermsook et al., 2013).

Compatible Utility Heuristic. We propose a method to
construct a multi-dimensional utility function u that is com-
patible with ĺT based on dividing the problem into three
phases: (i) we construct a realizer tďT ,iuiPJmK (i.e., a set of
linear extensions) of ĺT of size m (which need not be min-
imal), then, (ii) we construct a scalar compatible utility for
each ďT ,i in the realizer set (which can be done in Op|T |q
time) for every iPJmK, finally, (iii) we juxtapose the scalar
utilities into an m-dimensional utility (which can be done
in Opmq time).

We now introduce a tractable method for (i), i.e., to derive a
realizer of cardinality w :“widthpĺT q given a partial order
over trajectories.4 We start by observing that ĺT can be rep-
resented as a direct acyclic graph (DAG) G“pT ,Eq, where

4We consider only the case in which we have an order. Indeed,
if we have a preorder, we can consider the order induced over
the quotient set by the equivalence relation —T , as for equivalent
trajectories, we are forced to set the same value of the utility.

the set of nodes corresponds to the set of trajectories T and
the set of edges E is such that its reflexive and transitive
closure is the partial order ĺT .5 We now solve a minimum
path cover (MPC) problem to obtain a set of w chains (i.e.,
paths in the graph) that covers all the trajectories (i.e., all
the nodes). Caceres et al. (2022) proposes an algorithm that
runs in Opw2|T |`|E |q. Letting tCiuiPJwK represent the set
of chains (i.e., sequence of nodes), we now derive a realizer
set tďT ,iuiPJwK. This is done by extending each chain Ci
with iPJwK to obtain the linear extension ďT ,i as follows:
for every τ1, τ2 PT , if τ1 and τ2 are incomparable in ĺT
(i.e., τ1 ∥T τ2) and τ2 PCi, then τ1ďT ,i τ2. This procedure
has cost of O

`

|T |2
˘

. Overall, we can compute a realizer of
ĺT with cardinality w in at most Op|T |p|T |`w2qqq, hav-
ing observed that |E |ďw|T | (Kritikakis & Tollis, 2022). An
example of this procedure is reported in Figure 1.

Given Definitions 4.1 and 4.2, every UtilMDP can be
mapped to exactly one PbMDP defined with the preorder
ĺT unambiguously constructed from the utility u, while
a PbMDP can be mapped to multiple (infinitely many)
UtilMDPs with any utility u compatible with the preorder
ĺT . This observation motivates the need for evaluating opti-
mality and dominance directly w.r.t. the preference relation.

5. Dominance and Optimality with Preferences
In this section, we introduce the novel concepts of domi-
nance and optimality for policies defined by means of the
preorder ĺT , and we discuss their computational proper-
ties. Similarly to UtilMDPs and MDPs, where (possibly
multi-dimensional) utilities or rewards are present, we aim
to characterize the target when solving a PbMDP, i.e., a
notion of a non-dominated set of policies. However, unlike
UtilMDPs and MDPs, PbMDPs lack a numerical signal.

From now on, we only consider the case in which ĺT is an
order. Indeed, if ĺT is a preorder, we can consider the order
induced over the quotient T {—T , observing that equivalent
trajectories correspond to the same utility value.

Dominance for Total Orders. As discussed in Section 4,
5Formally, E ĎT ˆT is the cover relation induced by the

partial order ĺT (Knuth, 2013).
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for every order ĺT , there exist infinitely many compatible
utilities. However, the Pareto optimality of a policy πPΠ
w.r.t. a certain compatible utility u does not necessarily
guarantee its Pareto optimality w.r.t. another compatible
utility u1, as shown in the following example.

Example 1. This holds even for scalar utilities. Let T “
tτ1, τ2, τ3u and the total order ďT be defined as:

τ1ăT τ2ăT τ3. (4)

Let Π“tπ,π1u be the policy space with the correspond-
ing trajectory distributions dπ“p0.5,0.5,0qJ and dπ1“

p0.8,0,0.2qJ. Consider the utilities u1“p4,2,0qJ and
u2“p4,2,´2q

J both compatible with ďT . We have:

Jpπ;u1q“Jpπ;u2q“3, (5)
Jpπ1;u1q“3.2, Jpπ1;u2q“2.8. (6)

Thus, π1 u1-(Pareto) dominates π and π u2-(Pareto) domi-
nates π1.

For this reason, we propose defining dominance between
policies considering all compatible utilities. This ensures
that if a policy π dominates another policy π1 (in the sense
defined below), then π Pareto dominates π1 w.r.t. all com-
patible utilities. Let us begin with the case of total orders.

Definition 5.1 (Policy Dominance – Total Order). Let ďT
be a total order over T , and let π,π1 PΠ be two policies. π
ďT -strictly dominates π1, denoted as π1ăΠπ if, for every
utility u :T ÑR compatible with ďT , we have:

Jpπ;uq´Jpπ1;uq“xdπ´dπ1 ,uyą0.

If the inequality holds with ě, we say that π ďT -weakly
dominates π1, denoted as π1ďΠπ.

Since we are considering total orders and, consequently,
scalar utilities, we require that π yields a strictly better
expected utility Jpπ;uq compared to that Jpπ1;uq of π1,
evaluated under any compatible utility. Note that ďΠP

ΠˆΠ is a partial preorder over the space of policies Π.
Indeed, even if the order ďT is total, the induced preorder
ďΠ can be partial, as illustrated below.

Example 2. Let T “tτ1, τ2, τ3, τ4u be a trajectory space.
Consider the following total order ďT :

τ4ăT τ3ăT τ2ăT τ1. (7)

Let π,π1 PΠ be two policies with trajectory distributions
dπ“p0.4,0.3,0.1,0.2q

J and dπ1“p0.3,0.2,0.4,0.1qJ.
Now, let u1“p4,3,2,1qJ and u2“p10,9,8,1q

J be two
scalar utilities both compatible withďT . Thus, to determine
whether π dominates π1, we need to verify if the condition of
Definition 5.1 holds for both utilities: xdπ´dπ1 ,u1y“0.2
and xdπ´dπ1 ,u2y“´0.4. Thus, π does not dominate π1

and vice versa (i.e., π1 ∥Ππ), showing that ďΠ is partial.

Definition 5.1 requires testing the condition “for every com-
patible utility” which is clearly infeasible. We can easily
overcome this issue, as shown in the following result.

Theorem 5.1. Let ďT be a total order over T , and let
π,π1 PΠ be two policies. π ďT -weakly dominates π1 if and
only if it holds that:

@nPJ|T |K :
n

ÿ

i“1

pdπpiq´dπ1piqqě0. (8)

Furthermore, π ďT -strictly dominates π1 if and only if, in
addition to the above, it holds that:

Dn1 PJ|T |K :
n1
ÿ

i“1

pdπpiq´dπ1piqqą0. (9)

The proof is reported in Appendix A. To give an
interpretation to the condition in Equation (8), con-
sider the vectors dπ“pdπp1q, . . . ,dπp|T |qqJ and dπ1“

pdπ1p1q, . . . ,dπ1p|T |qqJ of the trajectory probabilities sorted
in non-increasing order (from the most preferred to the
least preferred trajectory) according to the total order ďT .
Equation (8) prescribes that the vectors of the cumulative
sums Cdπ and Cdπ1 of the trajectory probabilities to sat-
isfy Cdπ ľCdπ1 in the sense of the component-wise order,
where C is a lower triangular matrix of all 1s. Thus, we have
reduced the problem of assessing the dominance between
policies (π1ďΠπ) to the problem of assessing dominance be-
tween real vectors (Cdπ1 ĺCdπ). An immediate intuitive
consequence is that for the most preferred trajectory, we
have dπp1qědπ1p1q, and for the least preferred trajectory,
we have dπp|T |qďdπ1p|T |q. The computational complexity
of verifying the condition of Equation (8) is Op|T |q.

Dominance for Partial Orders. Moving from total to
partial orders, we directly generalize Definition 5.1 to the
case of compatible (multi-dimensional) utilities.

Definition 5.2 (Policy Dominance – Partial Order). Let ĺT
be an order over T , and let π,π1 PΠ be two policies. π
ĺT -strictly dominates π1, denoted as π1 ăΠπ if, for every
utility u :T ÑR compatible with ĺT , it holds that:

Jpπ;uq´Jpπ1;uq“xdπ´dπ1 ,uyą0.

If the inequality holds with ľ, we say that π ĺT -weakly
dominates π1, denoted as π1 ĺΠπ.

Thus, we require that policy π u-Pareto dominates π1 under
any compatible utility u. As for the case of total orders,
ĺΠPΠˆΠ represents a partial preorder over the space of
policies. The following result shows that Definition 5.2, i.e.,
dominance between policies w.r.t. a partial order ĺT , can
be equivalently stated by requiring that dominance holds
for all the linear extensions (i.e., total orders), according to
Definition 5.1, for every realizer tďT ,iuiPJmK of ĺT .
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Theorem 5.2. Let ĺT be a partial order over T and let
π,π1 PΠ be two policies. π ĺT -weakly dominates π1 if and
only if, for every realizer tďT ,iuiPJmK with mPN of ĺT , it
holds that:

@iPJmK : π1ďΠ,iπ,

where π1ďΠ,iπ (resp. π1ăΠ,iπ) denotes that π weakly
(resp. strictly) ďT ,i-dominates π1 (Definition 5.1) w.r.t. the
i-th total order in the realizer of ĺT . Furthermore, π ĺT -
strictly dominates π1 if and only if, in addition to the above,
it holds that:

Dj PJmK : π1ăΠ,j π. (10)

Thus, we have reduced the problem of assessing the dom-
inance for partial orders to assessing the dominance of a
number of total orders. By a simple application of Theo-
rem 5.1, we can state the following equivalent condition.
Theorem 5.3. Let ĺT be a partial order over T and let
π,π1 PΠ be two policies. π ĺT -weakly dominates π1 if and
only if, for every linear extension ďT of ĺT , it holds that:

@nPJ|T |K :
n

ÿ

i“1

pdπpψďT piqq´dπ1pψďT piqqqě0. (11)

π ĺT -strictly dominates π1 if and only if, in addition to the
above, there exists a linear extension ď1

T of ĺT such that:

DnPJ|T |K :
n

ÿ

i“1

`

dπpψď1
T
piqq´dπ1pψď1

T
piqq

˘

ą0. (12)

Although it resembles Theorem 5.1 for total orders, Theo-
rem 5.3 cannot be leveraged to derive an efficient algorithm.
Indeed, a trivial application would require to enumerate all
linear extensions that, in the worst case, are |T |!. We are
currently unable to provide a polynomial-time algorithm to
assess policy dominance for partial orders but we conjecture
that the problem is computationally hard.

Optimality. We now define a notion of optimality for
policies in terms of the preference relation. Following the
same ideas, as for Pareto-optimal policies, we call a policy
optimal w.r.t. an order ĺT if there exists no other policy
that strictly dominates it.
Definition 5.3 (Optimality). Let ĺT be a partial order over
T . π˚ PΠ is ĺT -optimal if it is not ĺT -strictly dominated
by any other policy. We denote the set of ĺT -optimal poli-
cies as:

Π˚pĺT q :“tπPΠ :␣Dπ1 PΠ s.t. πăΠπ
1u.

6. From (Non-Markovian) Utility to
Markovian Reward

In this section, we study the problem of approximating
a (non-Markovian) compatible utility with a (Markovian)
reward and discuss the approximation error.

Total Order Case. Consider a total order ďT over |T |
trajectories that can be represented by a scalar compatible
utility uPR|T |, as in Definition 4.1. We can arbitrarily
choose the values of upiq so that for every i, j PJ|T |K such
that iăj we have upiqďupjq´ε where εą0 represents the
minimum utility gap between two trajectories. We want to
find a reward vector rPRSAH , which best represents the
compatible utility vector. To this end, we jointly optimize
the choice of utility u and reward r to minimize the error
due to the limited expressive power of the reward w.r.t. the
utility, by means of the following quadratic program (QP):

η˚ :“ min
uPR|T |,rPRSAH

}u´Br}22

s.t. upi`1qďupiq´ε, @iPJ|T |´1K
up|T |q“0

up1q“1

where BPt0,1u|T |ˆSAH is a binary matrix encoding, for
every trajectory, which stages, states, and actions are in-
volved in it (the order in which we design this matrix will
influence only the order the elements in the reward vec-
tor).6 The constraints on up1q and up|T |q just set the
scale of the utilities and the one proposed above is an
arbitrary valid choice. We can easily eliminate the vari-
able r by observing that it is not involved in any con-
straints, and solve the least-squares problem in closed form,
obtaining r“

`

BJB
˘´1

BJu.7 Thus, by defining A :“

I|T |´B
`

BJB
˘´1

BJ, the objective function becomes
}Au}22“u

JAJAu, leading to a QP with |T | variables, a
quadratic (convex) objective, and |T |`1 linear constraints,
that can be solved using convenient convex optimization
tools (Boyd & Vandenberghe, 2004).

Partial Order Case. The same rationale can be applied to
partial orders ĺT and considering a realizer tďT ,jujPJmK

and a compatible m-dimensional utility uPR|T |ˆm (also
switching the Euclidean norm with the Frobenious norm):

η˚ :“ min
uPR|T |ˆm

}Au}2F (13)

s.t. ujpψďT ,j
pi`1qqďujpψďT ,j

piqq´ε,

@iPJ|T |´1K, j PJmK
ujpψďT ,j

p|T |qq“0, @j PJmK
ujpψďT ,j

p1qq“1, @j PJmK

Also in this case we are in the presence of a QP with m|T |
variables and mp|T |`1q linear constraints.

6Formally, let τ “ps1,a1, . . . ,sH ,aHqPT , we have that
Bpτ,psl,al, lqq“1 for every lPJHK and all other components
of row τ are equal to 0.

7To guarantee the existence of the inverse, we have to guarantee
that in the set of trajectories T considered makes matrix B full
rank. For instance, the set of all trajectories T “pS ˆAq

H ensures
this property.
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Approximation Error. When the partial order can be in-
deed represented via Markovian rewards, then the QP pre-
sented above returns a value of the objective function η˚“0
equal to zero, otherwise, it returns η˚ą0. In the oppo-
site case, the Markovian reward yields an approximated
utility pu“ur, that will induce a certain set Π˚ppuqĎΠ of
pu-Pareto optimal policies, whereas u will yield another set
Π˚puqĎΠ of u-Pareto optimal policies. We now propose
to evaluate the dissimilarity between the two sets of policies
with the following index:

Lpu, puq :“max

"

sup
πPΠ˚puq

inf
pπPΠ˚p puq

∆J`pπ,pπ,uq,

sup
pπPΠ˚p puq

inf
πPΠ˚puq

∆J`ppπ,π, puq

*

,

where:

∆J`pπ,pπ,uq :“
ÿ

jPJmK

pJpπ,ujq´Jppπ,ujqq
` (14)

This index is designed to account only for performance
losses when we move from a u-Pareto optimal policy π to a
pu-Pareto optimal policy pπ and does not allow for compen-
sations when pπ better optimizes some dimensions of u w.r.t.
the Pareto optimal policy π. The presence of the infimum
ensures picking the policy pπ in the Pareto frontier of pu “clos-
est” to π, while the supremum forces the worst-case choice
of π. Analogous reasoning holds for the second argument of
the max by reversing the roles of π and pπ. In the following
theorem, we upper bound the performance loss due to the
Markovian approximation.

Theorem 6.1. Let u, pu :T ÑRm be two m-dimensional
utilities functions such that }u´ pu}2Fďη

˚. Then, it holds
that Lpu, puqď2

?
mη˚.

It is worth noting that this result holds for arbitrary pairs
of utilities, not necessarily derived with the QP presented
above. We can trivially verify that in the case of a total pre-
order, the difference in performance is bounded by 2

?
η˚.

7. Related Works
We summarize the relevant literature, focusing on feedback
types, learning from preferences, and results on bandits.

Types of Feedback. PbRL and RLHF approaches have been
studied combined with several types of feedback. Kaufmann
et al. (2023) report and analyze several classes of feedback,
presenting a trade-off in terms of how the complexity is
distributed between the human expert (i.e., difficulty of pro-
viding a feedback) and the agent (i.e., difficulty of learning
given the feedback). In our framework, we consider only
feedback over trajectories, the most common one, while
allowing for non-Markovianity in the implicit evaluation of

the expert. Asking for a preference among a set of objects
(i.e., the type of feedback we consider in this work) is also
referred to as comparison feedback. Comparison feedback
first appeared in the literature in terms of feedback over
individual state-action pairs (Cheng et al., 2011; Fürnkranz
et al., 2012), and was later extended to reward learning tasks
(Christiano et al., 2017; Ibarz et al., 2018).

Learning from Preferences. Our setting has connections
with both PbRL and RLHF. Wirth et al. (2017) propose the
Markov decision process with preferences (MDPP) setting,
aiming at unifying some of the existing PbRL results under
a common framework. MDPPs employ a stochastic prefer-
ence generation process. Although this is a relevant scenario
when learning a policy given a set of binary preferences, it
deviates from the objective of studying the computational
complexity of the problem, thus, motivating the need to
define our PbMDPs where the preferences are deterministic.
Moreover, MDPPs define preferences between trajectories
in terms of the likelihood of them being generated by a
given policy. This assumption, although sensible w.r.t. the
goal of the authors, is stronger than what is required in this
work that simply considers general preorders. Wirth et al.
(2017) and Kaufmann et al. (2023) survey several PbRL and
RLHF approaches, ranging in methodology from direct pol-
icy learning (Wilson et al., 2012; Rafailov et al., 2024), to
learning a utility (Akrour et al., 2012), to learning a reward
function (Zucker et al., 2010; Christiano et al., 2017), all
under the probabilistic preference assumption.

Preference-Based Multi-Armed Bandits. Several multi-
armed bandit (MAB, Lattimore & Szepesvári, 2020) set-
tings share some aspects with PbRL. For example, dueling
bandits (DBs, Yue et al., 2012) are the preference-based
version of MABs, and can be interpreted as the one-state
version of PbRL. DBs can allow for non-order relations
among arms (see, e.g., Zoghi et al., 2015). Xu et al. (2020)
employ a DB-based subroutine in their PbRL algorithm,
and demonstrate the existence of MDPs with non-transitive
preferences between trajectories, leading to the absence of
a unique optimal policy. This scenario, however, is out of
the scope of this work, as removing the assumption of a
(partial) preorder would change the basis of the analysis,
with a notable loss of the properties presented in this paper.
A different example is (Azar et al., 2024), in which the au-
thors define the problem of learning from human feedback
as an offline contextual bandit (Lu et al., 2010) problem. We
refer the interested reader to (Busa-Fekete & Hüllermeier,
2014) for a detailed survey of preference-based learning in
MABs.

8. Discussion and Conclusions
In this work, we defined the PbMDP setting, obtained by
extending an MDP\R with a (partial) preorder over trajec-
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tories, and compared it with UtilMDPs and MDPs. We
defined the notion of utility-preference compatibility and
discussed the computational issues in constructing them.
Then, we defined the concepts of policy dominance, ac-
counting for the fact that the true underlying utility function
is unknown. Finally, we discussed the need to move from
utilities to Markovian rewards, providing a QP optimization
problem to compute the reward values, and quantifying the
approximation error.

Future Works. The computational limitations presented
in the paper suggest the need for less demanding notions of
dominance when preferences are concerned. Furthermore,
our work does not tackle the statistical complexity of learn-
ing with preference feedback. Future works should address
these issues. Specifically, it would be interesting to inves-
tigate less demanding notions of dominance that consider,
e.g., a subset of all compatible utilities, and compare them
with the one presented in this paper from the computational
perspective. Moreover, in realistic scenarios, the preference
relation is not given and should be learned from samples.
Future studies could define methodologies to address both
the preference elicitation problem (see, e.g., Wilde et al.,
2018), and the uncertainty in the preference generation pro-
cess. One such natural extension is to study the statistical
complexity of a multi-objective problem in terms of (i) the
uncertainty due to a partial coverage of the preorder relation
and (ii) the error due to the approximation.
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Evren, Ö. and Ok, E. A. On the multi-utility representa-
tion of preference relations. Journal of Mathematical
Economics, 47(4-5):554–563, 2011.

Felsner, S., Mustata, I., and Pergel, M. The complexity
of the partial order dimension problem: Closing the gap.
SIAM Journal on Discrete Mathematics (SIDMA), 31(1):
172–189, 2017.
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A. Omitted Proofs
Theorem 4.1. Let ĺT PT ˆT be a preorder over T . Then:

(i) there exists a dimpĺT q-dimensional compatible utility;
(ii) no m-dimensional compatible utilities with mădimpĺT q exist.

Proof. We limit the proof for the case in which we have an order. Indeed, if we have a preorder, we can consider the
order induced over the quotient set by the equivalence relation —T , as for equivalent trajectories we are forced to set the
same value of the utility. Let us start with (i). We show the existence of a compatible dimpĺT q-dimensional utility. Let
D“dimpĺT q, for notational convenience. To this end, we know that there exists a set tďT ,iu

D
i“1 of D total orders such

that ĺT “
ŞD

i“1ďT ,i, i.e., τĺT τ
1ô@iPJDK : τďT ,i τ

1. Since for total orders, compatible utilities exist, let us consider
ui :T ÑR, compatible with ďT ,i for every iPJDK. Let us now construct the D-dimensional utility u“pu1, . . . ,uDq

J. We
show that u is compatible with the preorder ĺT . Let τ,τ 1 PT , we have:

upτqĺupτ 1qô@iPJDK :uipτqďuipτ 1q (15)
ô@iPJDK :τďT ,i τ

1 (16)
ôτĺT τ

1, (17)

where line (16) follows from the compatibilities of the scalar utilities ui with the corresponding ďT ,i and line (17) follows
from the construction of the partial preorder from the intersection of total preorders. For (ii), by contradiction, suppose
there exists an m-dimensional compatible utility u“pu1, . . . ,umq

J with măD. Let tďT ,iu
m
i“1 be the set of m total orders

induced by u1, . . . ,um, which is unique. We now show that ĺT “
Şm

i“1ďT ,i contradicting the definition of order dimension.
Let τ,τ 1 PT , we have:

τĺT τ
1ôupτqĺupτ 1q (18)
ô@iPJmK :uipτqďuipτ 1q (19)
ô@iPJmK :τďT ,i τ

1, (20)

where line (18) follows from the compatibility of the multi-dimensional utility and line (20) follows from the compatibility
of the scalar utilities.

Theorem 4.2. Let ĺT be a preorder over T . The construction of a minimal utility u compatible with ĺT is NP-hard.

Proof. We restrict to the case of orders. We reduce from the problem of deciding whether the order dimension of an order is
ěk which is known to be NP-hard (Yannakakis, 1982; Felsner et al., 2017).

Decision Problems.

ORDER DIMENSION (OD): given an order ĺĎX ˆX and a natural number kPN, YES if the order dimension is ďk.

MINIMAL UTILITY (MU): given an order ĺĎX ˆX and a natural number kPN, YES if a minimal compatible utility has
dimensionality ďk.

Reduction. We show that OD ďp MU (ďp denotes a Karp’s reduction). The instance of MU is the same as for OD. It is
trivial to show that the order dimension is ďk if and only if a minimal compatible utility has dimensionality ďk.

Theorem 5.1. Let ďT be a total order over T , and let π,π1 PΠ be two policies. π ďT -weakly dominates π1 if and only if it
holds that:

@nPJ|T |K :
n

ÿ

i“1

pdπpiq´dπ1piqqě0. (8)

Furthermore, π ďT -strictly dominates π1 if and only if, in addition to the above, it holds that:

Dn1 PJ|T |K :
n1
ÿ

i“1

pdπpiq´dπ1piqqą0. (9)
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Proof. We prove the first statement, as the second one can be proved analogously.

If. We start showing that:

π1ďΠπ ñ min
nPJ|T |K

n
ÿ

i“1

pdπpiq´dπ1piqqě0

By contradiction, suppose the following condition to hold:

Dn˚ PJ|T |K :
n˚
ÿ

i“1

pdπpiq´dπ1piqqă0^ inf
u compatible with ďT

xdπ´dπ1 ,uyě0.

Define the utility function ru defined as:

rupiq“

#

M if iďn˚,

0 if iąn˚,

for some Mą0. We observe that ru is compatible with ďT . Then, we can write:

|T |
ÿ

i“1

rupiqpdπpiq´dπ1piqq“
n˚
ÿ

i“1

rupiqpdπpiq´dπ1piqq`

|T |
ÿ

i“n˚`1

rupiqpdπpiq´dπ1piqq

“M
n˚
ÿ

i“1

pdπpiq´dπ1piqq

ă0,

where the last inequality holds under condition piq, which is absurd.

Only if. Let us now prove that:

min
nPJ|T |K

n
ÿ

i“1

pdπpiq´dπ1piqqě0 ñ π1ďΠπ. (21)

The LHS of Equation (21) implies that, for every n˚ PJ|T |K, it holds that:

n˚
ÿ

i“1

pdπpiq´dπ1piqqě0, (22)

and consequently, that the following holds as well:

|T |
ÿ

i“n˚`1

pdπpiq´dπ1piqqă0, (23)

since, by definition of the policy occupancy, it holds that:

|T |
ÿ

i“1

pdπpiq´dπ1piqq“0. (24)

Let u be a compatible utility function, and let mPJ|T |K be the index such that:
#

upiqě0 if iďm,
upiqă0 if iąm.

Then, we can rewrite:

m
ÿ

i“1

upiqpdπpiq´dπ1piqq`

|T |
ÿ

i“m`1

upiqpdπpiq´dπ1piqq

14
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ěupmq
m
ÿ

i“1

pdπpiq´dπ1piqq`upm`1q

|T |
ÿ

i“m`1

pdπpiq´dπ1piqq , (25)

where Equation (25) is obtained by applying the following reasoning. On the one hand, under Equation (22) and under the
compatibility of u, it holds that up1qpdπp1q´dπ1p1qqěup2qpdπp2q´dπ1p2qq, and by applying a chain reasoning, we can
demonstrate that:

m
ÿ

i“1

upiqpdπpiq´dπ1piqqěupmq
m
ÿ

i“1

pdπpiq´dπ1piqq .

On the other hand, under Equation (23) and under the compatibility of u, it holds that up|T |q pdπp|T |q´dπ1p|T |qqď
up|T |´1qpdπp|T |´1q´dπ1p|T |´1qq, and by applying a similar chain reasoning as before, but in the opposite direction,
we get that:

|T |
ÿ

i“m`1

upiqpdπpiq´dπ1piqqěupm`1q

|T |
ÿ

i“m`1

pdπpiq´dπ1piqq .

Finally, by applying Equation (24) to Equation (25) we get that:

|T |
ÿ

i“1

upiqpdπpiq´dπ1piqqěpupmq´upm`1qq
m
ÿ

i“1

pdπpiq´dπ1piqqě0,

where the last inequality holds under the compatibility of u, thus demonstrating the implication and concluding the proof.

Theorem 5.2. Let ĺT be a partial order over T and let π,π1 PΠ be two policies. π ĺT -weakly dominates π1 if and only if,
for every realizer tďT ,iuiPJmK with mPN of ĺT , it holds that:

@iPJmK : π1ďΠ,iπ,

where π1ďΠ,iπ (resp. π1ăΠ,iπ) denotes that π weakly (resp. strictly)ďT ,i-dominates π1 (Definition 5.1) w.r.t. the i-th total
order in the realizer of ĺT . Furthermore, π ĺT -strictly dominates π1 if and only if, in addition to the above, it holds that:

Dj PJmK : π1ăΠ,j π. (10)

Proof. We prove the statement for the weak dominance, since the statement for the strict dominance is analogous. We have:

π1 ĺΠπ (26)
ô@u compatible with ĺT : Jpπ;uq´Jpπ1,uqľ0 (27)
ô@tďT ,iuiPJmK realizer of ĺT @iPJmK@ui compatible with ĺT ,i: Jpπ;uiq´Jpπ

1,uiqě0 (28)
ô@tďT ,iuiPJmK realizer of ĺT @iPJmK : π1ďΠ,iπ, (29)

where line (27) follows from Definition 4.2, line (28) follows from the fact that a multi-dimensional utility u determines a
unique realizer of ĺT and from the component-wise order definition, and line (29) is obtained from Definition 4.2.

Theorem 5.3. Let ĺT be a partial order over T and let π,π1 PΠ be two policies. π ĺT -weakly dominates π1 if and only if,
for every linear extension ďT of ĺT , it holds that:

@nPJ|T |K :
n

ÿ

i“1

pdπpψďT piqq´dπ1pψďT piqqqě0. (11)

π ĺT -strictly dominates π1 if and only if, in addition to the above, there exists a linear extension ď1
T of ĺT such that:

DnPJ|T |K :
n

ÿ

i“1

`

dπpψď1
T
piqq´dπ1pψď1

T
piqq

˘

ą0. (12)
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Proof. We prove the statement for the weak dominance, as for the strict dominance analogous derivation holds. Recall that
the set of all linear extensions of ĺT is a realizer of ĺT and that the union of all the realizes of ĺT is such a set. We have:

π1 ĺΠπô@tďT ,iuiPJmK realizer of ĺT @iPJmK : π1ďΠ,iπ (30)
ô@ďT linear extension of ĺT :π

1ďΠπ (31)

ô@ďT linear extension of ĺT @nPJ|T |K :
n

ÿ

i“1

pdπpiq´dπ1piqqě0, (32)

where Equation (30) follows from Theorem 5.2, Equation (32) follows from Theorem 5.1.

Theorem 6.1. Let u, pu :T ÑRm be two m-dimensional utilities functions such that }u´ pu}2Fďη
˚. Then, it holds that

Lpu, puqď2
?
mη˚.

Proof. Let π,pπPΠ be two Pareto optimal policies w.r.t. u and pu, respectively. Let dπ and d
pπ be the corresponding trajectory

distributions. We consider matrices u and pu both in R|T |ˆm as constituted by a set of m vectors pujqjPJmK and ppujqjPJmK,
respectively. Then, for every component j PJmK, it holds:

Jpπ,ujq´Jppπ,ujq“xuj ,dπ´dpπy“xuj ,dπ´dpπy˘xpuj ,dπy˘xpuj ,dpπy

“xuj´puj ,dπy
loooooomoooooon

pAq

`xpuj´uj ,dpπy
loooooomoooooon

pBq

`xpuj ,dπ´dpπy

ď2}pui´uj}8
looooomooooon

pAq`pBq

`xpuj ,dπ´dpπy,

where the inequality follows from the fact that both terms pAq and pBq can be bounded using Holder’s inequality with } ¨}8

and } ¨}1 and observing that }dπ}1“}dpπ}1“1. Now, we apply the infimum:

inf
pπPΠ˚p puq

ÿ

jPJmK

pxuj ,dπ´dpπyq
`
ď inf

pπPΠ˚p puq

ÿ

jPJmK

p2}puj´uj}8`xpuj ,dπ´dpπyq
`

ď2
?
m}u´ pu}F` inf

pπPΠ˚p puq

ÿ

jPJmK

pxpuj ,dπ´dpπyq
` (33)

ď2
?
m}u´ pu}F, (34)

where line (33) follows from the application of Cauchy-Schwarz’s inequality after having observed that such } ¨}8 terms do
not depend on pπ, and line (34) is due to the fact that the removed term is non-positive by definition of pπ which is Pareto
optimal w.r.t. pu. Replicating the derivation by reversing the roles of u and pu leads to the result.

16


