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SUMMARY

Artificial Intelligence (AI) is transforming every aspect of modern society. It demonstrates a high potential to 

contribute to more flexible operations of safety-critical network infrastructures under deep transformation to 

tackle global challenges, such as climate change, energy transition, efficiency, and digital transformation, 

including increasing infrastructure resilience to natural and human-made hazards. The widespread adoption 

of AI creates the conditions for a new and inevitable interaction between humans and AI-based decision sys

tems. In such a scenario, creating an ecosystem in which humans and AI interact healthily, where the roles 

and positions of both actors are well-defined, is a critical challenge for research and industry in the coming 

years. This perspective article outlines the challenges and requirements for effective human-AI interaction by 

taking an interdisciplinary point of view that merges computer science, decision-making sciences, psycho

logical constructs, and industrial practices. The work focuses on three emblematic safety-critical scenarios 

from two different domains: energy (power grids) and mobility (railway networks and air traffic management).

INTRODUCTION

Artificial Intelligence (AI) has the potential to enhance the flexi

bility and resilience of safety-critical network infrastructures to 

address global challenges such as climate change impacts,1

facilitating the seamless integration of renewable energy sour

ces,2 increasing demand from mobility and energy infrastruc

tures, and optimizing resources/assets to postpone the need 

for significant capital investments in infrastructure reinforce

ment.3 Despite these advantages, AI faces several challenges. 

These include ensuring robustness, reliability, transparency, 

and ethical compliance to avoid issues such as errors and adver

sarial attacks. Additionally, AI must manage the complexity and 

uncertainty associated with aging assets and the non-stationar

ity introduced by increasing demand for energy and mobility net

works. Finally, AI needs to address scalability limitations, partic

ularly in methods such as reinforcement learning (RL), which 

struggle in large-scale network infrastructures.

The widespread adoption of AI is driving a new and inevitable 

interaction between humans and AI systems, particularly in pro

cesses that require real-time decision-making and forecasting. 

Traditionally, these infrastructures have been managed by 
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humans relying on expertise, control, and supervision software 

at different levels of automation. Examples of that are air traffic 

management4 and power grid operations.5 In scenarios such 

as AI-assisted operations in power grid control rooms,6 such hu

man-AI interactions are crucial. Although current AI technologies 

can incorporate human feedback, such as integrating human 

preferences in RL7–9 or facilitating interactive natural language 

conversations to explain AI models,10 they are not inherently de

signed to optimize the overall efficiency of socio-technical 

systems–hybrid systems composed of technical artifacts, hu

man beings, institutions, and rules11–nor to maximize human 

performance and engagement consistently. This implies that 

current applications of AI cannot fully leverage this form of hu

man-AI interaction, calling for new advancements in scientific 

research.

This paper integrates industry-specific knowledge from three 

safety-critical domains – power grid, railway network, and air 

traffic – where operational scenarios are typically characterized 

by multiple features that make the decision-making process 

particularly challenging. Indeed, such systems often consist of 

complex structures composed of multiple interconnected sub

systems, requiring many decisions to be made within a limited 

amount of time. Furthermore, they are frequently affected by sto

chasticity, dynamic changes over time, and the need to handle 

cascading events and extreme cases. These characteristics 

not only make AI highly relevant in such environments but also 

reveal the limitations of current methods. Specifically, they high

light the need for AI systems that are not only robust and scalable 

but also designed to collaborate with humans in meaningful 

ways. As we will discuss in common decision-making aspects, 

despite domain-specific contexts, critical infrastructures face 

shared decision-making challenges, including complex human- 

AI interaction, multi-stakeholder coordination, and trade-offs un

der uncertainty, highlighting the need for a common conceptual 

framework.12

To succeed in these domains, AI must go beyond accuracy 

and performance—it must be trustworthy. Trustworthiness13 re

fers to a broad set of properties that capture both the technical 

and ethical dimensions of system design and use, including 

safety, robustness, transparency, fairness, interpretability, and 

explainability.14 These properties are critical for ensuring that 

AI systems can be accepted and relied upon in complex, high- 

stakes environments. This need is confirmed by the inclusion 

of trustworthiness requirements in the emerging regulation of 

AI systems, in particular, in the EU AI Act.15 As automation 

increasingly takes over cognitive tasks, systems must also pre

serve human skills, maintain human agency and oversight, and 

support effective interaction with AI.16 Achieving this requires 

transparent AI agents that help humans understand their out

puts, learn from them, and assess their limitations.17

Complementing this technical perspective, recent frameworks 

such as ‘‘Meaningful Human Control’’18 and ‘‘Human Readiness 

Levels’’19 stress the importance of designing for effective hu

man-AI collaboration. These approaches recognize that trust 

must be supported by systems that actively engage human de

cision-making, learning, and motivation.

In this context, joint decision-making between humans and AI 

can leverage the complementary strengths of both, ensuring that 

humans remain engaged and informed. Human learning in these 

settings involves developing an accurate understanding of the 

task and the AI’s behavior, supported by feedback and experi

mentation.20 Motivation to collaborate with AI depends on 

providing meaningful tasks, autonomy, and timely feedback. A 

promising direction to support this is co-learning,21 where hu

mans and AI continuously learn from each other to improve over

all performance. This requires AI agents to be autonomous yet 

collaborative, capable of adapting to humans and shared 

goals.22 While progress is being made, real-world examples of 

such systems remain limited. Therefore, this article offers a 

concise overview of practical use cases and requirements in 

three safety-critical infrastructures, highlighting key challenges 

and research directions (theses) to improve both AI capabilities 

and human-AI interaction.

DECISION-MAKING IN THE POWER GRID, THE RAILWAY 

NETWORK, AND THE AIR TRAFFIC MANAGEMENT

This section discusses the common challenges in decision-mak

ing across the three aforementioned safety-critical infrastruc

tures (i.e., power grid, railway network, and air traffic), adopting 

a use case oriented approach that highlights the synergy be

tween human expertise and AI-driven solutions. The goal is to 

identify cross-domain similarities in how decisions are made un

der uncertainty, time pressure, and system constraints, and, by 

aligning perspectives from different infrastructures, it contrib

utes to establishing a foundational understanding of shared de

cision-making dynamics and to informing the design of joint hu

man-AI decision systems.

Common decision-making aspects

To identify common challenges in the decision-making process 

across all domains, scenarios were described and analyzed for 

each domain with industrial stakeholders in a joint workshop. 

These scenarios, which will be discussed in challenges in 

today’s operation and use cases section and extensively detailed 

in,23 are defined by involving representatives from power network 

operators (R�eseau de Transport d’�Electricit�e – RTE, TenneT), rail

way network operators (Deutsche Bahn – DB, Schweizerische 

BundesBahnen – SBB), and an air traffic management organiza

tion (NAV Portugal). In these scenarios, human operators face 

complex decision-making challenges that arise from a combina

tion of external events, collaborative dynamics, conflicting objec

tives, and tight time constraints (Figure 1A). These decisions 

involve iterative interactions between human expertise and AI- 

driven insights, aiming to balance operational demands with sys

tem objectives (Figure 1B). Even if the decision context is different 

for each domain (which can be explained by the fact that each 

infrastructure remains intrinsically different), a high degree of sim

ilarity in the characteristics of the decision-making process was 

observed, specifically (see23 for a complete analysis).

(1) Human-AI interaction. Decision-making involves human 

operators and AI agents collaborating through manual, 

co-learning, and autonomous approaches, with iterative 

processes of exploration and feedback to refine and align 

actions with system objectives.
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(2) Multiple operators and other stakeholders. Decisions 

involve coordination among diverse stakeholders (e.g., 

airport operators, power grid operators, train dispatchers) 

operating across various time frames, from long-term 

planning to real-time adjustments.

(3) Action type. Decision-making includes preventive or 

corrective actions, which can be planned or executed in 

real time. We distinguish between general actions taken 

by operators/AI and specific measures – concrete opera

tional steps or plans addressing specific events.

(4) Action space complexity. The action space is large and 

comprises both discrete and continuous elements. Its 

complexity grows with system size, such as the number 

of power grid nodes, flights, or trains, making decision- 

making increasingly challenging.

(5) Network capacity and external events. Operators 

manage constraints resulting from disruptions, emergen

cies, or external factors such as maintenance activities 

and public events. These constraints are influenced by 

uncertain observations and forecasts, including weather 

conditions and human behavior variability.

(6) Time resolution. Real-time analysis enables immediate 

responses to urgent issues, while short-term analysis fo

cuses on daily adjustments and preventive actions. Me

dium- to long-term analysis supports strategic planning 

and forecasting, preparing the infrastructure for future de

mands and challenges.

(7) Trade-off analysis on conflicting objectives. Operators 

must navigate trade-offs between competing objectives, 

such as meeting system needs while minimizing adverse 

impacts. Effective decision-making requires balancing 

these trade-offs, including weighing the probability and 

consequences of critical events to ensure safety and sys

tem integrity, or balancing operational demands with 

environmental goals such as reducing CO2 emissions. 

Prioritizing tasks effectively is crucial for maintaining oper

ational efficiency.

The following subsection provides examples of current prac

tices and use cases that illustrate this decision-making process 

in action.

Challenges in today’s operation and use cases

In today’s operations, power grid engineers are highly special

ized, requiring detailed studies, accurate planning, and complex 

decision-making rather than merely following established proto

cols. They rely heavily on simulation tools with real-time and fore

cast data but have limited access to decision-support tools such 

as automated assistants.6,24 When addressing issues, engineers 

manually explore solutions and verify them using simulations. 

They can adjust grid connectivity, re-dispatch generation, limit 

consumption, or use battery storage to modify power flows, 

identifying the best actions for each specific context. Despite 

the range of options, their process depends on experience and 

manual simulation.5

An industry-driven AI use case proposes an AI assistant to 

support operators by recommending actions and strategies for 

real-time congestion management.25 The AI assistant should 

function bidirectionally, learning continuously from operator 

feedback, as illustrated in Figure 1B. This use case aligns with 

the schematic in Figure 1A. Network capacity constraints arise 

from thermal, voltage, and stability limits of power grid lines. 

Thermal limits depend on the maximum current a line can carry 

without exceeding its temperature rating, considering both 
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Figure 1. Decisions in safety-critical network infrastructure operations 

(A) Decision-making in safety-critical network infrastructure operations involves three key aspects: (i) managing network capacity constraints, identified via 

observations and forecasts of the network state, and influenced by uncertainty and external factors; (ii) involving multiple operators across different time horizons, 

ranging from long-term planning to real-time operations; (iii) operating under time constraints while balancing trade-offs between multiple objectives; and (iv) 

deciding on preventive or corrective actions selected from a large action space and planned or implemented in real time, respectively. 

(B) The decision-making process is iterative, involving exploration and validation tasks: Exploration assesses potential courses of action, while validation 

evaluates these actions against system objectives and constraints. This dynamic back-and-forth interaction integrates interconnected decisions, contributing to 

overall infrastructure management.
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instantaneous and short-duration thresholds. System-wide 

limits, such as voltage control, dynamic stability, and inertia, 

also restrict transfer capacity. Congestion occurs when these 

limits are exceeded, under both N (all elements available) and 

N − k (up to k outages, typically k = 1) conditions. Objectives 

include managing overloads through remedial actions, maxi

mizing renewable integration by reducing emergency redispatch 

of thermal units, and easing operator workload. The trade-off in

volves balancing the operational impact of an event, estimated 

via forecasts or real-time analysis, against its probability, usually 

derived from ex ante statistical studies of past events or fore

casted by a statistical learning model. Depending on problem 

complexity, multiple operators may coordinate, such as control 

centers, field teams, market participants, or interconnected po

wer grid operators. A lead operator is designated ex ante by 

operational rules (e.g., geographic responsibility or escalation 

to management). Key observations include the current grid 

state – measurements and topology (e.g., breaker positions) – 

used to assess loading and margin. Operators must also know 

the availability of actions, especially real-time flexibilities (e.g., 

cooldown times before switching). To forecast future conditions, 

inputs such as planned topological changes, generation and de

mand forecasts, maintenance schedules (with criticality), and 

electricity market signals are essential. Uncertainty can come 

from external factors such as storm or fire risks, major events 

(e.g., the Olympics), or incidents (e.g., accidents or protests) 

that may disrupt grid operations. Regarding time constraints, 

each decision, anticipatory or reactive, has a Last Time To 

Decide (LTTD), the latest point when action must begin for its ef

fect to occur before the deadline. LTTD is computed by subtract

ing the action’s lead time from the deadline. For example, in 

response to an overload alarm, LTTD ensures intervention before 

thermal expansion forces an automatic line disconnection. 

Congestion management typically combines a) preventive ac

tions, planned in advance when constraints are foreseeable, 

lead time is critical, or risk is high; and b) remedial actions, acti

vated in real-time when fast-acting flexibilities are available. The 

choice depends on trade-offs involving availability, LTTD, cost, 

and effectiveness.

In railway network operations, densely planned schedules are 

frequently disrupted by unexpected events such as delays, infra

structure defects, or short-term maintenance. Maintaining 

smooth operations requires skilled personnel in control centers 

to monitor traffic flow around the clock and make quick re- 

scheduling decisions.26 These measures include adjusting a 

train’s speed, path, or platform. In densely used networks, local 

re-scheduling decisions can impact the entire traffic flow and 

propagate effects into the future, making this a complex deci

sion-making task that integrates extensive context under time 

and network capacity constraints,27 aligning with the schematic 

in Figure 1A. Network capacity constraints are shaped by train 

frequency, scheduling density, and operational strategies such 

as prioritizing specific train types (e.g., high-speed or freight). 

As for temporal constraints, emergency situations such as acci

dents or technical failures often demand real-time responses, 

with decisions needed within minutes (remedial actions). Short- 

term operational adjustments (preventive actions), such as re

routing due to temporary obstructions or adapting to demand 

fluctuations, may allow slightly longer time horizons, typically 

from minutes to a few hours. The railway system requires the 

collaboration of multiple operators, encompassing those man

aging infrastructure, train operations, maintenance, and integra

tion with other transport modes. This multiple environment is 

necessary to address the diverse constraints and ensure effi

cient, safe railway operations, particularly when integrating AI 

technologies. It is necessary to balance trade-offs for the punc

tuality of different trains, e.g., expanding capacity to accommo

date more trains or passengers might strain resources or 

degrade service quality, affecting punctuality, comfort, and over

all customer experience. Uncertainty arises from external factors 

such as unpredictable timing and duration of maintenance or up

grade projects (e.g., due to material shortages), extreme weather 

conditions requiring operational changes, and technical failures 

such as signal malfunctions or rolling stock breakdowns that 

cause unplanned delays and disruptions.

Railway network operators explore different modes of human- 

AI interaction and different degrees of automation to improve re

scheduling performance. The different modes and degrees of 

automation are: a) highly automated AI re-scheduling systems 

that monitor the real-time state of trains and tracks, detect is

sues, decide automatically on actions, and execute them. Su

pervisors review system’s performance, adjusting parameters 

such as prioritization criteria, delay thresholds, or recalculation 

algorithms as needed; b) human-AI joint decision-making sys

tems, where an AI assistant can support the exploration of alter

native re-scheduling solutions or validate suggestions by human 

operations. Human operators can also validate alternative AI re- 

scheduling solutions based on operational priorities or additional 

contextual information not integrated into the AI system. Hu

mans and AI continuously monitor the ongoing traffic and both 

decide on actions for rescheduling in a continuous exploration 

and validation loop (see Figure 1B).

Airspace sectorization divides airspace into manageable re

gions called sectors to ensure safe and efficient air traffic 

management by reducing controller workload and optimizing 

traffic flow.28 Currently, this task is solely managed by air traffic 

control supervisors, who decide when and how to split or 

merge sectors based on situational demands and available 

personnel.29 While scattered information is available across 

platforms, no integrated decision-support system is available 

to assist supervisors or automate the sectorization process, 

considering trajectory efficiency (e.g., flight time and fuel 

burn) and sector capacity limits. The long-term vision of the Sin

gle European Sky ATM Research (SESAR) program anticipates 

that tasks will eventually be performed collaboratively by hybrid 

human-AI teams.30 The industry AI-oriented use case features 

an AI-based system that monitors real-time ATM data, predicts 

sectorization needs, and implements plans either as recom

mendations or automatically.

Considering the schematic of Figure 1A, for this use case, 

network capacity is influenced by airspace dimensions, route 

structure, the availability of aeronautical systems and equip

ment, traffic demand, airport infrastructure, and staff availability. 

Constraints emerge from unpredictable events that reduce 

nominal sector capacity, such as military airspace activation, 

adverse weather, disruptive incidents, dynamic sectorization, 
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and controller workload. Collaborative decision-making involves 

multiple stakeholders, including technical supervision and main

tenance teams, air traffic controllers, airlines, airport operators, 

the EUROCONTROL network manager, and national air forces. 

Nonetheless, the final decision typically rests with a single oper

ator, either a supervisor or a tactical air traffic controller. Uncer

tainty results from a range of external factors, such as partial 

airspace closures, operational disruptions (e.g., system failures, 

staff strikes, corrective maintenance), adverse weather, sector 

overloads, cybersecurity incidents, and in-flight emergencies. 

Some events, such as military airspace activation, known 

weather systems, scheduled maintenance of aeronautical sys

tems, or anticipated staff shortages, can be forecasted in 

advance, enabling partial mitigation. Air traffic management re

quires balancing multiple objectives, e.g., a) safety vs. capacity, 

where increasing the number of aircraft in a sector or reducing 

separation may strain controller workload and increase the risk 

of critical events, or b) flexibility vs. predictability, where real- 

time adjustments (e.g., re-routing or trajectory changes) 

enhance responsiveness but reduce the predictability required 

for coordinated planning across the network. Regarding tempo

ral constraints and decisions, the following categorization exists: 

a) pre-tactical, taken up to 1–2 h in advance, allowing planned 

measures such as re-sectorization in response to expected con

straints (e.g., military airspace activation, balloon launches); and 

b) tactical, made within minutes to respond to real-time events 

such as sudden staff shortages (e.g., illness and fatigue), capac

ity overloads in adjacent sectors, emergencies, or last-minute 

activation of restricted airspace, and may involve measures 

such as flow adjustments, re-routing, or temporary changes to 

sector boundaries.

For this use case, AI provides visualized sector configurations 

on a map-like interface and learns from logged interactions with 

human supervisors, as depicted in Figure 1B. At lower automation 

levels, humans evaluate AI recommendations, request explana

tions, and adjust decisions. Higher automation levels range from 

‘‘management by consent,’’ where AI acts with human approval, 

to full automation with human oversight limited to post-implemen

tation revisions. In general, the role and feasibility of human over

sight are still critical issues. While adequate human oversight is 

increasingly required by current regulations (e.g., AI Act), it should 

be acknowledged that the extent and way in which human over

sight is actually feasible remains an open question.31,32

Human operators across these three infrastructures and use 

cases face a substantial cognitive load, as effectively managing 

and learning from these tasks requires considerable mental effort. 

This challenge, analyzed in33 for power grid control rooms under 

both normal and emergency conditions, results from the inherent 

complexity and fragmentation of the systems they oversee. Rather 

than increasing this burden, AI should aim to alleviate it by simpli

fying information processing, reducing the number of screens and 

tools human operators need to monitor, and providing contextual 

insights that enhance decision-making without overwhelming 

them. The reduction in cognitive load should not come at the 

cost of decreased transparency or control for human operators.

Finally, the Assessment List for Trustworthy Artificial Intelli

gence (ALTAI)34 was applied to perform an ex ante evaluation 

of these use cases across multiple dimensions, with emphasis 

on technical robustness and safety. This assessment (see23 for 

a detailed analysis) showed that AI-based decision systems in 

safety-critical contexts must be resilient to cyberattacks, data 

disruptions, and model uncertainties. Robustness metrics are 

essential during training and operation to detect adversarial in

puts and compromised outputs. A human-in-the-loop design is 

essential to prevent critical failures, ensuring that final decisions 

remain under human supervision. Adaptability should be sup

ported through transfer and time-adaptive learning, while contin

uous monitoring and stress testing help maintain reliability and 

reproducibility. Fault tolerance, technical reviews, and fallback 

mechanisms are required to manage uncertainty, including clear 

operator notifications and the ability to revert to manual control.

PROPOSED DESIGN OF ENHANCED HUMAN-AI 

SYSTEMS

The interaction between humans and AI in safety-critical infra

structures presents a unique set of challenges that remain not 

completely addressed by existing frameworks. These chal

lenges stem from the complex interplay of requirements for 

transparency, trust, and explainability, coupled with the neces

sity for robust and safe decision-making. Approaches that holis

tically integrate human and AI capabilities while addressing 

these concerns are notably uncommon (or even absent), leaving 

critical gaps in designing, deploying, and maintaining safe and 

effective systems.

The AI side of human-AI interaction

Black-box AI models,35 while capable of achieving remarkable 

accuracy, hinder transparency and explainability, which are 

important for promoting trust in safety-critical contexts.36 Sys

tems relying solely on such models often fail to meet the de

mands of safety-critical operations, where human operators 

must understand and trust AI decisions. In addition to human 

operators, other stakeholders (e.g., supervisors, managers, cli

ents, and regulators) need to understand the models either to 

decide about their use or to retrospectively analyze their use 

(e.g., in case of an accident). To address this, AI agents must 

be designed with components that can be understood by hu

mans, ensuring that the decision-making process aligns with 

human cognitive processes.

Transparency is a way to make understanding possible. In 

addition, it is an enabler for effective collaboration between hu

mans and AI and for promoting trustworthy AI.37 Transparency 

should be integrated into the four stages of the human learning 

cycle: (i) during concrete experience, by explaining various fac

tors of the process to encourage exploration; (ii) during reflective 

observation, by prompting reflection and hypothesis formulation 

about interrelated factors; (iii) during abstract conceptualization, 

by providing data-based evidence for or against the human’s hy

potheses; and (iv) during active experimentation, by enabling 

safe real-world exploration and immediate feedback on out

comes. Furthermore, ensuring this property in safety-critical in

frastructures requires capturing the characteristics of the corre

sponding decision-making processes and properly exploiting 

them. Indeed, instead of implementing large black-box models, 

one should exploit the known domain peculiarities of the use 
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cases under analysis. Examples of that are the integration of 

distributed, hierarchical, or knowledge-assisted approaches in 

decision-making problems.

Distributed decision-making processes (Figure 2A) are meth

odologies where the responsibility for making decisions is 

divided among multiple decision points, each controlled by a 

different AI agent or subsystem.38–40 This approach allows for 

the decomposition of a complex global decision into a series 

of simpler, interconnected local decisions, which can also be 

better understood by human agents. By distributing the deci

sion-making process, the system can leverage localized infor

mation, making it more adaptable, scalable, and resilient to 

changes or disruptions in specific areas.41 In complex systems 

based on a network structure, this paradigm is particularly ad

vantageous. For instance, in a railway network, the system is 

typically divided into regions, each managed by a control center 

responsible for overseeing operations within its jurisdiction. 

These regional centers make decisions regarding train sched

uling, maintenance, and conflict resolution for their specific 

area. However, the effectiveness of the overall railway system 

depends on how well these regional decisions are coordinated 

to ensure a seamless flow of trains, minimize delays, and main

tain safety standards, and distributed methods were already 

applied to railway systems.42 This structure also aligns closely 

with the way power grids operate. In power grids, control centers 

are responsible for managing specific areas of the grid, such as 

balancing supply and demand, ensuring grid stability, and ad

dressing faults in their areas. Similar to the railway network, de

cisions made at a local/regional level – such as topological 

changes to re-routing electricity flows – must be integrated, 

due to cascading effects, into a coherent global strategy to 

ensure the entire grid remains stable and efficient. Multi-agent 

RL has been applied to coordinate both active and reactive po

wer control in photovoltaic generation systems within power 

grids.43 Open challenges in this field involve integrating the exist

ing network structure, which includes control rooms and deci

sion points functioning as decision-making nodes. These chal

lenges encompass associating distributed AI agents with these 

control nodes and determining the optimal information sets for 

effective decision-making.44 Distributed approaches allow 

achieving transparency since the decision process carried out 

in each decision point is simpler and, for this reason, more inter

pretable and understandable by a human being.

Hierarchical decision-making solutions (Figure 2B) provide a 

structured approach to managing complex problems by 

breaking them down into high-level decisions and correspond

ing sequences of interconnected low-level actions.45,46 This 

hierarchical organization reflects the temporal and logical de

pendencies among decisions, allowing the system to handle 

complexity while maintaining clarity and understanding for hu

man operators, who can better grasp the overall system goals.47

For instance, an operator in the power grid might receive a direc

tive to ‘‘reduce the load in Region A by 20%,’’ along with an 

explanation of how the proposed low-level actions – such as 

activating local generators and rerouting surplus power – will 

contribute to achieving this goal. Hierarchical methods have 

been employed for optimal energy management and control of 

distributed energy resources in power grids.48 Similarly, in rail

way management, an operator might be advised to ‘‘alleviate 

congestion in Zone A by diverting trains to secondary routes,’’ 

with the AI providing a breakdown of which trains to reroute 

and when. Methodologies with hierarchical structures have 

been leveraged in railway networks.49 Open challenges include 

the development and analysis of effective hierarchical deci

sion-making algorithms capable of scaling to complex contin

uous states and action spaces.50 Addressing these challenges 

is crucial for enabling the application of such approaches to 

large-scale critical infrastructures. Hierarchical methods pro

mote transparency by clearly differentiating between high-level 

and low-level decisions, enforcing a more understandable view 

of the decision process.

Knowledge-assisted AI reduces the learning complexity by 

combining conventional planning approaches and human 

domain expertise with data-driven learning.51 Hybrid methodol

ogies enable AI to focus on areas where human expertise is 

insufficient or incomplete while leveraging the strengths of es

tablished practices. For instance, integrating human-devised 

safety constraints into AI models can provide a foundation of reli

ability upon which learning-based improvements can build, 

ensuring that AI contributions align with predefined safety and 

operational goals. Knowledge-assisted methods, combining 

neural networks and symbolic structures, have been employed 

in aircraft collision avoidance systems.52 Open challenges 

include exploring less-studied representations, such as incorpo

rating differential or algebraic equations directly into policies or 

value functions. Additionally, underexplored design patterns, 
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A B Figure 2. Comparison between distributed 

and hierarchical decision-making solutions 

(A) Distributed decision-making involves multiple 

agents, each observing (part of) the state of the 

system/environment. The agents may communi

cate with one another to exchange messages and 

individually decide on an action. The collective 

action applied to the system is the union of the 

actions chosen by all the agents. 

(B) Hierarchical decision-making involving a high- 

level agent overseeing the execution of the ac

tions. This structure allows for a layered approach 

to decision-making, where subtasks handle low- 

level actions applied to the system/environment, 

and the high-level agent manages the overall 

strategy.
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such as leveraging symbolic methods as deliberative compo

nents within neural networks, present significant opportunities 

for advancement.53 Another challenge lies in developing modern 

approaches that integrate constraints directly into neural 

network architectures, analogous to54 but adapted for deep ar

chitectures.55 Knowledge-assisted approaches favor transpar

ency since they integrate learning elements with human knowl

edge, which is typically more explainable.

The human side of human-AI interaction

Human decision-making is integral to the functioning of critical 

infrastructure. Consequently, AI needs to support corresponding 

macrocognitive processes (cf. Figure 3) such as monitoring and 

situation awareness.56,57 However, ideally, AI also supports 

learning, motivation, and trust to allow continuous improvement 

and to avoid over-reliance. In this context, human learning entails 

developing an accurate mental model58 of the AI, encompassing 

its capabilities, limitations, and behaviors. Such understanding 

enables operators to anticipate AI actions, interpret its outputs 

effectively, and collaborate seamlessly. Without a well-formed 

mental model, human performance may degrade, particularly 

in high-stress or dynamic scenarios.59 To achieve this, operators 

must continuously update their mental models.60 This involves 

incorporating new information and experiences,61,62 facilitating 

the dynamic learning process necessary for generating accurate 

mental representations of AI.

Trust is another pivotal factor in human-AI interaction. Trust in 

AI must align with the AI’s actual capabilities and scope of appli

cation.17 Mismatched trust levels, whether undertrust or over

trust, can lead to significant issues. Undertrust restricts the utili

zation of AI’s full potential, whereas overtrust – when human 

reliance on AI exceeds its reliability – can result in critical failures, 

which are particularly undesirable in safety-sensitive environ

ments. For instance, during a power grid emergency, an operator 

placing excessive trust in AI recommendations might neglect 

manual interventions essential to mitigating a congested power 

line, potentially causing cascading failures and widespread out

ages. To support appropriate trust, AI agents must transparently 

communicate their capabilities and limitations. Simple explana

tions often fall short, as they require blind trust from users. 

Figure 3. Model of human decision-making where AI can provide transparency to human-AI collaborative decision-making in the following 

forms 

(i) explanation (i.e., AI explains a subject matter), (ii) exploration (i.e., AI supports the human to explore/learn a subject matter), (iii) animation (i.e., AI animates the 

human to reflect on a subject matter), (iv) mirroring (i.e., AI mirrors individualized patterns in human behavior to make the human aware of their own biases and 

variabilities in decision-making), or (v) intuitive interface design. For effective and efficient decisions, AI must support situation awareness by assisting humans in 

monitoring networks and identifying critical points, enabling focused attention. This process relies on mental models encompassing representations of the 

environment (network knowledge), human-human collaboration model (understanding decision impacts on others), AI capabilities (trust and effective interaction), 

and self-models (awareness of decision patterns and biases). These models must be developed and continuously improved through AI-supported human 

learning. Moreover, AI should promote human motivation by complementing operators rather than overwhelming them.
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Instead, AI agents should enable exploratory interactions, allow

ing users to investigate and refine their understanding of the sys

tem. This process leads to an informed trust grounded in expe

rience and a thorough comprehension of the AI, thereby 

enhancing human-AI collaboration.

Intrinsic motivation63 is closely linked to an operator’s percep

tion of the value and impact of their contributions. Without clear 

feedback on outcomes, operators risk disengagement, compro

mising the effectiveness of human-AI partnerships. Feedback 

mechanisms that clearly communicate the results of collabora

tive decisions are vital for maintaining motivation, promoting pro

active behavior, and enabling calibrated trust.17 Both are critical 

in safety-critical systems, as they support the anticipation of 

future events.64 However, current AI decision-support systems 

often increase monotonous monitoring tasks, reducing user 

engagement and overstraining human capabilities.16,65 To 

address these challenges, AI design must integrate principles 

of intrinsic work motivation, ensuring that human operators 

retain an active and meaningful role in decision-making.

In human-AI collaboration, it is suggested that function alloca

tion should not only rely on the humans’ abilities and perfor

mance. Rather, functions allocated to humans need to be 

perceived as meaningful.66 Consequently, not only the what 

and the how of task execution need to be addressed, but espe

cially the why. Therefore, all interaction elements on the AI side, 

such as providing information or asking for information, must 

have a comprehensible purpose for the human. Furthermore, hu

mans experience meaningfulness when the interrelations be

tween their own activities and the activities of others (including 

the AI’s activities) are comprehensible and well-reasoned.

Describing and designing human-AI interactions

For describing and designing human-AI interactions, lessons can 

be learned from human-automation interaction studies in Cogni

tive Systems Engineering (CSE). These studies do not focus exclu

sively on AI, but on any form of technology with which human op

erators need to collaborate. In cognitive engineering, the gist of 

human-automation teamwork is centered around a) team collabo

rations, with an emphasis on sharing and allocating control author

ity and autonomy between humans and automation, and b) auto

mation transparency, aimed at providing deeper system insights 

for fostering understanding, trust, and acceptance.

Currently, a generic design ‘‘cookbook’’ for human-automa

tion interaction does not (yet) exist. Instead, we advocate for 

the integration of two promising and related frameworks that 

can be used for both analyzing and designing human-automa

tion interaction: Joint Control Framework (JCF)4 and Ecological 

Interface Design (EID).67 In its most succinct form, JCF focuses 

on team collaborations by describing the execution and planning 

of activities (e.g., sensing, deciding, and action implementation) 

when those are distributed over different agents. EID focuses 

more on achieving system transparency by visualizing the (phys

ical and intentional) constraints on activities, which determine, in 

large part, the content, structure, and form of a human-machine 

interface. Integrating these two frameworks is possible due to 

their shared common ground, i.e., the CSE. CSE adopts an 

approach to human-machine interaction, where the design 

emphasis is first and foremost put on the work environment in 

which agents operate and activities take place. The work envi

ronment describes the boundaries for actions governed by phys

ical laws, intentional principles, and processes. It essentially de

fines a safe envelope within which actions can take place, initially 

irrespective of who is executing the actions (e.g., humans or 

automated agents). At later (design and analysis) stages, 

agent-specific constraints are included (e.g., capabilities and 

limitations of both human operators and machines).

Given the shared CSE common ground, JCF’s emphasis on 

the execution and planning of activities (team collaborations), 

and EID’s focus on transparency by visualizing the constraints 

on activities, JCF and EID are complementary.23 EID visually re

veals the constraints, relations, and action opportunities at all 

functional abstraction levels, and JCF modulates human-auto

mation coordination on the activity level by putting (a sequence 

of) activities on a timeline describing on what abstraction level 

the system needs to be perceived, warranted by situational de

mands. In other words, EID prescribes what information should 

be portrayed and how, whereas JCF provides guidance on 

when to show information and how that links to specific activities 

(e.g., perceiving system information, formulating a decision, per

forming an action, among others).

PERSPECTIVES

Building on the challenges and opportunities outlined in the pre

vious sections, this part explores critical research directions for 

advancing human-AI collaboration in safety-critical environ

ments. By addressing the interplay between human cognitive 

processes and AI capabilities, these directions aim to enhance 

transparency, trust, and mutual learning. Structured as six key 

theses, these perspectives provide a multidisciplinary frame

work to guide the development of human-AI systems that are 

not only effective and trustworthy but also adaptable to the com

plexities of real-world decision-making scenarios.

The role of function allocation in AI enhanced decision- 

making

The integration of AI into safety-critical systems requires a delib

erate and systematic allocation of functions between humans 

and AI. This allocation should optimize the strengths of both en

tities, achieving synergies that neither humans nor AI could accom

plish independently. For example, AI excels at processing large 

datasets and identifying patterns, while humans bring contextual 

understanding, normative and ethical reasoning, and adaptability 

to novel situations. Function allocation should ensure that AI han

dles tasks requiring speed and precision while humans retain con

trol over decisions requiring judgment, ethical considerations, and 

situation awareness. However, the functions assigned to the hu

man must combine to form a psychologically sensible role, which 

is adequately supported by the AI. For example, it is a prerequisite 

for people to be committed to their role that they experience mean

ingfulness.65 Automation transparency must therefore ensure this 

and provide corresponding insights for the human.

The importance of cognitive transparency and 

explainability in human-AI collaboration

Human-AI collaboration extends beyond the explainability of AI to 

include mechanisms that enhance human cognitive processes. 
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To achieve adequate situation awareness, humans need to 

monitor the network. This must also be supported by AI, for 

example, by helping humans identify critical points in the network 

so they can manage their attention accordingly. Cognitive trans

parency, which involves aligning AI outputs with human reasoning 

processes (described in Figure 3), is essential for effective collab

oration. For instance, an AI agent assisting in controlling an air 

traffic system should not only present its conclusions but also 

explain the rationale behind them in a manner that aligns with 

the operator’s expertise and reasoning.

The aspects that are more about the mechanics of the situa

tion can be explained to build up operator mental models, 

whereas the aspects that are dynamic and situation-dependent 

must be constantly renewed in a process of gaining situation 

awareness.57 We must thus distinguish between the explainer 

approach, which looks backward to motivate system activity, 

versus the transparency approach that shows the current status 

of the process.56 Considering the dynamics of network infra

structure operations, the temporal dimension is a key aspect. 

Taking time into account, the Construal Level Theory (CLT) 

framework departs from a normative perspective, considering 

aspects such as time available to make a decision versus the 

level of detail. At the extremes, there is the executive overview 

level (CLT 1) versus the detailed logs level (CLT 6).68 The CLT 

has been applied, e.g., to aviation.69 Turning toward cognition, 

decision-centric perspectives can be used to determine what 

needs explaining. Modeling then aims to describe a process of 

perceptions and actions surrounding a decision in critical epi

sodes in more detail, on an event horizon. Abstraction here re

gards the external process, in terms of Levels of Autonomy in 

Cognitive Control (LACC). At the boundaries, to keep track of as

sets status or actions (LACC Level 1), versus to determine the sit

uation and context (LACC level 6).4 The aspects that may require 

explaining are those that are not always shown to the operator, e. 

g., if a plan (level 3) is presented to an operator, then in an expla

nation, the relevant goals (level 5), any trade-offs (level 4), or im

plementation-based constraints (level 2) may be relevant to 

explain. For an operator to intervene or collaborate with an AI 

in control, transparency of these same aspects may instead be 

needed, perhaps with the means of adjusting the aspects. This 

transparency aims to promote trust, facilitate learning, and sup

port motivation by enabling humans to understand, validate, and 

effectively interact with AI agents. However, empirical evidence 

on the impact of increased AI transparency on human perfor

mance (e.g., response time, workload, situation awareness) is 

limited and demands further research. Some exploratory studies 

advocate the use of hierarchical information presentation, such 

as ‘‘progressive disclosure,’’70 to deliver explanatory information 

in a phased manner to avoid cognitive overload and display 

clutter.

Cognitive system engineering for human-AI design

Effective human-AI collaboration requires the application of 

cognitive system engineering principles to model decision-mak

ing processes and define system requirements. These models 

should account for human cognitive capacities and limitations, 

ensuring that AI agents are designed to complement, rather 

than overwhelm, human operators. Methods such as Ecological 

Interface Design67,71 and the Joint Control Framework4 are 

particularly valuable for modeling decision-making processes 

and defining requirements for function allocation and visual ele

ments portrayed on an interface that align with human cognitive 

processes, including decision making, learning, trust, and moti

vation. For example, in railway network management, designing 

an AI agent to assist with train scheduling and traffic control in

volves understanding how operators process information and 

make decisions under time pressure. By aligning the AI agent’s 

functionalities with these cognitive processes – such as priori

tizing trains based on their schedules and managing potential 

conflicts at junctions – engineers can significantly enhance sys

tems’ safety, efficiency, and reliability.

Beyond the discussion of task and interface requirements, a 

more fundamental aspect of human-AI teaming is determining 

the extent to which human operators can and should understand 

machine-generated recommendations and actions. Stakeholder 

perspectives play a crucial role in shaping this understanding. 

For instance, tactical operators are typically not computer scien

tists and may neither need nor be expected to grasp the underly

ing algorithms, provided that the AI’s actions ensure safety. In 

contrast, policymakers and technical personnel may require 

deeper insights to assess how specific algorithm configurations 

and trained policies affect overall system performance. Ongoing 

debates within the AI community – particularly between advo

cates of interpretability versus explainability35 – highlight the 

lack of consensus on what humans should understand about AI 

systems and how that understanding should be achieved. Hol

zinger and Muller72 propose the concept of causability as an alter

native, and potentially better, way of determining to what extent 

humans can understand a given machine explanation.

Ensuring safety in AI agents design

Safety is a primary concern in the design of AI agents for safety- 

critical environments. These systems must incorporate robust 

risk management mechanisms and provide quantitative guaran

tees of minimal performance, particularly in rare or corner-case 

scenarios. Such guarantees are essential to mitigating the nega

tive perception of AI errors and promoting human trust in the sys

tem’s reliability. For instance, in power grid management, AI 

agents must undergo rigorous testing to address scenarios 

such as sudden power surges, equipment failures, or unex

pected demand fluctuation. By ensuring that the AI can reliably 

recommend actions, such as rerouting power or isolating 

affected sections of the grid, even under extreme conditions, op

erators can trust the system to maintain network stability 

and safety. For railway systems, the system design ensures 

that no safety-critical situations can occur for rescheduling deci

sions because the signalization is independent of the human-AI 

decision-making system. The adoption of ethics-by-design ap

proaches that allow the identification and management of trust

worthiness-related properties (including safety) of the system 

since early stages of development is fundamental. This means 

methodologies for the early identification of functional and 

non-functional requirements and key performance indicators 

that are explicitly linked to trustworthiness,12 as well as suitable 

strategies for continuous risk management.73,74 Importantly, 

while the development of AI-specific processes for achieving 

and verifying regulatory compliance may be necessary, it is 

crucial that these processes are consistent with domain-specific 
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methods and standards adopted by the operators and users of 

critical infrastructures.

Human-AI co-learning for enhanced decision-making

Human-AI co-learning involves a dynamic process where hu

mans and AI evolve through mutual interaction. In safety-critical 

network control, these mental models involve representations of 

the environment (knowledge about the network to be controlled), 

human-human collaboration (understanding how one’s deci

sions impact others managing other areas of the network), rep

resentations of AI (understanding its capabilities and limitations 

to build trust and interact effectively), and representations of 

oneself (awareness of decision-making patterns and biases). 

Mental models must be developed and continuously improved 

through a human learning process supported by AI. This collab

oration enables humans to refine their skills and understanding, 

while AI adapts its models based on human feedback. In safety- 

critical systems, co-learning enhances decision-making by 

leveraging the complementary strengths of humans and AI. For 

example, in air traffic management, AI can process vast amounts 

of real-time data from multiple sensors to optimize flight paths 

and prevent potential conflicts. Meanwhile, human air traffic 

controllers provide contextual knowledge, situation awareness, 

and normative judgment to address complex or unforeseen sce

narios. This iterative process builds trust, improves perfor

mance, and enables safe and efficient airspace management 

that neither humans nor AI could achieve independently.

Human-AI collaboration under increasing autonomy

Increased automation and even full autonomy may be desirable 

for certain tasks. However, when full automation is not possible, 

i.e., when the human still needs to take a critical role in opera

tions, it remains essential to integrate human needs into the 

design process. Research in human factors has been instru

mental in addressing the limitations associated with assigning 

humans the role of a passive supervisory agent. In this role, hu

man vigilance decreases quickly while fatigue increases. 

Furthermore, skills not used over longer periods are being lost. 

From this standpoint, for having the human-in-the-loop, it is a 

prerequisite to assign them an active role. One possible way to 

do so is to assign the human the role of a ‘‘director,’’ interacting 

with and giving directions to one or more AI agents, which in turn 

can manage and allocate subtasks either hierarchically or in a 

distributed fashion. It is argued that this fulfills human factors’ 

foundational requirements for interested human engagement 

as it supports an adequate human autonomy and situation 

awareness, which is not given in a standard supervisory role. 

In essence, the key to cultivating appropriate trust lies in 

designing AI systems that are not only advanced in their tech

nical capabilities but also in their ability to engage with humans, 

promoting transparency, exploration, and feedback about per

formance and error boundaries. Such an approach ensures 

that trust in AI-based tools is informed by direct experience 

and a comprehensive understanding of AI’s error boundaries, 

leading to more effective and nuanced human-AI collaborations.

THE ROLE OF AI-FRIENDLY DIGITAL ENVIRONMENTS

To develop and benchmark novel human-AI systems, AI-friendly 

simulation environments – designed to support seamless AI inte

gration, training, and interaction while replicating realistic oper

ating scenarios of critical infrastructures – are essential. Exam

ples of such open-source environments include: a) Grid2Op, 

which enables the development and evaluation of power grid op

erations agents24; b) Flatland for developing and testing solu

tions to train rescheduling problems27; and c) BlueSky for the 

validation of AI-driven solutions in realistic air traffic manage

ment scenarios using open data.75

Leveraging these digital environments allows organizations to 

promote internal AI innovation through in-house AI communities 

while facilitating collaboration and co-development with external 

AI networks.76 This approach promotes a cultural shift toward 

data sharing and collaborative construction of digital platforms 

for human-AI development and testing. It also promotes trans

forming traditionally rigid critical infrastructure business models 

into dynamic networks that integrate technological platforms, 

mobility and energy providers, and end-users, potentially as 

Testing and Experimentation Facilities (TEFs) for AI.76 Moreover, 

these efforts help address emerging legal and ethical challenges, 

including liability issues, which are particularly relevant given that 

energy and mobility are classified as high-risk sectors under the 

EU AI Act.15 These environments can also improve human oper

ators’ training efficiency and effectiveness, especially when new 

technologies such as AI are available to support decisions.77

The development trajectory should aim for maximum general

ity by creating a multi-domain environment that integrates 

domain-specific digital environments while offering a suite of 

generic functionalities applicable across a vast majority of do

mains and use cases. These functionalities should include 

network and data representation, interaction mechanisms be

tween controllers and simulations, user-system interfaces, 

training of learning controllers, evaluation tools, and support 

for reproducibility. Moreover, another research direction is to

ward creating experimentation capabilities of bi-directional vir

tual assistants for joint decision making. This will provide the op

portunity to evaluate the forms of exchange between the human 

expert and an AI that continuously learns from the received infor

mation flows and the decisions made by humans, e.g., how to 

visualize the status, how to describe the explanations, and 

how to interact with the interface. A notable example in this di

rection is the Cockpit and Bidirectional Assistant (CAB) project, 

which created an open-source prototype78 with four key panels 

(a simplified representation is provided in Figure 4), which is 

being further enhanced within the AI4REALNET European proj

ect79 and available to various industrial applications such as po

wer grids, railway networks and air traffic management. This 

prototype allows monitoring and evaluating the interactions be

tween human operators and an AI that continuously learns 

from both incoming information flows and human decisions.80

The explanatory aspect of the AI’s recommendations is also cen

tral, adding value to the operator’s decision-making process. 

This has the potential to change the normal operation of an AI 

agent that supports decision-making by making a direct link be

tween the human and the AI, making use of the operator’s im

plicit information to enhance its empathy with the operator. For 

instance, by using psychophysiological data from the operator81

and personalized models to retrieve in real-time the estimation 

levels of stress and cognitive performance, AI assistants will be 

10 iScience 28, 113400, September 19, 2025 

iScience
Perspective

ll
OPEN ACCESS



able to make decisions not only based on the operational 

context, but also taking into account the status of the human 

operator, adapting the complexity, information and interaction 

of tasks with the user. We advocate this implicit symbiosis as a 

research line focused on creating AI assistants that look friendlier 

without the human explicit perception. In the future, virtual assis

tants will be able to determine the profile of the operator and their 

level of cognitive workload and adapt the information flows up

loaded to the operator to manage a complex and/or atypical sit

uation in the best conditions.

CONCLUSIONS

For AI-based decision systems operating critical infrastructures, 

this work claims that more focus should be placed on optimizing 

the degree of decision support of AI to humans, aiming at 

achieving the best possible interaction between humans and 

AI (rather than simply deploying AI-based systems). To accom

plish this, the goal should be to align system design with human 

cognitive processes and limitations and incorporate rigorous 

safety protocols rather than merely implement automation or 

AI. This vision of human-AI interaction not only addresses tech

nical challenges but also offers an opportunity to redefine the 

role of AI as a collaborative partner in safeguarding critical 

systems.

In this vision, the explainability of AI is crucial for developing an 

accurate mental model, as it clarifies the AI’s decision-making 

process. However, it alone does not ensure effective human 

learning. Therefore, transparency is fundamental to understand

ing AI and provides clear, real-time insights into an AI’s activities, 

which is essential for profitable interaction in dynamic contexts. 

However, AI decision support can also go beyond the provision 

of comprehensible suggestions. This is the case when AI specif

ically supports cognitive processes of human decision-making 

(e.g., the ability of humans to develop situation awareness, 

recognize problems, or identify leverage points) with the aim of 

continuously increasing corresponding human capabilities. In 

this way, humans and AI act as a joint cognitive system and 

create true hybrid intelligence, leveraging the strengths of both 

humans and AI.
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