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SUMMARY

Artificial Intelligence (Al) is transforming every aspect of modern society. It demonstrates a high potential to
contribute to more flexible operations of safety-critical network infrastructures under deep transformation to
tackle global challenges, such as climate change, energy transition, efficiency, and digital transformation,
including increasing infrastructure resilience to natural and human-made hazards. The widespread adoption
of Al creates the conditions for a new and inevitable interaction between humans and Al-based decision sys-
tems. In such a scenario, creating an ecosystem in which humans and Al interact healthily, where the roles
and positions of both actors are well-defined, is a critical challenge for research and industry in the coming
years. This perspective article outlines the challenges and requirements for effective human-Al interaction by
taking an interdisciplinary point of view that merges computer science, decision-making sciences, psycho-
logical constructs, and industrial practices. The work focuses on three emblematic safety-critical scenarios
from two different domains: energy (power grids) and mobility (railway networks and air traffic management).

INTRODUCTION

Artificial Intelligence (Al) has the potential to enhance the flexi-
bility and resilience of safety-critical network infrastructures to
address global challenges such as climate change impacts,’
facilitating the seamless integration of renewable energy sour-
ces,’ increasing demand from mobility and energy infrastruc-
tures, and optimizing resources/assets to postpone the need
for significant capital investments in infrastructure reinforce-
ment.® Despite these advantages, Al faces several challenges.
These include ensuring robustness, reliability, transparency,

and ethical compliance to avoid issues such as errors and adver-
sarial attacks. Additionally, Al must manage the complexity and
uncertainty associated with aging assets and the non-stationar-
ity introduced by increasing demand for energy and mobility net-
works. Finally, Al needs to address scalability limitations, partic-
ularly in methods such as reinforcement learning (RL), which
struggle in large-scale network infrastructures.

The widespread adoption of Al is driving a new and inevitable
interaction between humans and Al systems, particularly in pro-
cesses that require real-time decision-making and forecasting.
Traditionally, these infrastructures have been managed by
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humans relying on expertise, control, and supervision software
at different levels of automation. Examples of that are air traffic
management* and power grid operations.® In scenarios such
as Al-assisted operations in power grid control rooms,® such hu-
man-Al interactions are crucial. Although current Al technologies
can incorporate human feedback, such as integrating human
preferences in RL’™® or facilitating interactive natural language
conversations to explain Al models, ' they are not inherently de-
signed to optimize the overall efficiency of socio-technical
systems-hybrid systems composed of technical artifacts, hu-
man beings, institutions, and rules''-nor to maximize human
performance and engagement consistently. This implies that
current applications of Al cannot fully leverage this form of hu-
man-Al interaction, calling for new advancements in scientific
research.

This paper integrates industry-specific knowledge from three
safety-critical domains — power grid, railway network, and air
traffic — where operational scenarios are typically characterized
by multiple features that make the decision-making process
particularly challenging. Indeed, such systems often consist of
complex structures composed of multiple interconnected sub-
systems, requiring many decisions to be made within a limited
amount of time. Furthermore, they are frequently affected by sto-
chasticity, dynamic changes over time, and the need to handle
cascading events and extreme cases. These characteristics
not only make Al highly relevant in such environments but also
reveal the limitations of current methods. Specifically, they high-
light the need for Al systems that are not only robust and scalable
but also designed to collaborate with humans in meaningful
ways. As we will discuss in common decision-making aspects,
despite domain-specific contexts, critical infrastructures face
shared decision-making challenges, including complex human-
Al interaction, multi-stakeholder coordination, and trade-offs un-
der uncertainty, highlighting the need for a common conceptual
framework. '?

To succeed in these domains, Al must go beyond accuracy
and performance—it must be trustworthy. Trustworthiness'® re-
fers to a broad set of properties that capture both the technical
and ethical dimensions of system design and use, including
safety, robustness, transparency, fairness, interpretability, and
explainability.’* These properties are critical for ensuring that
Al systems can be accepted and relied upon in complex, high-
stakes environments. This need is confirmed by the inclusion
of trustworthiness requirements in the emerging regulation of
Al systems, in particular, in the EU Al Act.”® As automation
increasingly takes over cognitive tasks, systems must also pre-
serve human skills, maintain human agency and oversight, and
support effective interaction with AlL'® Achieving this requires
transparent Al agents that help humans understand their out-
puts, learn from them, and assess their limitations."”

Complementing this technical perspective, recent frameworks
such as “Meaningful Human Control”'® and “Human Readiness
Levels”'? stress the importance of designing for effective hu-
man-Al collaboration. These approaches recognize that trust
must be supported by systems that actively engage human de-
cision-making, learning, and motivation.

In this context, joint decision-making between humans and Al
can leverage the complementary strengths of both, ensuring that
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humans remain engaged and informed. Human learning in these
settings involves developing an accurate understanding of the
task and the Al's behavior, supported by feedback and experi-
mentation.” Motivation to collaborate with Al depends on
providing meaningful tasks, autonomy, and timely feedback. A
promising direction to support this is co-learning,?’ where hu-
mans and Al continuously learn from each other to improve over-
all performance. This requires Al agents to be autonomous yet
collaborative, capable of adapting to humans and shared
goals.”® While progress is being made, real-world examples of
such systems remain limited. Therefore, this article offers a
concise overview of practical use cases and requirements in
three safety-critical infrastructures, highlighting key challenges
and research directions (theses) to improve both Al capabilities
and human-Al interaction.

DECISION-MAKING IN THE POWER GRID, THE RAILWAY
NETWORK, AND THE AIR TRAFFIC MANAGEMENT

This section discusses the common challenges in decision-mak-
ing across the three aforementioned safety-critical infrastruc-
tures (i.e., power grid, railway network, and air traffic), adopting
a use case oriented approach that highlights the synergy be-
tween human expertise and Al-driven solutions. The goal is to
identify cross-domain similarities in how decisions are made un-
der uncertainty, time pressure, and system constraints, and, by
aligning perspectives from different infrastructures, it contrib-
utes to establishing a foundational understanding of shared de-
cision-making dynamics and to informing the design of joint hu-
man-Al decision systems.

Common decision-making aspects

To identify common challenges in the decision-making process
across all domains, scenarios were described and analyzed for
each domain with industrial stakeholders in a joint workshop.
These scenarios, which will be discussed in challenges in
today’s operation and use cases section and extensively detailed
in,?® are defined by involving representatives from power network
operators (Réseau de Transport d *Electricité — RTE, TenneT), rail-
way network operators (Deutsche Bahn — DB, Schweizerische
BundesBahnen — SBB), and an air traffic management organiza-
tion (NAV Portugal). In these scenarios, human operators face
complex decision-making challenges that arise from a combina-
tion of external events, collaborative dynamics, conflicting objec-
tives, and tight time constraints (Figure 1A). These decisions
involve iterative interactions between human expertise and Al-
driven insights, aiming to balance operational demands with sys-
tem objectives (Figure 1B). Evenif the decision context is different
for each domain (which can be explained by the fact that each
infrastructure remains intrinsically different), a high degree of sim-
ilarity in the characteristics of the decision-making process was
observed, specifically (see”® for a complete analysis).

(1) Human-Al interaction. Decision-making involves human
operators and Al agents collaborating through manual,
co-learning, and autonomous approaches, with iterative
processes of exploration and feedback to refine and align
actions with system objectives.
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Figure 1. Decisions in safety-critical network infrastructure operations

(A) Decision-making in safety-critical network infrastructure operations involves three key aspects: (i) managing network capacity constraints, identified via
observations and forecasts of the network state, and influenced by uncertainty and external factors; (i) involving multiple operators across different time horizons,
ranging from long-term planning to real-time operations; (jii) operating under time constraints while balancing trade-offs between multiple objectives; and (iv)
deciding on preventive or corrective actions selected from a large action space and planned or implemented in real time, respectively.

(B) The decision-making process is iterative, involving exploration and validation tasks: Exploration assesses potential courses of action, while validation
evaluates these actions against system objectives and constraints. This dynamic back-and-forth interaction integrates interconnected decisions, contributing to

overall infrastructure management.

(2) Multiple operators and other stakeholders. Decisions
involve coordination among diverse stakeholders (e.g.,
airport operators, power grid operators, train dispatchers)
operating across various time frames, from long-term
planning to real-time adjustments.

Action type. Decision-making includes preventive or
corrective actions, which can be planned or executed in
real time. We distinguish between general actions taken
by operators/Al and specific measures — concrete opera-
tional steps or plans addressing specific events.

(4) Action space complexity. The action space is large and
comprises both discrete and continuous elements. lts
complexity grows with system size, such as the number
of power grid nodes, flights, or trains, making decision-
making increasingly challenging.

Network capacity and external events. Operators
manage constraints resulting from disruptions, emergen-
cies, or external factors such as maintenance activities
and public events. These constraints are influenced by
uncertain observations and forecasts, including weather
conditions and human behavior variability.

Time resolution. Real-time analysis enables immediate
responses to urgent issues, while short-term analysis fo-
cuses on daily adjustments and preventive actions. Me-
dium- to long-term analysis supports strategic planning
and forecasting, preparing the infrastructure for future de-
mands and challenges.

Trade-off analysis on conflicting objectives. Operators
must navigate trade-offs between competing objectives,
such as meeting system needs while minimizing adverse
impacts. Effective decision-making requires balancing
these trade-offs, including weighing the probability and
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consequences of critical events to ensure safety and sys-
tem integrity, or balancing operational demands with
environmental goals such as reducing CO, emissions.
Prioritizing tasks effectively is crucial for maintaining oper-
ational efficiency.

The following subsection provides examples of current prac-
tices and use cases that illustrate this decision-making process
in action.

Challenges in today’s operation and use cases
In today’s operations, power grid engineers are highly special-
ized, requiring detailed studies, accurate planning, and complex
decision-making rather than merely following established proto-
cols. They rely heavily on simulation tools with real-time and fore-
cast data but have limited access to decision-support tools such
as automated assistants.®** When addressing issues, engineers
manually explore solutions and verify them using simulations.
They can adjust grid connectivity, re-dispatch generation, limit
consumption, or use battery storage to modify power flows,
identifying the best actions for each specific context. Despite
the range of options, their process depends on experience and
manual simulation.®

An industry-driven Al use case proposes an Al assistant to
support operators by recommending actions and strategies for
real-time congestion management.”® The Al assistant should
function bidirectionally, learning continuously from operator
feedback, as illustrated in Figure 1B. This use case aligns with
the schematic in Figure 1A. Network capacity constraints arise
from thermal, voltage, and stability limits of power grid lines.
Thermal limits depend on the maximum current a line can carry
without exceeding its temperature rating, considering both
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instantaneous and short-duration thresholds. System-wide
limits, such as voltage control, dynamic stability, and inertia,
also restrict transfer capacity. Congestion occurs when these
limits are exceeded, under both N (all elements available) and
N — k (up to k outages, typically k = 1) conditions. Objectives
include managing overloads through remedial actions, maxi-
mizing renewable integration by reducing emergency redispatch
of thermal units, and easing operator workload. The trade-off in-
volves balancing the operational impact of an event, estimated
via forecasts or real-time analysis, against its probability, usually
derived from ex ante statistical studies of past events or fore-
casted by a statistical learning model. Depending on problem
complexity, multiple operators may coordinate, such as control
centers, field teams, market participants, or interconnected po-
wer grid operators. A lead operator is designated ex ante by
operational rules (e.g., geographic responsibility or escalation
to management). Key observations include the current grid
state — measurements and topology (e.g., breaker positions) —
used to assess loading and margin. Operators must also know
the availability of actions, especially real-time flexibilities (e.g.,
cooldown times before switching). To forecast future conditions,
inputs such as planned topological changes, generation and de-
mand forecasts, maintenance schedules (with criticality), and
electricity market signals are essential. Uncertainty can come
from external factors such as storm or fire risks, major events
(e.g., the Olympics), or incidents (e.g., accidents or protests)
that may disrupt grid operations. Regarding time constraints,
each decision, anticipatory or reactive, has a Last Time To
Decide (LTTD), the latest point when action must begin for its ef-
fect to occur before the deadline. LTTD is computed by subtract-
ing the action’s lead time from the deadline. For example, in
response to an overload alarm, LTTD ensures intervention before
thermal expansion forces an automatic line disconnection.
Congestion management typically combines a) preventive ac-
tions, planned in advance when constraints are foreseeable,
lead time is critical, or risk is high; and b) remedial actions, acti-
vated in real-time when fast-acting flexibilities are available. The
choice depends on trade-offs involving availability, LTTD, cost,
and effectiveness.

In railway network operations, densely planned schedules are
frequently disrupted by unexpected events such as delays, infra-
structure defects, or short-term maintenance. Maintaining
smooth operations requires skilled personnel in control centers
to monitor traffic flow around the clock and make quick re-
scheduling decisions.”® These measures include adjusting a
train’s speed, path, or platform. In densely used networks, local
re-scheduling decisions can impact the entire traffic flow and
propagate effects into the future, making this a complex deci-
sion-making task that integrates extensive context under time
and network capacity constraints,”’ aligning with the schematic
in Figure 1A. Network capacity constraints are shaped by train
frequency, scheduling density, and operational strategies such
as prioritizing specific train types (e.g., high-speed or freight).
As for temporal constraints, emergency situations such as acci-
dents or technical failures often demand real-time responses,
with decisions needed within minutes (remedial actions). Short-
term operational adjustments (preventive actions), such as re-
routing due to temporary obstructions or adapting to demand
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fluctuations, may allow slightly longer time horizons, typically
from minutes to a few hours. The railway system requires the
collaboration of multiple operators, encompassing those man-
aging infrastructure, train operations, maintenance, and integra-
tion with other transport modes. This multiple environment is
necessary to address the diverse constraints and ensure effi-
cient, safe railway operations, particularly when integrating Al
technologies. It is necessary to balance trade-offs for the punc-
tuality of different trains, e.g., expanding capacity to accommo-
date more trains or passengers might strain resources or
degrade service quality, affecting punctuality, comfort, and over-
all customer experience. Uncertainty arises from external factors
such as unpredictable timing and duration of maintenance or up-
grade projects (e.g., due to material shortages), extreme weather
conditions requiring operational changes, and technical failures
such as signal malfunctions or rolling stock breakdowns that
cause unplanned delays and disruptions.

Railway network operators explore different modes of human-
Al interaction and different degrees of automation to improve re-
scheduling performance. The different modes and degrees of
automation are: a) highly automated Al re-scheduling systems
that monitor the real-time state of trains and tracks, detect is-
sues, decide automatically on actions, and execute them. Su-
pervisors review system’s performance, adjusting parameters
such as prioritization criteria, delay thresholds, or recalculation
algorithms as needed; b) human-Al joint decision-making sys-
tems, where an Al assistant can support the exploration of alter-
native re-scheduling solutions or validate suggestions by human
operations. Human operators can also validate alternative Al re-
scheduling solutions based on operational priorities or additional
contextual information not integrated into the Al system. Hu-
mans and Al continuously monitor the ongoing traffic and both
decide on actions for rescheduling in a continuous exploration
and validation loop (see Figure 1B).

Airspace sectorization divides airspace into manageable re-
gions called sectors to ensure safe and efficient air traffic
management by reducing controller workload and optimizing
traffic flow.?® Currently, this task is solely managed by air traffic
control supervisors, who decide when and how to split or
merge sectors based on situational demands and available
personnel.?® While scattered information is available across
platforms, no integrated decision-support system is available
to assist supervisors or automate the sectorization process,
considering trajectory efficiency (e.g., flight time and fuel
burn) and sector capacity limits. The long-term vision of the Sin-
gle European Sky ATM Research (SESAR) program anticipates
that tasks will eventually be performed collaboratively by hybrid
human-Al teams.*° The industry Al-oriented use case features
an Al-based system that monitors real-time ATM data, predicts
sectorization needs, and implements plans either as recom-
mendations or automatically.

Considering the schematic of Figure 1A, for this use case,
network capacity is influenced by airspace dimensions, route
structure, the availability of aeronautical systems and equip-
ment, traffic demand, airport infrastructure, and staff availability.
Constraints emerge from unpredictable events that reduce
nominal sector capacity, such as military airspace activation,
adverse weather, disruptive incidents, dynamic sectorization,
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and controller workload. Collaborative decision-making involves
multiple stakeholders, including technical supervision and main-
tenance teams, air traffic controllers, airlines, airport operators,
the EUROCONTROL network manager, and national air forces.
Nonetheless, the final decision typically rests with a single oper-
ator, either a supervisor or a tactical air traffic controller. Uncer-
tainty results from a range of external factors, such as partial
airspace closures, operational disruptions (e.g., system failures,
staff strikes, corrective maintenance), adverse weather, sector
overloads, cybersecurity incidents, and in-flight emergencies.
Some events, such as military airspace activation, known
weather systems, scheduled maintenance of aeronautical sys-
tems, or anticipated staff shortages, can be forecasted in
advance, enabling partial mitigation. Air traffic management re-
quires balancing multiple objectives, e.g., a) safety vs. capacity,
where increasing the number of aircraft in a sector or reducing
separation may strain controller workload and increase the risk
of critical events, or b) flexibility vs. predictability, where real-
time adjustments (e.g., re-routing or trajectory changes)
enhance responsiveness but reduce the predictability required
for coordinated planning across the network. Regarding tempo-
ral constraints and decisions, the following categorization exists:
a) pre-tactical, taken up to 1-2 h in advance, allowing planned
measures such as re-sectorization in response to expected con-
straints (e.g., military airspace activation, balloon launches); and
b) tactical, made within minutes to respond to real-time events
such as sudden staff shortages (e.g., illness and fatigue), capac-
ity overloads in adjacent sectors, emergencies, or last-minute
activation of restricted airspace, and may involve measures
such as flow adjustments, re-routing, or temporary changes to
sector boundaries.

For this use case, Al provides visualized sector configurations
on a map-like interface and learns from logged interactions with
human supervisors, as depicted in Figure 1B. At lower automation
levels, humans evaluate Al recommendations, request explana-
tions, and adjust decisions. Higher automation levels range from
“management by consent,” where Al acts with human approval,
to full automation with human oversight limited to post-implemen-
tation revisions. In general, the role and feasibility of human over-
sight are still critical issues. While adequate human oversight is
increasingly required by current regulations (e.g., Al Act), it should
be acknowledged that the extent and way in which human over-
sight is actually feasible remains an open question.*'*

Human operators across these three infrastructures and use
cases face a substantial cognitive load, as effectively managing
and learning from these tasks requires considerable mental effort.
This challenge, analyzed in®® for power grid control rooms under
both normal and emergency conditions, results from the inherent
complexity and fragmentation of the systems they oversee. Rather
than increasing this burden, Al should aim to alleviate it by simpli-
fying information processing, reducing the number of screens and
tools human operators need to monitor, and providing contextual
insights that enhance decision-making without overwhelming
them. The reduction in cognitive load should not come at the
cost of decreased transparency or control for human operators.

Finally, the Assessment List for Trustworthy Artificial Intelli-
gence (ALTAI®** was applied to perform an ex ante evaluation
of these use cases across multiple dimensions, with emphasis

¢? CellPress

OPEN ACCESS

on technical robustness and safety. This assessment (see”* for
a detailed analysis) showed that Al-based decision systems in
safety-critical contexts must be resilient to cyberattacks, data
disruptions, and model uncertainties. Robustness metrics are
essential during training and operation to detect adversarial in-
puts and compromised outputs. A human-in-the-loop design is
essential to prevent critical failures, ensuring that final decisions
remain under human supervision. Adaptability should be sup-
ported through transfer and time-adaptive learning, while contin-
uous monitoring and stress testing help maintain reliability and
reproducibility. Fault tolerance, technical reviews, and fallback
mechanisms are required to manage uncertainty, including clear
operator notifications and the ability to revert to manual control.

PROPOSED DESIGN OF ENHANCED HUMAN-AI
SYSTEMS

The interaction between humans and Al in safety-critical infra-
structures presents a unique set of challenges that remain not
completely addressed by existing frameworks. These chal-
lenges stem from the complex interplay of requirements for
transparency, trust, and explainability, coupled with the neces-
sity for robust and safe decision-making. Approaches that holis-
tically integrate human and Al capabilities while addressing
these concerns are notably uncommon (or even absent), leaving
critical gaps in designing, deploying, and maintaining safe and
effective systems.

The Al side of human-Al interaction

Black-box Al models,*® while capable of achieving remarkable
accuracy, hinder transparency and explainability, which are
important for promoting trust in safety-critical contexts.*® Sys-
tems relying solely on such models often fail to meet the de-
mands of safety-critical operations, where human operators
must understand and trust Al decisions. In addition to human
operators, other stakeholders (e.g., supervisors, managers, cli-
ents, and regulators) need to understand the models either to
decide about their use or to retrospectively analyze their use
(e.g., in case of an accident). To address this, Al agents must
be designed with components that can be understood by hu-
mans, ensuring that the decision-making process aligns with
human cognitive processes.

Transparency is a way to make understanding possible. In
addition, it is an enabler for effective collaboration between hu-
mans and Al and for promoting trustworthy AL®7 Transparency
should be integrated into the four stages of the human learning
cycle: (i) during concrete experience, by explaining various fac-
tors of the process to encourage exploration; (i) during reflective
observation, by prompting reflection and hypothesis formulation
about interrelated factors; (jii) during abstract conceptualization,
by providing data-based evidence for or against the human’s hy-
potheses; and (iv) during active experimentation, by enabling
safe real-world exploration and immediate feedback on out-
comes. Furthermore, ensuring this property in safety-critical in-
frastructures requires capturing the characteristics of the corre-
sponding decision-making processes and properly exploiting
them. Indeed, instead of implementing large black-box models,
one should exploit the known domain peculiarities of the use
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cases under analysis. Examples of that are the integration of
distributed, hierarchical, or knowledge-assisted approaches in
decision-making problems.

Distributed decision-making processes (Figure 2A) are meth-
odologies where the responsibility for making decisions is
divided among multiple decision points, each controlled by a
different Al agent or subsystem.*®*=*° This approach allows for
the decomposition of a complex global decision into a series
of simpler, interconnected local decisions, which can also be
better understood by human agents. By distributing the deci-
sion-making process, the system can leverage localized infor-
mation, making it more adaptable, scalable, and resilient to
changes or disruptions in specific areas.”’ In complex systems
based on a network structure, this paradigm is particularly ad-
vantageous. For instance, in a railway network, the system is
typically divided into regions, each managed by a control center
responsible for overseeing operations within its jurisdiction.
These regional centers make decisions regarding train sched-
uling, maintenance, and conflict resolution for their specific
area. However, the effectiveness of the overall railway system
depends on how well these regional decisions are coordinated
to ensure a seamless flow of trains, minimize delays, and main-
tain safety standards, and distributed methods were already
applied to railway systems.*” This structure also aligns closely
with the way power grids operate. In power grids, control centers
are responsible for managing specific areas of the grid, such as
balancing supply and demand, ensuring grid stability, and ad-
dressing faults in their areas. Similar to the railway network, de-
cisions made at a local/regional level — such as topological
changes to re-routing electricity flows — must be integrated,
due to cascading effects, into a coherent global strategy to
ensure the entire grid remains stable and efficient. Multi-agent
RL has been applied to coordinate both active and reactive po-
wer control in photovoltaic generation systems within power
grids.*® Open challenges in this field involve integrating the exist-
ing network structure, which includes control rooms and deci-
sion points functioning as decision-making nodes. These chal-
lenges encompass associating distributed Al agents with these
control nodes and determining the optimal information sets for
effective decision-making.** Distributed approaches allow
achieving transparency since the decision process carried out
in each decision point is simpler and, for this reason, more inter-
pretable and understandable by a human being.
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level actions applied to the system/environment,
and the high-level agent manages the overall
strategy.

Hierarchical decision-making solutions (Figure 2B) provide a
structured approach to managing complex problems by
breaking them down into high-level decisions and correspond-
ing sequences of interconnected low-level actions.*>*® This
hierarchical organization reflects the temporal and logical de-
pendencies among decisions, allowing the system to handle
complexity while maintaining clarity and understanding for hu-
man operators, who can better grasp the overall system goals.*’
For instance, an operator in the power grid might receive a direc-
tive to “reduce the load in Region A by 20%,” along with an
explanation of how the proposed low-level actions — such as
activating local generators and rerouting surplus power — will
contribute to achieving this goal. Hierarchical methods have
been employed for optimal energy management and control of
distributed energy resources in power grids.*® Similarly, in rail-
way management, an operator might be advised to “alleviate
congestion in Zone A by diverting trains to secondary routes,”
with the Al providing a breakdown of which trains to reroute
and when. Methodologies with hierarchical structures have
been leveraged in railway networks.*® Open challenges include
the development and analysis of effective hierarchical deci-
sion-making algorithms capable of scaling to complex contin-
uous states and action spaces.®® Addressing these challenges
is crucial for enabling the application of such approaches to
large-scale critical infrastructures. Hierarchical methods pro-
mote transparency by clearly differentiating between high-level
and low-level decisions, enforcing a more understandable view
of the decision process.

Knowledge-assisted Al reduces the learning complexity by
combining conventional planning approaches and human
domain expertise with data-driven learning.”" Hybrid methodol-
ogies enable Al to focus on areas where human expertise is
insufficient or incomplete while leveraging the strengths of es-
tablished practices. For instance, integrating human-devised
safety constraints into Al models can provide a foundation of reli-
ability upon which learning-based improvements can build,
ensuring that Al contributions align with predefined safety and
operational goals. Knowledge-assisted methods, combining
neural networks and symbolic structures, have been employed
in aircraft collision avoidance systems.°”> Open challenges
include exploring less-studied representations, such as incorpo-
rating differential or algebraic equations directly into policies or
value functions. Additionally, underexplored design patterns,
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Figure 3. Model of human decision-making where Al can provide transparency to human-Al collaborative decision-making in the following

forms

()) explanation (i.e., Al explains a subject matter), (i) exploration (i.e., Al supports the human to explore/learn a subject matter), (i) animation (i.e., Al animates the
human to reflect on a subject matter), (iv) mirroring (i.e., Al mirrors individualized patterns in human behavior to make the human aware of their own biases and
variabilities in decision-making), or (v) intuitive interface design. For effective and efficient decisions, Al must support situation awareness by assisting humans in
monitoring networks and identifying critical points, enabling focused attention. This process relies on mental models encompassing representations of the
environment (network knowledge), human-human collaboration model (understanding decision impacts on others), Al capabilities (trust and effective interaction),
and self-models (awareness of decision patterns and biases). These models must be developed and continuously improved through Al-supported human
learning. Moreover, Al should promote human motivation by complementing operators rather than overwhelming them.

such as leveraging symbolic methods as deliberative compo-
nents within neural networks, present significant opportunities
for advancement.®® Another challenge lies in developing modern
approaches that integrate constraints directly into neural
network architectures, analogous to®* but adapted for deep ar-
chitectures.®® Knowledge-assisted approaches favor transpar-
ency since they integrate learning elements with human knowl-
edge, which is typically more explainable.

The human side of human-Al interaction

Human decision-making is integral to the functioning of critical
infrastructure. Consequently, Al needs to support corresponding
macrocognitive processes (cf. Figure 3) such as monitoring and
situation awareness.’®°>” However, ideally, Al also supports
learning, motivation, and trust to allow continuous improvement
and to avoid over-reliance. In this context, human learning entails
developing an accurate mental model*® of the Al, encompassing
its capabilities, limitations, and behaviors. Such understanding
enables operators to anticipate Al actions, interpret its outputs
effectively, and collaborate seamlessly. Without a well-formed

mental model, human performance may degrade, particularly
in high-stress or dynamic scenarios.’® To achieve this, operators
must continuously update their mental models.®° This involves
incorporating new information and experiences,®'"®? facilitating
the dynamic learning process necessary for generating accurate
mental representations of Al.

Trust is another pivotal factor in human-Al interaction. Trust in
Al must align with the Al’s actual capabilities and scope of appli-
cation.'” Mismatched trust levels, whether undertrust or over-
trust, can lead to significant issues. Undertrust restricts the utili-
zation of Al's full potential, whereas overtrust — when human
reliance on Al exceeds its reliability — can result in critical failures,
which are particularly undesirable in safety-sensitive environ-
ments. For instance, during a power grid emergency, an operator
placing excessive trust in Al recommendations might neglect
manual interventions essential to mitigating a congested power
line, potentially causing cascading failures and widespread out-
ages. To support appropriate trust, Al agents must transparently
communicate their capabilities and limitations. Simple explana-
tions often fall short, as they require blind trust from users.
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Instead, Al agents should enable exploratory interactions, allow-
ing users to investigate and refine their understanding of the sys-
tem. This process leads to an informed trust grounded in expe-
rience and a thorough comprehension of the Al, thereby
enhancing human-Al collaboration.

Intrinsic motivation®® is closely linked to an operator’s percep-
tion of the value and impact of their contributions. Without clear
feedback on outcomes, operators risk disengagement, compro-
mising the effectiveness of human-Al partnerships. Feedback
mechanisms that clearly communicate the results of collabora-
tive decisions are vital for maintaining motivation, promoting pro-
active behavior, and enabling calibrated trust.'” Both are critical
in safety-critical systems, as they support the anticipation of
future events.®* However, current Al decision-support systems
often increase monotonous monitoring tasks, reducing user
engagement and overstraining human capabilities.'®®> To
address these challenges, Al design must integrate principles
of intrinsic work motivation, ensuring that human operators
retain an active and meaningful role in decision-making.

In human-Al collaboration, it is suggested that function alloca-
tion should not only rely on the humans’ abilities and perfor-
mance. Rather, functions allocated to humans need to be
perceived as meaningful.?® Consequently, not only the what
and the how of task execution need to be addressed, but espe-
cially the why. Therefore, all interaction elements on the Al side,
such as providing information or asking for information, must
have a comprehensible purpose for the human. Furthermore, hu-
mans experience meaningfulness when the interrelations be-
tween their own activities and the activities of others (including
the Al’s activities) are comprehensible and well-reasoned.

Describing and designing human-Al interactions

For describing and designing human-Al interactions, lessons can
be learned from human-automation interaction studies in Cogni-
tive Systems Engineering (CSE). These studies do not focus exclu-
sively on Al, but on any form of technology with which human op-
erators need to collaborate. In cognitive engineering, the gist of
human-automation teamwork is centered around a) team collabo-
rations, with an emphasis on sharing and allocating control author-
ity and autonomy between humans and automation, and b) auto-
mation transparency, aimed at providing deeper system insights
for fostering understanding, trust, and acceptance.

Currently, a generic design “cookbook” for human-automa-
tion interaction does not (yet) exist. Instead, we advocate for
the integration of two promising and related frameworks that
can be used for both analyzing and designing human-automa-
tion interaction: Joint Control Framework (JCF)* and Ecological
Interface Design (EID).%” In its most succinct form, JCF focuses
on team collaborations by describing the execution and planning
of activities (e.g., sensing, deciding, and action implementation)
when those are distributed over different agents. EID focuses
more on achieving system transparency by visualizing the (phys-
ical and intentional) constraints on activities, which determine, in
large part, the content, structure, and form of a human-machine
interface. Integrating these two frameworks is possible due to
their shared common ground, i.e., the CSE. CSE adopts an
approach to human-machine interaction, where the design
emphasis is first and foremost put on the work environment in
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which agents operate and activities take place. The work envi-
ronment describes the boundaries for actions governed by phys-
ical laws, intentional principles, and processes. It essentially de-
fines a safe envelope within which actions can take place, initially
irrespective of who is executing the actions (e.g., humans or
automated agents). At later (design and analysis) stages,
agent-specific constraints are included (e.g., capabilities and
limitations of both human operators and machines).

Given the shared CSE common ground, JCF’s emphasis on
the execution and planning of activities (team collaborations),
and EID’s focus on transparency by visualizing the constraints
on activities, JCF and EID are complementary.”® EID visually re-
veals the constraints, relations, and action opportunities at all
functional abstraction levels, and JCF modulates human-auto-
mation coordination on the activity level by putting (a sequence
of) activities on a timeline describing on what abstraction level
the system needs to be perceived, warranted by situational de-
mands. In other words, EID prescribes what information should
be portrayed and how, whereas JCF provides guidance on
when to show information and how that links to specific activities
(e.g., perceiving system information, formulating a decision, per-
forming an action, among others).

PERSPECTIVES

Building on the challenges and opportunities outlined in the pre-
vious sections, this part explores critical research directions for
advancing human-Al collaboration in safety-critical environ-
ments. By addressing the interplay between human cognitive
processes and Al capabilities, these directions aim to enhance
transparency, trust, and mutual learning. Structured as six key
theses, these perspectives provide a multidisciplinary frame-
work to guide the development of human-Al systems that are
not only effective and trustworthy but also adaptable to the com-
plexities of real-world decision-making scenarios.

The role of function allocation in Al enhanced decision-
making

The integration of Al into safety-critical systems requires a delib-
erate and systematic allocation of functions between humans
and Al. This allocation should optimize the strengths of both en-
tities, achieving synergies that neither humans nor Al could accom-
plish independently. For example, Al excels at processing large
datasets and identifying patterns, while humans bring contextual
understanding, normative and ethical reasoning, and adaptability
to novel situations. Function allocation should ensure that Al han-
dles tasks requiring speed and precision while humans retain con-
trol over decisions requiring judgment, ethical considerations, and
situation awareness. However, the functions assigned to the hu-
man must combine to form a psychologically sensible role, which
is adequately supported by the Al. For example, it is a prerequisite
for people to be committed to their role that they experience mean-
ingfulness.®® Automation transparency must therefore ensure this
and provide corresponding insights for the human.

The importance of cognitive transparency and
explainability in human-Al collaboration

Human-Al collaboration extends beyond the explainability of Al to
include mechanisms that enhance human cognitive processes.
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To achieve adequate situation awareness, humans need to
monitor the network. This must also be supported by Al, for
example, by helping humans identify critical points in the network
so they can manage their attention accordingly. Cognitive trans-
parency, which involves aligning Al outputs with human reasoning
processes (described in Figure 3), is essential for effective collab-
oration. For instance, an Al agent assisting in controlling an air
traffic system should not only present its conclusions but also
explain the rationale behind them in a manner that aligns with
the operator’s expertise and reasoning.

The aspects that are more about the mechanics of the situa-
tion can be explained to build up operator mental models,
whereas the aspects that are dynamic and situation-dependent
must be constantly renewed in a process of gaining situation
awareness.”” We must thus distinguish between the explainer
approach, which looks backward to motivate system activity,
versus the transparency approach that shows the current status
of the process.”® Considering the dynamics of network infra-
structure operations, the temporal dimension is a key aspect.
Taking time into account, the Construal Level Theory (CLT)
framework departs from a normative perspective, considering
aspects such as time available to make a decision versus the
level of detail. At the extremes, there is the executive overview
level (CLT 1) versus the detailed logs level (CLT 6).°® The CLT
has been applied, e.g., to aviation.®® Turning toward cognition,
decision-centric perspectives can be used to determine what
needs explaining. Modeling then aims to describe a process of
perceptions and actions surrounding a decision in critical epi-
sodes in more detail, on an event horizon. Abstraction here re-
gards the external process, in terms of Levels of Autonomy in
Cognitive Control (LACC). At the boundaries, to keep track of as-
sets status or actions (LACC Level 1), versus to determine the sit-
uation and context (LACC level 6).” The aspects that may require
explaining are those that are not always shown to the operator, e.
g., ifaplan (level 3) is presented to an operator, then in an expla-
nation, the relevant goals (level 5), any trade-offs (level 4), or im-
plementation-based constraints (level 2) may be relevant to
explain. For an operator to intervene or collaborate with an Al
in control, transparency of these same aspects may instead be
needed, perhaps with the means of adjusting the aspects. This
transparency aims to promote trust, facilitate learning, and sup-
port motivation by enabling humans to understand, validate, and
effectively interact with Al agents. However, empirical evidence
on the impact of increased Al transparency on human perfor-
mance (e.g., response time, workload, situation awareness) is
limited and demands further research. Some exploratory studies
advocate the use of hierarchical information presentation, such
as “progressive disclosure,”’° to deliver explanatory information
in a phased manner to avoid cognitive overload and display
Clutter.

Cognitive system engineering for human-Al design

Effective human-Al collaboration requires the application of
cognitive system engineering principles to model decision-mak-
ing processes and define system requirements. These models
should account for human cognitive capacities and limitations,
ensuring that Al agents are designed to complement, rather
than overwhelm, human operators. Methods such as Ecological
Interface Design®”’" and the Joint Control Framework® are
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particularly valuable for modeling decision-making processes
and defining requirements for function allocation and visual ele-
ments portrayed on an interface that align with human cognitive
processes, including decision making, learning, trust, and moti-
vation. For example, in railway network management, designing
an Al agent to assist with train scheduling and traffic control in-
volves understanding how operators process information and
make decisions under time pressure. By aligning the Al agent’s
functionalities with these cognitive processes — such as priori-
tizing trains based on their schedules and managing potential
conflicts at junctions — engineers can significantly enhance sys-
tems’ safety, efficiency, and reliability.

Beyond the discussion of task and interface requirements, a
more fundamental aspect of human-Al teaming is determining
the extent to which human operators can and should understand
machine-generated recommendations and actions. Stakeholder
perspectives play a crucial role in shaping this understanding.
For instance, tactical operators are typically not computer scien-
tists and may neither need nor be expected to grasp the underly-
ing algorithms, provided that the Al's actions ensure safety. In
contrast, policymakers and technical personnel may require
deeper insights to assess how specific algorithm configurations
and trained policies affect overall system performance. Ongoing
debates within the Al community — particularly between advo-
cates of interpretability versus explainability®®> — highlight the
lack of consensus on what humans should understand about Al
systems and how that understanding should be achieved. Hol-
zinger and Muller’? propose the concept of causability as an alter-
native, and potentially better, way of determining to what extent
humans can understand a given machine explanation.
Ensuring safety in Al agents design
Safety is a primary concern in the design of Al agents for safety-
critical environments. These systems must incorporate robust
risk management mechanisms and provide quantitative guaran-
tees of minimal performance, particularly in rare or corner-case
scenarios. Such guarantees are essential to mitigating the nega-
tive perception of Al errors and promoting human trust in the sys-
tem’s reliability. For instance, in power grid management, Al
agents must undergo rigorous testing to address scenarios
such as sudden power surges, equipment failures, or unex-
pected demand fluctuation. By ensuring that the Al can reliably
recommend actions, such as rerouting power or isolating
affected sections of the grid, even under extreme conditions, op-
erators can trust the system to maintain network stability
and safety. For railway systems, the system design ensures
that no safety-critical situations can occur for rescheduling deci-
sions because the signalization is independent of the human-Al
decision-making system. The adoption of ethics-by-design ap-
proaches that allow the identification and management of trust-
worthiness-related properties (including safety) of the system
since early stages of development is fundamental. This means
methodologies for the early identification of functional and
non-functional requirements and key performance indicators
that are explicitly linked to trustworthiness,'” as well as suitable
strategies for continuous risk management.”>’* Importantly,
while the development of Al-specific processes for achieving
and verifying regulatory compliance may be necessary, it is
crucial that these processes are consistent with domain-specific
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methods and standards adopted by the operators and users of
critical infrastructures.

Human-AI co-learning for enhanced decision-making
Human-Al co-learning involves a dynamic process where hu-
mans and Al evolve through mutual interaction. In safety-critical
network control, these mental models involve representations of
the environment (knowledge about the network to be controlled),
human-human collaboration (understanding how one’s deci-
sions impact others managing other areas of the network), rep-
resentations of Al (understanding its capabilities and limitations
to build trust and interact effectively), and representations of
oneself (awareness of decision-making patterns and biases).
Mental models must be developed and continuously improved
through a human learning process supported by Al. This collab-
oration enables humans to refine their skills and understanding,
while Al adapts its models based on human feedback. In safety-
critical systems, co-learning enhances decision-making by
leveraging the complementary strengths of humans and Al. For
example, in air traffic management, Al can process vast amounts
of real-time data from multiple sensors to optimize flight paths
and prevent potential conflicts. Meanwhile, human air traffic
controllers provide contextual knowledge, situation awareness,
and normative judgment to address complex or unforeseen sce-
narios. This iterative process builds trust, improves perfor-
mance, and enables safe and efficient airspace management
that neither humans nor Al could achieve independently.
Human-AlI collaboration under increasing autonomy
Increased automation and even full autonomy may be desirable
for certain tasks. However, when full automation is not possible,
i.e., when the human still needs to take a critical role in opera-
tions, it remains essential to integrate human needs into the
design process. Research in human factors has been instru-
mental in addressing the limitations associated with assigning
humans the role of a passive supervisory agent. In this role, hu-
man vigilance decreases quickly while fatigue increases.
Furthermore, skills not used over longer periods are being lost.
From this standpoint, for having the human-in-the-loop, it is a
prerequisite to assign them an active role. One possible way to
do so is to assign the human the role of a “director,” interacting
with and giving directions to one or more Al agents, which in turn
can manage and allocate subtasks either hierarchically or in a
distributed fashion. It is argued that this fulfills human factors’
foundational requirements for interested human engagement
as it supports an adequate human autonomy and situation
awareness, which is not given in a standard supervisory role.
In essence, the key to cultivating appropriate trust lies in
designing Al systems that are not only advanced in their tech-
nical capabilities but also in their ability to engage with humans,
promoting transparency, exploration, and feedback about per-
formance and error boundaries. Such an approach ensures
that trust in Al-based tools is informed by direct experience
and a comprehensive understanding of Al’s error boundaries,
leading to more effective and nuanced human-Al collaborations.

THE ROLE OF AI-FRIENDLY DIGITAL ENVIRONMENTS

To develop and benchmark novel human-Al systems, Al-friendly
simulation environments — designed to support seamless Al inte-
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gration, training, and interaction while replicating realistic oper-
ating scenarios of critical infrastructures — are essential. Exam-
ples of such open-source environments include: a) Grid20p,
which enables the development and evaluation of power grid op-
erations agents®*; b) Flatland for developing and testing solu-
tions to train rescheduling problems®’; and c) BlueSky for the
validation of Al-driven solutions in realistic air traffic manage-
ment scenarios using open data.””

Leveraging these digital environments allows organizations to
promote internal Al innovation through in-house Al communities
while facilitating collaboration and co-development with external
Al networks.”® This approach promotes a cultural shift toward
data sharing and collaborative construction of digital platforms
for human-Al development and testing. It also promotes trans-
forming traditionally rigid critical infrastructure business models
into dynamic networks that integrate technological platforms,
mobility and energy providers, and end-users, potentially as
Testing and Experimentation Facilities (TEFs) for Al.”® Moreover,
these efforts help address emerging legal and ethical challenges,
including liability issues, which are particularly relevant given that
energy and mobility are classified as high-risk sectors under the
EU Al Act."® These environments can also improve human oper-
ators’ training efficiency and effectiveness, especially when new
technologies such as Al are available to support decisions.””

The development trajectory should aim for maximum general-
ity by creating a multi-domain environment that integrates
domain-specific digital environments while offering a suite of
generic functionalities applicable across a vast majority of do-
mains and use cases. These functionalities should include
network and data representation, interaction mechanisms be-
tween controllers and simulations, user-system interfaces,
training of learning controllers, evaluation tools, and support
for reproducibility. Moreover, another research direction is to-
ward creating experimentation capabilities of bi-directional vir-
tual assistants for joint decision making. This will provide the op-
portunity to evaluate the forms of exchange between the human
expert and an Al that continuously learns from the received infor-
mation flows and the decisions made by humans, e.g., how to
visualize the status, how to describe the explanations, and
how to interact with the interface. A notable example in this di-
rection is the Cockpit and Bidirectional Assistant (CAB) project,
which created an open-source prototype’® with four key panels
(a simplified representation is provided in Figure 4), which is
being further enhanced within the AI4REALNET European proj-
ect’® and available to various industrial applications such as po-
wer grids, railway networks and air traffic management. This
prototype allows monitoring and evaluating the interactions be-
tween human operators and an Al that continuously learns
from both incoming information flows and human decisions.®°
The explanatory aspect of the Al’'s recommendations is also cen-
tral, adding value to the operator’s decision-making process.
This has the potential to change the normal operation of an Al
agent that supports decision-making by making a direct link be-
tween the human and the Al, making use of the operator’s im-
plicit information to enhance its empathy with the operator. For
instance, by using psychophysiological data from the operator®’
and personalized models to retrieve in real-time the estimation
levels of stress and cognitive performance, Al assistants will be
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Figure 4. Experimentation of bi-directional virtual assistants for joint decision-making using the CAB framework’s prototype and its

instantiation for the power grid use case

It consists of four key panels: the Context Panel, displaying a real-time view of the environment (e.g., the power grid and its components) with tools such as
zooming; the Timeline Panel, tracking time steps and event history for analysis; the Alerts Panel, listing notifications about risks and events (e.g., power line
overloads and contingency risks); and the Recommendations Panel, offering Al-based suggestions that operators can adopt based on their expertise and the
complexity of the situation (e.g., topological or redispatching actions with KPIs on the impact).

able to make decisions not only based on the operational
context, but also taking into account the status of the human
operator, adapting the complexity, information and interaction
of tasks with the user. We advocate this implicit symbiosis as a
research line focused on creating Al assistants that look friendlier
without the human explicit perception. In the future, virtual assis-
tants will be able to determine the profile of the operator and their
level of cognitive workload and adapt the information flows up-
loaded to the operator to manage a complex and/or atypical sit-
uation in the best conditions.

CONCLUSIONS

For Al-based decision systems operating critical infrastructures,
this work claims that more focus should be placed on optimizing
the degree of decision support of Al to humans, aiming at
achieving the best possible interaction between humans and
Al (rather than simply deploying Al-based systems). To accom-
plish this, the goal should be to align system design with human
cognitive processes and limitations and incorporate rigorous
safety protocols rather than merely implement automation or
Al. This vision of human-Al interaction not only addresses tech-
nical challenges but also offers an opportunity to redefine the
role of Al as a collaborative partner in safeguarding critical
systems.

In this vision, the explainability of Al is crucial for developing an
accurate mental model, as it clarifies the Al's decision-making
process. However, it alone does not ensure effective human
learning. Therefore, transparency is fundamental to understand-
ing Al and provides clear, real-time insights into an Al’s activities,
which is essential for profitable interaction in dynamic contexts.

However, Al decision support can also go beyond the provision
of comprehensible suggestions. This is the case when Al specif-
ically supports cognitive processes of human decision-making
(e.g., the ability of humans to develop situation awareness,
recognize problems, or identify leverage points) with the aim of
continuously increasing corresponding human capabilities. In
this way, humans and Al act as a joint cognitive system and
create true hybrid intelligence, leveraging the strengths of both
humans and Al.
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