Journal of Artificial Intelligence Research 82 (2025) 1773-1806 Submitted 11/2024; published 03/2025

Generalizing the Regret: an Analysis
of Lower and Upper Bounds

Marco Mussi MARCO.MUSSIQPOLIMI.IT
Alberto Maria Metelli ALBERTOMARIA.METELLIQPOLIMI.IT
Politecnico di Milano

Piazza Leonardo da Vinci 82, Milan, 20133, Italy

Abstract

The (expected cumulative) regret is the customary index to judge the performance of online
sequential decision-making algorithms. In the traditional form, it is defined as the expected
sum over a learning horizon T' of the sub-optimality gaps Aj, (i.e., expected instantaneous
regret) the agent suffers when playing arm I; at round ¢. In this paper, we propose and
investigate a generalization of this notion, named g-(expected cumulative) regret, obtained
by applying a transformation function g to the sub-optimality gaps, making the agent
suffer g(Ay,) instead of just Ay,. Intuitively, function g embeds the “perception” that the
agent manifests when performing a sub-optimal decision. We first show that sublinear
g-regret is not achievable for a generic transformation function g. Then, we introduce a
mild condition on g and provide instance-dependent and worst-case (i.e., minimax) lower
bounds for the g-regret. Finally, we show that state-of-the-art stochastic bandit algorithms
with no modification surprisingly display optimal performances for the g-regret. Specifically,
we prove that UCB1 matches (up to constant factors) the instance-dependent lower bound
regardless of function g and that MOSS matches (up to constant factors) the minimax lower
bound at least for a wide class of transformation functions.

1. Introduction

The notion of regret (Bubeck and Cesa-Bianchi, 2012; Lattimore and Szepesvari, 2020)
is widespread to assess the performance of online learning algorithms. The stochastic
multi-armed bandit framework (MAB, Lattimore and Szepesvari, 2020) considers the setting
in which a learning agent is faced with a finite set of K € N options (i.e., arms) and has
to identify the best performing one. When an arm ¢ € [K] := {1,..., K} is played, the
agent observes a feedback X ~ v; (i.e., reward) sampled from the probability distribution
v; with expected value p; (i.e., expected reward). We assume an additive noise model
where X = 11; + € and € is a zero-mean o?-subgaussian random variable.! In such a case,
the agent suffers a loss (i.e., expected instantaneous regret) that equals the performance
sub-optimality gap A; := u1 — u;, having assumed w.l.o.g. that 1 is the unique optimal arm
(i.e.,, 1 = argmaxepgy pi). A regret-minimization algorithm 2 seeks to control the (ezpected
cumulative) regret, i.e., the sum of the sub-optimality gaps suffered over a learning horizon

1. A zero-mean random variable ¢ is o®-subgaussian if it holds that E[exp(&e)] < exp(c?£?/2), V€ € R.
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T € N for a bandit instance v = (Vi)ie[[K}]:z

T T
E,[R(,T)]—E, [Z Afz] —E, [2% m] , (1)
t=1

t=1

where [; € [K] is the arm played at round ¢ € [7] and the expectation is computed w.r.t.
the randomness of the rewards and the possible randomness of algorithm 2.

The regret minimization problem in stochastic MABs has been widely investigated in
the literature and it is currently well-understood. Traditionally, the study of the regret
is conducted under two analysis approaches: instance-dependent and worst-case. In the
former case, we characterize the complexity of the learning problem by the sub-optimality
gaps A; of the specific MAB instance. In such a case, every consistent® algorithm 2 suffers
asymptotically a regret lower bounded by (Lai and Robbins, 1985):

BARRT) y0 5 ]

lim inf —% —. (2)
T—+0 logT e[k 1) A

The famous UCB1 algorithm (Auer et al., 2002) matches the lower bound up to constant
factors; while a slight modification of the exploration bonus of UCB1 allows matching even the
constants of the lower bound (Lattimore and Szepesvéri, 2020). In the latter case, instead,
we focus on characterizing the performance of the algorithm over the whole class of bandit
instances with a fixed number of arms K. The worst-case (a.k.a. minimax) regret lower
bound suffered by any learning algorithm 2, if 7' > K — 1, is (Auer et al., 1995; Lattimore
and Szepesvari, 2020):

E,[R(A, T)] > %«/(K 1T (3)

The M0OSS algorithm (Audibert and Bubeck, 2009) matches this lower bound up to constant
factors. More modern algorithms managed to achieve optimality in both asymptotic instance-
dependent and the worst-case regimes (e.g., ADA-UCB, Lattimore, 2018).

The traditional regret definition (Equation 1) assumes that, at each round t € [T7],
the agent suffers a loss that is equal to the sub-optimality gap Aj, of the played arm I;.
This definition implies that the agent “perception” towards playing this sub-optimal option
is linear in its sub-optimality. However, in several real-world scenarios, an agent may
manifest different non-linear perceptions over the experienced sub-optimality. For instance,
in economic scenarios, it is well-known that humans are more sensitive to large losses of
money and they might be more willing to accept negligible money losses. In this sense,
the perception of the experienced losses might encode a form of safety which amplifies, for
instance, the impact of very bad choices or, contrary, a form of carelessness that attenuates,
for instance, the regret brought by slightly sub-optimal actions. This form of perception that
distinguishes between very bad and slightly sub-optimal actions can only be represented by
a non-linear transformation of sub-optimality gaps. In more general terms, the perception

2. Whenever clear from the context, we will abbreviate expected cumulative regret with just regret.
3. An algorithm 2 is consistent over a class of bandits if, for every bandit v in the class, it holds that

limr 40 w = 0 for some p > 0 (Lattimore and Szepesvari, 2020).
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Figure 1: Example of execution of two algorithms 2(; (blue) and 2y (red) with the correspond-
ing expected instantaneous regret (left), g-(expected cumulative) regret with g € {Id, 1/, (-)2}
(others).

the agent expresses towards playing a sub-optimal option I; becomes a non-linear function
of its sub-optimality gap Aj,. We propose to model this perception discrepancy through
a (non-linear) transformation function g that maps the sub-optimality gap Ay, to the loss
g(Ar,) actually perceived by the agent. g can reduce or magnify the effect of each option;
consequently, algorithms suffering the same regret (in the traditional sense) might display
different performances in terms of g-regret, as shown in the following example.

Example 1. Consider the two instantaneous regret plots presented in Figure 1 (left) obtained
from the execution of algorithms Ay (blue) and Ay (red). They suffer the same expected
cumulative regret (according to Equation 1, Figure 1 (middle left)), but 21 plays a larger
number of times an arm with small sub-optimality gap (A = 1/2), while the Ao plays a largely
sub-optimal arm (A = 1) a smaller number of times. Depending on g, the corresponding
g-regrets appear different (Figure 1 (middle right)-(right)). Choosing g = +/-, we observe
that Ay has a worse /--regret (Figure 1 (middle right)), whereas, when g = ()2, we note
that the larger (-)2-regret is suffered by A (Figure 1 (right)).

Original Contributions. In this paper, we introduce a generalization of the customary
notion of (expected cumulative) regret by means of a function g acting on the sub-optimality
gaps. This way, through the choice of function g, we are able to encode the “perception”
the agent manifests towards playing a sub-optimal option. We study this novel notion of g-
(expected cumulative) regret from the perspective of the learnability, lower bounds, and upper
bounds enjoyed by existing algorithms (i.e., UCB1 and MOSS) for both the instance-dependent
and worst-case regimes. We show that, surprisingly, with no knowledge of function g and
with no need for modification, UCB1 and MOSS are instance-dependent and minimax optimal
(up to constant terms) for the g-regret, respectively. This shows that, remarkably, common
algorithms, designed for traditional regret minimization, preserve optimality for this strictly
larger class of performance indexes, i.e., the g-regret. The contributions of the paper can be
summarized as follows:

e In Section 2, we formally introduce the notion of g-regret. Then, we show that the g-regret
minimization problem is non-learnable for a generic function g (Theorem 1). Thus, we
propose an assumption, enforcing that the optimal arm does not change when performing
the transformation via function g, under which the learning problem becomes feasible
(Assumption 1).
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e In Section 3, we focus on the instance-dependent analysis. We start by deriving a novel
asymptotic instance-dependent lower bound of order (2 ((72 log T Zie[[ KP\{1} %) for the

g-regret (Theorem 2). Then, we show that for any function ¢ fulfilling Assumption 1,
UCB1 (Auer et al., 2002) matches the lower bound up to constants (Theorem 3).

e In Section 4, we focus on the worst-case analysis. We first provide a novel implicit minimax
lower bound for the g-regret (Theorem 4). Then, we show that for the particular class of
monomial functions g = (-)® and for sufficiently large T', the lower bound takes the explicit
form: Q (UO‘KO‘/QTl_O‘/Q) for a € [0,2) and Q (02K log KZQ) for a« = 2 (Corollary 5).
Finally, we show that, for this class of g functions, the MOSS (Audibert and Bubeck, 2009)
matches the lower bound up to constants (Theorem 6).

Omitted proofs can be found in Appendices A and B for Sections 3 and 4, respectively.

2. The g-Expected Cumulative Regret

In this section, we introduce our novel notion of g-(expected cumulative) regret (Section 2.1)
and discuss the conditions under which the resulting problem is learnable (Section 2.2).

2.1 Definition of g-Expected Cumulative Regret

We consider an instance of the multi-armed bandit problem v = (v;);e[x] With a finite number
of arms K € N and let 7' € N be the learning horizon. At every round ¢ € [T, the agent
selects an arm I; € [K], plays it, and observes a realization of the reward X; = uy, + ¢, where
w1, is the expected reward and ¢; is a zero-mean o2-subgaussian random noise, independent
conditioned to the past.* As customary in the bandit literature, we assume that the rewards
are bounded in expectation, as p; € [0, 1] for all i € [K], so that the sub-optimality gaps
A; are bounded in [0,1]. Finally, w.l.o.g. we assume that arm 1 is the unique optimal arm,
Le., 1 = argmax;c[x pi- We are now ready to formally define the notion of g-(expected
cumulative) regret.

Definition 1 (g-(expected cumulative) regret). Let A be a learning algorithm and let T € N
be a learning horizon. Let g : [0,1] — [0,1] be a transformation function. The g-(expected
cumulative) regret induced by g is defined as:

T

T

EV[Rg(m>T)] =E, [Z g(AIt)] =E, [Z g(,ul - :uft)] ) (4)
t=1 t=1

where Iy € [K] is the arm played at round t € [T] and the expectation is computed w.r.t. the

randommness of the rewards and the possible randomness of algorithm 2.

As already mentioned, the g-regret is obtained by transforming, through function g, the
sub-optimality gaps Ay, of the played arms I; into g(Ay,). Clearly, if g = Id, where Id is the
identity function, Id-regret equals the traditional regret of Equation (1). It is worth noting
that in Definition 1, the transformation function g is required to map the sub-optimality
gaps (which have domain [0, 1]) into the same co-domain [0, 1]. This choice is w.l.o.g. and
allows to carry out a clean analysis.

4. We consider subgaussian noise as it is more general and includes bounded (and Bernoulli) random
variables (we recall that every random variable bounded in [a, b] is subgaussian with o = (b — a)?/4).
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Remark 1 (Is g-regret minimization just regret minimization in a different bandit?). The
reader might be tempted to conjecture that the g-regret minimization problem in bandit v can
be equivalently stated as a traditional regret minimization problem in a transformed bandit
vy. Unfortunately, this is not the case. First of all, we note that it is possible to define the
transformed bandit v4 in such a way that its sub-optimality gaps AY are equivalent to the
transformed sub-optimality gaps g(A;) in the original bandit v, by enforcing the conditions:

9(Ai) = A} = g( — i) = p{ — i, Vie [K]\{1},

where pd are the expected rewards of the transformed bandit vy. However, in order to carry
out this transformation we would need to know the expected rewards p; in the original bandit
(which are usually unknown) and function g as well.

We now present some examples of intuitive instances of generalized regret and we discuss
their related ¢ functions.

Example 2. This generalized notion of regret is useful to take into account different

perceptions of making a mistake in choosing the arm. Ezamples of that can be:

e Learn the e-optimal arms: this definition of g is useful when we do not care about small
mistakes. We define g(A) := max{0, A — €}, to assign zero regret to the arms that are
e-close to the optimal one (¢ > 0). For instance, in online recommendations (e.g., product
or movie recommendations) we might be satisfied with recommending an item that is
slightly less preferred than the optimal choice as long as it is close in preference. For
example, we might be equally satisfied with two similar movies, even if one is technically a
better fit.

e Count the number of mistakes: this definition is useful in critical tasks. We select
g(A) == 1{A > 0} = A", in order to penalize every suboptimal arm in the same way.
For instance, in critical applications like medical diagnostics, any wrong diagnosis can
have serious consequences, regardless of how “close” it is to the correct diagnosis. If the
optimal choice is diagnosing a certain disease, by choosing any other diagnosis, we should
cur a penalty to ensure the model avoids any mistakes.

e Penalize very suboptimal arms or “loss-aversion”. We select g(A) = /A, or in general
g(A) = A% with a € (0,1), in order to magnify losses (since A € [0,1]). For instance, in
finance, investors often show loss aversion, where large mistakes in asset selection (e.g.,
choosing poor-performing stocks) are penalized more heavily than smaller mistakes.

2.2 Non-Learnability for Generic g

In this section, we show that if ¢ is chosen arbitrarily then the resulting g-regret minimization
problem might become non-learnable. We start presenting an impossibility result (Theorem 1)
and, then, we state an assumption that rules out this possibility, ensuring the learnability of
the g-regret minimization problem (Assumption 1).

Theorem 1. There exists a class of Gaussian MAB problems and a transformation function
g :10,1] — [0,1] such that any learning algorithm A suffers g-regret lower bounded by:

T

ER(LT)) > ¢
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Proof. We consider two Gaussian bandits v and v/ with variance 1 and expected rewards
pw=(1,1/2+1/2/T,1/2)" and p' = (1,1/2,1/2 + 1/V/T)T, respectively. We consider the

transformation function:

g(x):{l if z < 1/2

r—1/2 ifz>1/2

The transformed sub-optimality gaps are A = (1,1,0)T and A’ = (1,0,1)T, respectively.
Thus, in bandit v the optimal arm is 3, while in ¢/ the optimal arm is 2. Thus:

By [Ry (2, T)] By [Ry(2.7)]} 5 (B[R (2.7)]+ B [, (2, T) 5)
> L (B (No(T)>T/2) 4B (No(1)<T /) (6)

T T
> 5P <—E,, [Z Dy (v, |v1,) ) (7)

t=1

> T
/8\/67

where line (5) follows from max{a, b} > % (a+b) for a,b > 0; line (6) is obtained by observing
that every time arm 2 is played (resp. not played) in bandit v (resp. v') we suffer a
g-instantaneous regret of 1, having denoted with Na(7T') the number of times arm 2 is played
over the horizon T'; line (7) follows from the Bretagnolle-Huber’s inequality (Bretagnolle
and Huber 1978; see Theorem 14.2, Lattimore and Szepesvéari, 2020), line (8) comes from
observing that:

(8)

Dxr(vvy) =0,
D (va|vp) = D (vs]14) = o
and bounding Dy, (vy, [v,) < 1/(2T). -

The result essentially shows that if the transformation function g can freely change the
optimal arm, we have no hope of conceiving a g-regret minimization algorithm that suffers
sub-linear g-regret. This is supported by intuition since we lose the usual relation between
the amount of samples needed to distinguish arms and their contribution to the regret. Thus,
we introduce the following optimality preserving assumption on function g which guarantees
that the optimal arm is not altered by the transformation, and, therefore, an agent remains
able to recognize the optimal arm.

Assumption 1 (Optimality Preserving Function). Let g : [0,1] — [0,1]. g is optimality
preserving, i.e., g(0) = 0.

Thus, any transformation function ¢ fulfilling Assumption 1, preserves 1 as the optimal
arm (with the possibility of generating additional optimal arms). For obtaining more explicit
results in some of the subsequent sections, we introduce a further particularization of the
transformation function g, i.e., monomial functions, as formalized in the following assumption
that, clearly, implies Assumption 1.
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Assumption 2 (Monomial Function). g is a monomial function, i.e., g(x) = x® for
a € [0,400).

This class of functions allows managing cases in which we want to amplify (a € (0,1)) or
attenuate (a € (1, +00)) the regret, and manage extreme cases such as the one in which we
want to count the number of mistakes (a = 0, see Example 2).

3. Instance-Dependent Analysis

In this section, we provide the instance-dependent analysis for the g-regret minimization
problem. First, we present an asymptotic lower bound to the g-regret depending on the
transformation g (Section 3.1). Then, we show that the classical UCB1 with no modifica-
tions matches (up to constant terms) the lower bound even without the knowledge of the
transformation function g (Section 3.2).

3.1 Asymptotic Instance-Dependent Lower Bound
The following result provides the asymptotic instance-dependent lower bound for the g-regret.
Theorem 2 (Asymptotic Instance-Dependent Lower Bound). Let g fulfilling Assumption 1.

For any consistent algorithm U, there exists a o2-subgaussian MAB v such that the asymptotic
g-regret is lower bounded by:

lim inf Eu[?g(i’ )] > 202 Z g(AA;)
Tt 108 ie[k[\1}

Proof Sketch. The full proof is provided in Appendix A.1. This result can be obtained by
rewriting the g-(expected cumulative) regret using the Wald’s Identity (Wald, 1944):

EV[RQ(Ql7T)] = Z g(Ai)Eu[Ni(T)]v (9)
ie[K]\{1}

where N;(T) is the number of pulls of arm i € [K]\{1} up to round 7" and we excluded arm
1 from the summation since g(0) = 0 thanks to Assumption 1. We can now lower bound
the expected number of pulls E,[N;(T)] as in the original instance-dependent lower bound
proof, with no additional technical challenges. O

It is worth noting that, as apparent in the proof, under Assumption 1, the transformation
function g does not affect the lower bound on the expected number of pulls E,[N;(T')], but
just the instantaneous regret g(A;). This particularly convenient decomposition allows us to
show, as done in the next section, that UCB1 achieves instance-dependent optimality.

3.2 Instance-Dependent Upper Bound for UCB1

We now illustrate that the asymptotic lower bound of Theorem 2 is matched (up to constant
factors) by UCB1 (Auer et al., 2002; Bubeck, 2010).°

5. The pseudo-code of UCB1 is reported in Algorithm 1.

1779



Mussi AND METELLI

Algorithm 1 UCB1 (Auer et al., 2002; Bubeck, 2010).

Require: number of arms K, exploration parameter a > 2, subgaussianity parameter o
N; < 0, ﬁl «— 0, UCB; < +o0, Vie [[K]]
for t € [T] do
Select I; € arg max;ex UCB;
Play I, and observe reward X,
ﬁ I; N .+ X

Update fif, < Nj, < N, 1
pdate pr Ni, +1 y VI I+
log ¢
Compute UCB; « [i; + o a]i)[g, Vie [K]
i

end for

Theorem 3 (Instance-Dependent Upper Bound for UCB1). Let g fulfilling Assumption 1
and v be a o?-subgaussian MAB. The g-regret of UCB1 with a > 2 is bounded by:

) 2
E,[R,(UCBL,T)] < dac?log T Y 9(A;) L HetD) . (“ il 2) 3 og(ay).
. - a—2 log (ﬂ) a—2 )
ie[KT\(1} 4 ie[KT\(1}

Proof Sketch. The full proof is provided in Appendix A.2. This result is obtained by rewriting
the g-regret as in Equation (9), and, then, by upper bounding E, [N;(T)]. O

The results of Theorem 2 and Theorem 3 prove that UCB1 is instance-dependent optimal
(up to constant terms), no matter the shape of function g, provided that it fulfills Assump-
tion 1. From a technical perspective, this is somehow expected, since both the lower and the
upper bounds are obtained by controlling the number of expected pulls E, [N;(T')], that does
not depend on function g, and, then, rewriting the g-regret as in Equation (9). In a more
general sense, we have demonstrated that, from the instance-dependent perspective, the class
of performance indexes represented by the g-regrets (with g fulfilling Assumption 1) does
not require exploration strategies different from that employed for the traditional regret.

Analysis under Assumption 2. Let us now particularize these results under Assump-
tion 2, enforcing g = ()%, to obtain a more interpretable result. The following discussion
holds for both the lower bounds and the UCB1 upper bounds, as they present the same rate
(neglecting constant terms):®

Ey [R()a (Q[, T)] =0 (ZZG[[KH\{I} A?*Q log T) .

Figure 2 depict the behavior of A?_Q for some interesting values of a. First of all, we note
that when oo = 1 (i.e., g = Id), we recover the usual bound on the regret. When « € [0, 2)
(i.e., @ — 2 < 0), the g-regret displays the characteristic behavior where small values of A;
lead to a large impact on the regret. Importantly, when o = 0, the g-regret corresponds to
the expected number of pulls of sub-optimal arms over the horizon T

Ey[R(yo (A, T)] = E, [23:1 {1, # 1}] =0 (Zie[[Kﬂ\{uloAggT) :

6. We use the notation f(z) = ©(g(z)) to denote when, at the same time, it holds f(z) = Q(g(z)) and
f(z) = Og(x)).
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Figure 2: Behavior of the instance-dependent regret considering g(A) = A for representative
values of a.

On the other hand, when o = 2, the dependence on the sub-optimality gaps A; completely
disappears. Finally, when o > 2 (i.e., & — 2 > 0), the g-regret grows as the sub-optimality
gaps increase, leading to the behavior in which small values of A; lead to a small impact
to the regret. This is supported by the intuition that since A; € [0, 1], large exponents «
reduce the effect of playing sub-optimal arms on the g-regret.

4. Worst-Case Analysis

In this section, we focus on the worst-case analysis of the g-regret minimization problem.
First, we present the worst-case (or minimax) lower bound for g-regret minimization in an
implicit form, and, then, we devote particular attention to the case g = (-)® (Assumption 2)
to obtain a more explicit result (Section 4.1). Finally, we present an upper bound of the
g-expected cumulative regret suffered by MOSS (Audibert and Bubeck, 2009, 2010) under
Assumption 2, showing its minimax optimality up to constants (Section 4.2).

4.1 Minimax Lower Bound

The following result provides the minimax lower bound for the g-regret.

Theorem 4 (Minimax Lower Bound). Let g fulfilling Assumption 1 and T € N be the
learning horizon. For any algorithm 2, there exists a o?-subgaussian MAB v such that the
g-regret is lower bounded by:

Eu[Ry(2A,T)] = Asel[lg?l] {g<§> SiS ;21)02 log<16(IT(A_2i)02> } : (10)

Proof Sketch. The full proof is provided in Appendix B.1. The instances are Gaussian
bandits with o2 variance where the base instance has expected rewards (A/2,0,...,0)7,
where 1 is the optimal arm. The alternative instance is constructed identically to the
base instance with the only modification to the arm ¢ that has been pulled the smallest
number of times in the base instance whose expected reward is set to A as in (Theorem 15.2,
Lattimore and Szepesvari, 2020), becoming the optimal arm. The technical novelty lies in

1781



Mussi AND METELLI

the construction of two different lower bounds on the g-regret that are averaged for obtaining
the presented result, similarly as done in (Bubeck et al., 2013). The first one simply lower
bounds the g-regret as a function of the number of times arm 1 is not pulled in the base
instance sup, E,[Ry(A,T)] = g(A/2)(T — E,[N1(T)]) = g(A/2)(K — 1)E,[N;(T)]. The
second one follows the usual change of measure arguments based on the Bretagnolle-Huber’s
inequality, leading to the result sup, E, [Ry(, T)] = T/2g(A/2) exp (—E, [N;(T)]A?/(202)).
By taking the value of E,[N;(T")] that minimizes the average of these lower bounds (which
can be computed in closed form by vanishing the derivative) we obtain the result. O

The result of Theorem 4 provides an implicit form for the regret bound and the solution
of the optimization problem in A heavily depends on the form of the transformation function
g. This bound can be made more explicit by considering the class of monomial functions,
i.e., under Assumption 2, as illustrated in the following result.

Corollary 5 (Minimax Lower Bound for g = (-)%). Let g fulfilling Assumption 2 and T € N
be the learning horizon. For any algorithm A, there exists a o-subgaussian MAB v such
that the g-regret is lower bounded by:

(Ta(K o 1)&/2T17a/2
E[Riye(,T)] =34 2°“e?(2—a)

)2 . ,
(KQi) log (16(KT_1)02> if a € [2,+0)

if ef0,2) and T > T = 40%(K — 1)e®/(2~2)

Proof Sketch. The full proof is provided in Appendix B.1. The proof starts from Theorem 4
and, then, is based on solving the maximization problem over A € [0, 1]. Specifically, when
a = 2, the expression of Equation (10) is increasing in A; thus, we choose A = 1. Instead,
when « € [0, 2), the resulting is a concave function in A and we find the optimal value of A
by vanishing the derivative. The lower bound T on the learning horizon T is obtained given
that there exist cases in which the optimal A for small time horizons is greater than 1, so
we must select A = 1. O

Corollary 5 sheds light on the behavior of the lower bound as a function of the exponent
a. First of all, we note that when a = 1, we recover the minimax lower bound Q(cv KT)
for the traditional regret. When « € [0,2) (and the learning horizon T is sufficiently large)
the lower bound displays an order of Q(c®K®/2T1~%/2). Focusing on the dependence on
the learning horizon 7', we observe that the exponent decreases with «, suggesting that
smaller « leads to a more challenging g-regret minimization problem. In particular, when
a = 0, i.e., as already observed, when we count the expected number of times a sub-optimal
arm is pulled, the minimax lower bound degenerates to linear Q(7). This is expected
since, in such a case, we are losing the usual trade-off between exploration and exploitation
(i.e., radically unbalanced towards exploration) as all sub-optimal arms equally impact the
g-regret, regardless of their sub-optimality gap. Instead, when « > 2, we observe that the
minimax lower bound no longer depends on « (apart from some constants), recovering a
logarithmic order {2 (0'2K log Ug K) This suggests that, as a goes beyond the threshold value
of 2, the complexity of the g-regret minimization problem is not affected by a. Contrary to
the case of a = 0, here the exploration/exploitation trade-off is radically unbalanced towards
exploitation since the impact of the sub-optimality gap on the g-regret is attenuated by the
large exponent . A graphical illustration of this landscape is presented in Figure 3.
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A

Figure 3: Graphical representation of the g-regret rate with g = (-)®, highlighting the
dependence on T only, as a function of the exponent « = 0.

Algorithm 2 MOSS (Audibert and Bubeck, 2009, 2010).
Require: number of arms K, learning horizon 7', subgaussianity parameter o
N; <0, ﬁl — 0, UCB; « +w, Vie [[K]]
for t € [T] do
Select I € arg max;e[xy UCB;
Play I, and observe reward X,

ﬁ]tN]t-i‘Xt
BLOL T2 N o Ny o+ 1
N]t+1 It It

4 T
C te UCBy, <« i log*
ompute I, < W1, + U\/Nlt og (KNIt>

where log™ (7) = log(max{1, z})
end for

Update fij, <

4.2 Worst-Case Upper Bound for MOSS

In this section, we derive the upper bound on the g-expected cumulative regret of MOSS (Au-
dibert and Bubeck, 2009, 2010), whose pseudo-code is provided in Algorithm 2. MOSS is an
algorithm known to be minimax optimal up to constant factors for traditional regret. Our
analysis limits to the case in which function g fulfills Assumption 2, i.e., monomial function

g=()"

Theorem 6 (MOSS Minimax Upper Bound for g(x)=x%). Let g fulfilling Assumption 2 and
v be a 0?-subgaussian MAB. The g-regret of MOSS is bounded by:

sup Ey[R()«(MOSS, T)] <
v

(—82'335> o K2 TP 4 00K if ael0,2)
37TKo?log (74) + 02 log (122) + T30?K + K +0® if a=2and T>T
Ko? (=8 + 3708 (5) ) + K(1 +0°) it ac(2o)and T>T

7. We discuss the reasons for this choice in Remark 2.
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where T = max{ec?K,15K} and T = max{eUZNK, §720/C=) /iKY For the case a €
(2,0) and T < T and the case a = 2 and T < T, the g-regret is still logarithmic and
the exact expression is reported in the proof.

Proof Sketch. The full proof is provided in Appendix B.2. First of all, the proof is carried
out for 1-subgaussian rewards and, subsequently, translating the obtained result for generic
o2-subgaussian rewards (Lemma 3). The proof for the 1-subgaussian case follows the
decomposition of the regret partitioning the arms based on the values of the sub-optimality
gaps A;, similarly to the original proof (Audibert and Bubeck, 2009), using the threshold
max{2A,8,/K/T}, where A is a random variable suitably defined in the proof. However,
the derivation takes different paths depending on whether a € [0,2) or o > 2. Specifically,
for the case a > 2, tighter bounds on some relevant quantities are needed. O

By comparing this result with the lower bound of Corollary 5, we observe that, for
sufficiently large T', all the relevant quantities, i.e., T, K and o, are tight for every value of «,
up to constant factors. This implies that MOSS preserves the minimax optimality for this large
class of generalized regret functions. This further confirms that the g-regret minimization
problem, although representing a strict generalization of the regret minimization problem,
does not require different exploration strategies beyond the ones that can be employed for
the traditional regret minimization problem.

Remark 2 (On the worst-case upper bound for MOSS without Assumption 2). The worst-case
upper bound for MOSS presents analytical challenges when attempting to study it for a generic
g fulfilling Assumption 1 only. Indeed, following the standard decomposition of the g-regret
of (Audibert and Bubeck, 2009, 2010) as in Equation (37) for a generic g, we obtain:

+00

E,[g(A)] = fo P(g(2A) > ) da

_ L+OOP <A > 9_12(”3)> dz

to 60K . , .
< mini{ 1, ————5 dz (Lemma 9.3, Lattimore and Szepesvéari, 2020)
0 T(g*(x))

60K +o 60K
A Tl @)

g(c2) T(g~H(2))?
where g~ is the inverse function of g (that may be not well-defined). Even when function g
is invertible, the integral for a generic g cannot be computed in closed form (even proceeding
with the intuitive variable substitution y = g~'(x)), preventing from obtaining an explicit
rate for the regret.

1

5. Related Works

In this section, we revise the literature that shares connections with our formulation, focusing
on the approaches that somehow alter the objective of the learning process. Specifically, we
survey: safe exploration, risk-averse learning, and lenient regret in MABs.
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Safe Exploration in M ABs. Safe exploration focuses on ensuring that during the
learning phase, the performance does not fall below a certain threshold with high proba-
bility (Berkenkamp et al., 2017). In these works, the optimal arm does not change, and
prescribing to learn safely, in practice, slows down the learning process only, generating
additional terms in the regret. This type of algorithms is useful in safety-critical tasks (e.g.,
Cheng et al., 2019) and applies in many bandit formulations (e.g., Amani et al., 2019;
Garcelon et al., 2020). The idea behind the algorithms may vary based on the specific setting.
On the one hand, in a continuous-arms setting, we may exploit the regularity of the reward
by means of Gaussian Processes (Sui et al., 2015; Schreiter et al., 2015; Amani et al., 2020a),
or the particular structure of the rewards, as in the case of stochastic linear bandits (Amani
et al., 2020b; Khezeli and Bitar, 2020) and contextual linear bandits (Kazerouni et al., 2017).
On the other hand, other works propose different solutions to deal with safe exploration
such as (Jagerman et al., 2020) that consider an initial policy known to the learner and
propose an algorithm (using off-policy evaluation) that improves it only when there is high
confidence that the performance is not worst than the previous one. Nevertheless, while
supervising the exploration in an explicit way, we remark that these works, differently from
ours, do not alter the definition of regret.

Risk-Averse Learning in MABs. Risk-averse MABs is a widely studied setting for
critical task (e.g., Huo and Fu, 2017) or scenarios in which the stochasticity cannot be
neglected (e.g., heavy-tail MABs, Kagrecha et al., 2019).% Thus, to evaluate the goodness
of an arm, we can no longer rely on its expected value, as it does not capture the variability
or uncertainty of outcomes. Usually, in risk-averse learning, we look at maximizing some
quantity characterizing the distribution of the rewards (Cassel et al., 2018). The widely used
indexes in this field are the Conditional Value at Risk (CVaR, Galichet et al., 2013; Curi
et al., 2020; Chang et al., 2020; Khajonchotpanya et al., 2021) and the Mean-Variance (Sani
et al., 2012; Vakili and Zhao, 2015, 2016). Other works consider wider classes of risk
measures (e.g., Lipschitz risk functionals, Huang et al., 2021) or combinations of those (Yu
and Nikolova, 2013; Kagrecha et al., 2019). Differently from our formulation in which
the transformation is applied to sub-optimality gaps (which are deterministic quantities),
risk-averse methods are based on indexes that take into account stochasticity and, as a
possible effect, might change the notion of optimal arm.

Lenient Regret. The notion of lenient regret (Merlis and Mannor, 2021) has been
introduced to account for the scenarios in which suboptimality gaps below a certain threshold
¢ are ignored in the regret. Formally, a function f : [0,1] — R>o such that f(A) = 0
if A e [0,e] and f(A) > 0 if A > ¢ is considered in the computation of the lenient
regret EV[Zle f(Ap)]. As the authors state, while it is natural to choose function f as
monotonically increasing, this condition is not requested for their analysis. Thus, the lenient
regret formulation is not fully comparable with ours since it enforces the further constrained
of having f(A) =0 if A € [0,¢], but, at the same time, it does not require the monotonicity.
Merlis and Mannor (2021) show that, for the class of consistent algorithms for the lenient
regret, it is possible to achieve instance-dependent sub-logarithmic regret. We remark that,
differently from what is done in (Merlis and Mannor, 2021) in Theorem 2, we are assuming
the consistency of algorithm 2 for the standard regret R(2l,T). This makes our result not

8. For a complete review on risk-aversion in MABs, please refer to (Tan et al., 2022).
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Lower Bound Upper Bound Match?
A Ay
o5 General g o2logT Z 9( 2) o2logT Z g(A?) (UCB1) v
9% ie[K\{1} ie[K\{1} —*
o=
2
=5 g=() o?log T Z A2 o?logT Z A% (ucB1) v
ie[K]\{1} e[ KJ\{1}
A\ Ko? (TAQ)}
General su — | —5log| —= see Remark 2
2 g Ae[OI,)l]{g(2) AT 8\ Ko? ( )
@
O
= cO KT it ae0,2) oK T2 it ae0,2)
8 g=0)" 2 T . 2 T . (MOSS) /i
= oK log 2K if ae[2,0) o“K log Py if ae[2,0)

Table 1: Comparison of instance-dependent and worst-case lower and upper bounds. All
the results are reported considering the dominating terms in the bounds and neglecting
constants. T for sufficiently large T (see Corollary 5 and Theorem 6).

comparable with (Theorem 1, Merlis and Mannor, 2021). Moreover, the authors provide
a Thompson-sampling-like algorithm that matches the instance-dependent lower bound.
Unfortunately, no worst-case bound is provided.

6. Discussion and Conclusions

In this paper, we presented a generalization of the customary concept of regret through a
function g acting on the sub-optimality gaps. After having formally presented the formulation
of the g-regret, we proved that the transformation function must at least preserve the
optimal arm for the existence of no-regret algorithms. Then, we showed that UCB1 is
instance-dependent optimal (up to constant terms) for every g preserving the optimality of
the optimal arm. Then, we provided a minimax lower bound for generic functions g and we
derived an explicit form for the class of the monomial functions. Then, we verified that MOSS
preserves its minimax optimality for the g-regret (up to constant factors), at least for the
monomial function. A summary of the results obtained in this paper is reported in Table 1.
This work has illustrated how this strict superclass of performance indexes for evaluating
online learning algorithms does not require conceiving different exploration strategies and
can be effectively tackled with algorithms designed for the traditional regret. Future works
should include the analysis of the MOSS algorithm for a generic transformation function g as
well as the extension of the definition of g-regret to functions ¢; indexed by the round t to
account for the possible non-stationary perception of the agent on the regret.
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Appendix A. Omitted Proofs of the Instance-Dependent Analysis
(Section 3)

In this appendix, we provide the formal proofs related to the instance-dependent bounds.
More in detail, in Appendix A.1, we provide proofs for the lower bound, while in Appendix A.2,
we provide proofs for the upper bound.

A.1 Lower Bounds

Theorem 2 (Asymptotic Instance-Dependent Lower Bound). Let g fulfilling Assumption 1.
For any consistent algorithm U, there exists a o-subgaussian MAB v such that the asymptotic
g-regret is lower bounded by:

limint P BT o 3 g(A;').
ielK\{1}

T—+o0 logT

Proof. The proof of this theorem starts by rewriting using Wald’s Identity (Wald, 1944)
the expected regret as the summation over all the arms of the expected number of pulls,
multiplied by what we lose at each pull, i.e., g(A;):

E [Ry(A.T)] = D, g(A)EL[Ni(T)]: (11)
€[ K]

Once we have this result, we can proceed to lower bound the expected number of pulls as
in (Theorem 16.2, Lattimore and Szepesvari, 2020). What we get is:

logT
E,[N,(T)] > ——8%
[N(D)) Dy (v1,v4)

where Dkt (-, -) is the Kullback-Leibler divergence, that, for o2-subgaussian random variables
is simmetric, equal to:

(1 — Ni)Q‘

202 (12)

Dy, (v1,v3) =

We can now join all this information to get a lower bound on the instance-dependent expected
regret, starting from Equation (11):

liminf B, [Ry(A,T)] = > g(A)EL[N:(T)] (13)
T ie[KI\(1}
202log T
> > g(Ay) (Af) , (14)
ie[K\{1} ‘

where in Equation (13) we removed the regret of the optimal arm, which is equal to zero
(thanks to Assumption 1), and Equation (14) is obtained by replacing the value of the
Kullback-Leiber Divergence (Equation 12). O
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A.2 Upper Bounds

Theorem 3 (Instance-Dependent Upper Bound for UCB1). Let g fulfilling Assumption 1
and v be a o?-subgaussian MAB. The g-regret of UCB1 with a > 2 is bounded by:

) 2
E,[R,(UCB1,T)] < dac?log T > g(A;> L HetD) o 3 og(ay).
. A: a—2 log (2+2) \a —2 ‘
ie[K]\(1y 4 ie[K]\(1}

Proof. The proof of this statement can be obtained by rewriting the regret w.r.t. the expected
number of pulls or each arm:

By [Ry(UCB1, T)] = 3] g(A)E,[Ni(T)]. (15)
€[ K]

Then, the expected number of pulls can be bounded using Lemma 1 as:

4ao?logT  2(a+2) <a+2>2
+ + , (16)
A? a—2 log (“+2) \a —2

for all the suboptimal arms i # 1.
Given Assumption 1, ensuring ¢g(0) = 0, we know that the pulls of the optimal arm (i.e., 1,
in our case) does not increase the regret, so we can rewrite Equation (15) as:

Ey[Ry(UCBL, T)| = > g(A)E[N:(T)] (17)
ie[K]\{1}
4a0%logT  2(a+2) a+2)\?
< D)L g(Ay ( 5 — T + a2 < > , (18)
e[k 1) A a—?2 log (%) a—2

where in Equation (17) we removed the regret of the optimal arm, which is equal to zero
(thanks to Assumption 1), and Equation (18) is obtained by replacing the value of the upper
bound on the expected number of pulls (Equation 16). O

Lemma 1. Given an instance v, the expected number of pulls of each suboptimal arm for
UCB1 on a o-subgaussian MAB is:

4ac?log T L 2a+2) 2 <a+ 2)2
A? a—2 log (42) \a —2
Proof. This proof of the expected number of pulls for o?-subgaussian variables extends
the one of (Bubeck, 2010, Theorem 2.2) following the derivation of (Mussi et al., 2024,

Theorem 4.2).

Given an instance v, and considering a suboptimal action i € [K], which suffers a
suboptimality gap of A;, we want to show that if I; = 4, then one of the three following
equations is true:

or:
alogt

-1 .

ai(t—1) > p; + o
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or:
40%alog T

Ni(t— 1) < A2 y

(21)
where UCB;(t) is the upper confidence bound of the optimal arm for component i at time ¢,
and f1;(t) is the estimated value of the mean of arm i after N;(¢t — 1) pulls. For absurd, if we
assume that the three equations are false, then we have:

UCBl(t) > U1
= pi + 4

which implies that I; # i.

Now, we bound the probability that Equation (19) or Equation (20) hold true. Similar to
the original proof, we use a peeling argument together with Hoeffding’s maximal inequality,
which is a consequence of Azuma-Hoeffding inequality. Note that:

2al
P(Eq. (19) is true) < P <E|s € {1, t): fufs] + 1) 008 o m)
S
=P <E|s e{l,...,t}: Z(Xl[l] — ) < —\/Uzaslogt> )
=1

where [i1[s] denotes the estimator computed with s samples and X;[] is the I-th reward
we observe related to arm 1. This result will provide an upper bound on the probability
that the sum of independent bounded random variables deviates from its expected value.
In particular, we rewrite the probability as the event that there exists some time s (from 1
up to t) for which the sum of deviations >};_;(Xi[l] — p1) exceeds a certain threshold. The
reason for which we consider all the s is that this is the worst-case scenario.

We now apply the peeling argument with a geometric grid over the time interval [1,¢]. This
step, which is an analytical improvement w.r.t. perform a union bound over ¢, has the
advantage of reducing the minimum admissible value of a, i.e., the parameter regulating
exploration by a factor 2. Given € (0,1), we note that if s € {1,...,t}, then 35 €

{O, ey lohg)gl;ﬁ} : B+t < s < BIt. As such, we get:

logt

log1/8 s
P(Eq. (19) is true) < Z P <33 LT < s < Bt Z(Xl[l] — ) < —/o?as logt>

j=0 =1

ogt
g 1/8 s
Z P <Hs BT < s < B, Z(Xl[l] —p1) < —\/azaﬂj“tlogt) .
j=0 =1

O [

I
<
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We now bound this last term using Hoeffding’s maximal inequality, which gives:

logt - 2
Tog 1/B («/02aﬁ3+1t10g t)

P(Eq. (19) is true) < Z exp | —

507
= 20263t
logt
log1/B

logt

< Z exp(—aﬁ2g )

7=0

log t > 1
S -
<log1/5 %

Using the same argument, it can be proven that:

logt 1
P(Eq. (20) is true) < ( +1> —.
(Eq. (20) ) log 1/7 o

We can now write:

t=1 =u+1

T T
Ey [Ni(T)] = Ev [Z 1{1t=i}] Su+E [ 2 L¢,—i and Eq. (21) is false}]
t

T
<u+E [ 2 Ligq. (19) or Bq. (20) is true}]
t

I
IS
+

1
~
—~

=
2
—~

—_
L
=
-+

=
=

@
~
+

~
—~

=

2
—

[\
=

o

-+

=

=

@
N

2
where u = PU“A# )
i

We can now upper bound the probability of Equations (19) and (20) holds:

T
Z (P(Eq. (19) is true) + P(Eq. (20) is true))

t=u+1
T
logt ) 1
<2 +1
Z (108" 1/B 5

t=u+1

tO 7 logt 1
<2 f ( o +1) Lo
1 logl/ﬁ t=z

_ logt 2 q_ee\]" A 0o
_2{<logl/ﬁ+1> (2—a5t >L _(Q—Gﬁ)logl/ﬁjl tmzdt (22)

L 4 _ 8 1_% 400
T T2-aB  (2—ap)logl/B %], (23)
4 8

T 2—ap + (2—apB)?logl/B’
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where Equation (22) is obtained via integration by parts and the first term of Equation (23)
is obtained imposing a8 > 2. Substituting now 5 = a%, which verifies g € (0,1) for a > 2,
we obtain:

T
4 8
D1 (P(Eq. (19) is true) + P(Eq. (20) is true)) < ———— + 5 ——
t=u+1 2— a3 (2 - a‘%) log (%)

2m+2y+ma+m2
2—a (2 —a)? log (‘%2)

_2(a+2) 2 )<a+2>f

a—2 log(% a—2

Rearranging the upper bound on the expected number of pulls given the three cases presented
above, we get:

4ao?log T N 2(a+2) N <a+2>2
A? a—2 log (42) \a—2/ °

Eu [Nz (T)] <

Appendix B. Omitted Proofs of the Worst-Case Analysis (Section 4)

In this appendix, we provide the formal proofs related to the worst-case bounds. More in
detail, in Appendix B.1, we provide proofs for the lower bounds, while in Appendix B.2, we
provide proofs for the upper bounds.

B.1 Lower Bounds

Theorem 4 (Minimax Lower Bound). Let g fulfilling Assumption 1 and T € N be the
learning horizon. For any algorithm 2, there exists a o®-subgaussian MAB v such that the
g-regret is lower bounded by:

ER,(LD) > smp (3) S = 1°g<16<fT<A—2i>02> J (0

Proof. We proceed by constructing a pair of MAB instances that are difficult to be distin-
guished. Let 2 be an algorithm. Consider the base instance v of a Gaussian bandit with o2
variance (that is o2-subgaussian), whose expected rewards are defined as follows:

A
=(—=,0,...,0,...,0
l’l’ <277 b 7>7

with A € [0,1). This for what concerns the first instance. Now we have to build a second
instance /. Before doing that, we need to define index i € [K] as the index of the arm
pulled fewer times by an algorithm 2 on bandit v:

i == argmin E, [N;(T)]. (24)
JelKI\{1}
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Let us now construct an alternative instance v/ built from the base instance v in which we
choose that the expected reward of arm i is increased from 0 (as in the base instance) to A:

A
1
=|—=,0,... AL .
K <2 70, ’position i 70)

In this way, the less pulled suboptimal arm on instance v, will become the best arm on
instance v’. We now lower bound the minimax g-regret as:

Slip Ey[Ry(A,T)] = max {E, [Ry(A, T)], Epr [Rg (A, T)]} - (25)

In order to get the result, we proceed lower bounding the last expression in two different
ways (LB1 and LB2).

Lower Bound 1 (LB1). The first derivation proceeds as follows:
Sup Ey [Ry (2, T)] > max (B, [Ry (2, T)], Ey, [Ry (2. T)]}
v
= EV [Rg (Q’la T)]

>9(5) BN,

where we noted that in bandit v the optimal arm is 1 and all other arms suffer g(A/2) as

instantaneous g-regret. We can also note that, given that ¢ is the index of the fewer pulled
arm in instance v, we have that:

>, EJN,(T)] = (K — DE,[Ni(T)].
JelKI\{1}

Thus, we obtain the first lower bound:
A
Sup By [Ry (24, T)] > g<2> (K~ 1)E,[N,(T)] = LBL. (26)

Lower Bound 2 (LB2). To obtain the second lower bound, we proceed with a standard
change of measure argument based on Bretagnolle-Huber’s inequality:

Sgp Ey[Rg(A,T)] = max {E, [Ry(A, T)], B[Ry (A, T)]}
> 3 (B [Ry(2,T)] + By [Ry(2, 7)) (21)
> 1 o(5) V@ < T 4 PAMD) 2 TR) (9
> 5 0(5) v (D@ R) (29)
2
- L o(5) ew (BN ) = LB2 (30)
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where Equation (27) holds from max{a,b} > 1(a + b) when both a and b are non-negative,
Equation (28) comes from the observation that in instance v the optimal arm is 1 and
in instance v/ the optimal arm is ¢ # 1 and the g-instantaneous regret when playing
a sub-optimal arm in both instances is at least g(A/2), Equation (29) is derived from
the Bretagnolle-Huber Inequality (Theorem 14.2, Lattimore and Szepesvéari, 2020), and
Equation (30) is the Kullback-Leibler divergence between the canonical distributions when
arm i changes between the instances (Lemma 15.1, Lattimore and Szepesvari, 2020) for
Gaussian reward distributions with variance o2.

Combining the Lower Bounds. The two bounds presented above must both holds at
the same time, so we can take the maximum of them.

supEy[Ry(2,T)] > max {LB1 (Eq. 26), LB2 (Eq. 30)}

> g@) max {(K — DE, [Ni(T)], %exp <—Eu[Ni(T>] > )}

202

> 5 o(5) |- vean + Leo (i) o

202

where Equation (31) holds from max{a,b} > 1 (a + b) when both a and b are non-negative.

In order to get rid of the dependence on the expected number of pulls of arm ¢, we
minimize E,[N;(T')] (since we are looking at the performance of the best possible policy),
constrained to the fact that this must be in [0, 2= ]. Renaming z = E, [N;(T")] for simplicity,
we have:

1 A T AZ?
>-g(= i — D+ = —r— ) ¢ = h(x).
Stip Ey[Ry(A,T)] 5 g( 5 > Ie[lg,ul%l] {(K Dz 3 exp < x2 2)} h(z)

Since function h(x) is convex in x and, consequently, the minimum point can be found by
vanishing the derivative:

0 A2 T A? . 207 TA?
%h(x) =K-1- Too2 &P (—xg) =0 = z*= Flog (16([( — 1)0_2) .

Substituting the value of z* into h(x), we get:

sup Ey[Ry(A,T)]

- o3 [P v )« o (o ) )
27\ 2 A? 16(K — 1)02 8 A2 16(K — 1)02 ) 202
1 (AN [2(K - 1)021 TA? T O TA?

2 (2)[ A? 0g<16K—1)a2>+ seXp< Og<16(K—1)02>)]

A (K—1)021 TA2e
2 A2 ®\16(K — 1o )

I
e
/N @
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In order to get the lower bound, we can choose the worst-case A, i.e., the one that maximizes
the lower bound:

A\ (K —1)o? TA%e
> P e A— —_— .
Bl 01> s (o 3) S (e 7))

O]

Corollary 5 (Minimax Lower Bound for g = (-)%). Let g fulfilling Assumption 2 and T € N
be the learning horizon. For any algorithm A, there exists a o?-subgaussian MAB v such
that the g-regret is lower bounded by:

Ua(K _ 1)04/2T1—a/2
Eu[Riye(,T)] =3 22?2 —a)

_1)o2 . )
(K2;) log (16(KT_1)02> if a € [2, +0)

if € €[0,2) and T > T == 40%(K — 1)e®/(2-2)

Proof. We start this proof from the result of Theorem 4:

BT > s (o 5) 55 s (i 1)) < )

Considering g = (-)* we get:

(32)

A“2(K —1)0? TA?
sup Ey[R(ya (A, T)] = ( Jo ¢ >

1
20 °8 <16(K —1)o2

Case a € (2,0). We immediately observe that for a > 2 the function f(A) is increasing
in A, so we select A =1 and we get that:

(K —1)o? Te
B [Rye(@,T)] = 2% og (———C ).
SUp By [R)e (. T)] = =5 log {57 — 73,2

Case a € [0,2). In this case, we can observe that Equation (32) is a concave function in
A, so we can search for the value of A € [0, 1] maximizing the function by vanishing the
derivative. The first-order derivative of our function is:

0 (a—2)(K—-1)0? . 3 TA2e
—f(A) = A*Blog ([ —m
aal ) 20 %\ 16(K — 1)0?
_ 2 _ 2
N (K —1)o Ao—2 1 16(K —1)o 2Te A
29 A? Te 16(K — 1)0?

_(K - 12)Z2Aa3 {(a —~2)log <1G(£A_2iw> y 2] '

By enforcing this derivative equal to zero we get:

A* =40 (K; Y exp (20‘_/2a> . (33)
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However, we need to check whether this value A* lies in the interval [0, 1], otherwise the
optimal value of A must be 1 (obtaining the result for the case o > 2) since the function
f(A) is increasing:

o[ e (22

T 2 —«

[0

A

1 = T >16(K —1)o%exp < ) =T. (34

22—«

Given that, we will select the value of A* in Equation (33) for T" satisfying Equation (34),
and A =1 (as before) otherwise.
For T satisfying Equation (34) the regret is:

a—2
(K —1)0? K-1 a/2 !
szp Ey[Reye (A, T)] = — 4o 7P| 5 log | exp 5 )¢

_ (K1) ) e <K—1>(a‘2)/2 o (a(a = 2)) 2

20 T 22—-a))2—a
(K —1)0? o5 ams (a/2)—1p1—(a/2) ala —2) 2
= 49725072 K — 1)(@/2)-1pi-(e
20 o (K =1 Pl 20w-2))2-a

B O.Q(K _ 1)04/2T1—(a/2)
S 23-eea/2(2 — @)

B.2 Upper Bounds

Lemma 2. Let g fulfilling Assumption 2 and v be a 1-subgaussian MAB with expected
payoffs in [0,1/c]. The g-regret of MOSS is bounded by:

sup Ey [R(.)«(MOSS, T)] <

(%) K2 71— 4 K if ael0,2)
37K log (7£z) +log (3%) + (0 2+ T)K +2 if a=2andT>T
Ko*@ (% + 37log (UZTK)) +K(1+0 if ae(2,0)and T =T

where T = 156K and T = mazi{eJQK, §-20/C2=) /(). For the case a € (2,00) and T < T
and the case a = 2 and T < T, the g-regret is still logarithmic and the exact expression is
reported in the proof.

Proof. The proof of this lemma takes inspiration from one of (Theorem 9.1, Lattimore
and Szepesvari, 2020) that demonstrates the regret bound for the standard regret of 1-
subgaussian stochastic MAB with expected payoffs in [0,1]. We generalize this proof in
order to account for the g-expected cumulative regret of 1-subgaussian stochastic MAB with
expected rewards in [0,1/c]. As usual, we assume w.l.o.g. that the first arm is optimal,
so p1 = p*. In this refined analysis, the probability that an arm is played linearly often
depends on its suboptimality gap. We follow the proof path of (Theorem 9.1, Lattimore and
Szepesvari, 2020) and we start by making an argument in terms of the expected amount
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of optimism. Define a random variable A that measures how far below the index of the
optimal arm drops below its true mean:

i
o S S 4 (T
A= (Ml — i (Ml(s) + glog <Ks>>> ;

where z' := max{0, z}. Arms with suboptimality gaps much larger than A will not be played
too often, while arms with suboptimality gaps smaller than A may be played linearly often,
but A is sufficiently small in expectation that this price is small. Using the basic regret
decomposition which involves Wald’s Identity (Wald, 1944), for the standard regret we have:

EJ[RQLT)] = Y, AE[N(T)], (35)
€[ K]

and splitting the actions based on whether or not their suboptimality gaps are smaller or
larger than 2A leads to (for standard regret):

E, [RMOSS, T)] = > AE,[Ni(T)]

ie[ K]\{1}
<E, [2TA+ ) ANy(T)
L iZAi>2A
<E, | 2TA +8VKT + > AN;(T) | . (36)
A B :A;>max{2A,84/K/T}
i < i

We can generalize this bound to take into account the g-regret with transformation function
g = (-)* and explicitly exploit that the sub-optimality gaps are in [0,1/c]. What we have is:
E, [R()a (Moss, 7]

= Y AE[N(T)]
ieKT\(1)

< E, | min {1, ZA} T + 8K~ (/2) | > ANy (T) (37)
g %/_J
~ . B 1:A;>max{2A,84/K/T}
A h
L C |
~TE, [min { 1 2A} ] + 8K (/2) 4 > ASE, [Ni(T)].
g %/_J
N ~ B :A;>max{2A,84/K/T}

v

~
A

C

We now discuss how Equation (36), which provides a bound for the standard regret, is
related to the corresponding result for the g-regret (with bounded rewards in [0, 1/0] and
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g(x) = z®) presented in Equation (37). First, the term A is modified to explicitly take into
account the fact that the 2A cannot be greater than 1/0. Term B is no more than algebraic
calculations observing that term A for this term is for sure lower than 84/K /T and can be
pulled up to T times, so we can bound term B < (8/K/T)* - T = 8 K*/>T=(*/2) Term ¢,
instead, is no more than the application of the notion of g-regret.

The three terms A, B and C, show different behavior in the case of a € [0,2), @ = 2 and
a € (2,00). The term B does not require further elaboration right now.

Case a € [0,2). We start to bound A by observing by making use of Lemma 5:

E,[A®] = LOO P(A® > z)dx

Q0
= J P(A > ml/a> dx
0
0
< min< 1, ﬁ dz,
0 Tx2/a

where the last inequality follows from Lemma 4. Observing that the two components of the

.. _ a/2
minimum are equal for z = (%) /

15K\ [*® 15K 2 15K\
E,[AY] < [ o= 00 e —— (22 .
A7) ( T ) +J(15Tz<)a/2 Ta?e O 2—a< T >

Thus, the term A for a € [0,2) can be bounded as:

, we have:

1 @ 20+l
A=TE, [min { 2A} } < 29T E, [A%] < 2715a/2Ka/2T1*<a/2>.
p _
The term C can be bounded as in (Theorem 9.1, Lattimore and Szepesvéri, 2020) by resorting
the demonstration to the worst-case scenario in the case of the g-expected cumulative regret.
For suboptimal arm ¢, we define:

Ki = i Il {ﬂi(s) + %IOng <T> > i + Ai/2} -
= s Ks

The reason for choosing k; in this way is that for arms ¢ with A; > 2A, it holds that the
index of the optimal arm is always larger than u; + A;/2, so k; is an upper bound on the
number of times arm i is played, N;(T). If A; = 8(K/T)"/?, then the expectation of A®k; is
bounded using Lemma 6 by:

A?Eu [Hz]
! o, 8 TA? TA2
S AZo + A7+ ATa (2 log™ <K> + \/27r log* <K> + 1)
1
<+ A%

(8 K/T) B
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2

2
8 T K T /K
(8« /K/T)

1 8
< AP + <8\/m 5 <8 K/T)Qfa (2 log™ +4/2mlog™ )

)
@ < ﬁf — ( 8(210g+ (64) 4+ /27 log™ +1>>
(svirm)

<14 117822 (@/2)-1pl—(a/2)

where the first inequality is obtained by observing that the function is decreasing in A;.
Finally, term C can be therefore bounded by considering that we have at most K arms
satisfying this constraint as:

C= > AR, [Ni(T)]
:A;>max{2A,84/K/T}
< Z AFE, k]

<K (1 + 117 80‘_2K(a/2)_1T1_(0‘/2))
< K 411780 2 go/2p1=(/2)
To summarize, we obtained that for « € [0,2) the minimax g-expected cumulative regret is

bounded by:

2a+1
sup E, [R(.y« (MOSS, T)] < 2—150‘/21(&/21’1*(0/2) + 8K (/2) 4
v %/_/

—

~ B

A
+ K 4117 - 82 2 o/2p1—(e/2)

"

C

2a+1
50“/2 + 8% 4+ 117 - 89 2) K2 pi=(a2) | i

2 —«
.23 4 . 23

2a+1
< 22a +23a +27 23a 6> Ka/2 Tlf(a/Z) + K
< 2 -«

>Ka/2 Tl—(oc/2) + K

_ Ka/2 Tl (a/2) + K
2—a ’

where the last inequality follows from the fact that a € [0, 2).
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Case a € (2,0). We start by working in order to bound A as before with a refinement in
the range of integration by preserving the minimum:

1 @ ®© 1 *
E, {min{,A} } =f ]P’(min{,A} >x> dx
20 0 20
1/(20)«
=J P(min{l,A} >x1/°‘> dx
0 20

1/(20)« ) 15K
SJ mln{l,w}dx (38)

15K\%? (V@) 5K
J(MTK)Q/Q T:EQ/O(
1/(20)°

T 1= (2a) o

15K\ /2 1 15K/ 1 \'"@&
= + +
T 1—(2/a) T \(20)~

1 15K <15K) (@/2)-1

(151{) 92 5K gl—(2/a)

T 1-02/a) T \T
_ 2/a (15K\*? 1 15K [ 1 '@
< 1—(2/a)< T ) +1—(2/04) T ((2a)°“>
1 1K, .,
STo@m T "

The term A for a € (2,00) can be bounded as:

A=TE, [min{l,QA} ]—QO‘TEV [min{l,A} ]
o 20

1 15K

T gy T 2
60 .
< WKUQ .

The term C also for the case of a € (2,00) following the same procedure we present for
the case a € [0,2) by resorting to the proof of the worst-case scenario in the case of the
g-expected cumulative regret, observing that the following function is increasing in A;, so
we can select A; = 1/0:

1 8 TA? TA2
ASE, [N;(T)] € —— + AY 21logt [ —% omlogt | —% 1
T T
< —a 2—a + +
o %+o <1+8<210g <K02>+\/27r10g <K02>+1>>’
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and the term C can be therefore bounded by considering that we have at most K arms
satisfying this constraint as:

C< > ALE,y, [Ni(T)]
:A;>max{2A,84/K/T}

T T
< KO'_a +KO’2_Q (1 + 8 (210g+ (1(0_2> + \/271'10g+ <I(O‘2> + 1)) .

To summarize, we obtained that for « € (2,00) the minimax g-expected cumulative regret is
bounded by:

60
E, «(M0SS, T)] < —— Ko2 @ 4 82 g/271-(2/2)
sup y [R)o (MOS8, T)] < 3— @y e B +
1
T T
+ Ko™ @ (1 + 02 <9+ 16log™ (KUQ> +8\/27rlog+ (W))) .

i (30)

To simplify this result more readable, we introduce the mild assumption that T > eKo?, so
we have that log® (T/(Ko?)) = log(T/(Kc?)) and log(T/(Ko?)) = +/log(T/(Ko?)). This
allows us to further simply the expression:

sup E, [R()a (MOSS, T)] < 8* K271 (/) 4 Ko™+
60 T
K 2—a | MY 1 -
+ Ko [1—(2/a)+9+370g<02K>}

69 T
S SUKOPTIOR) - Ko™ 4 Ko | o +3Tlog | 7= ) |-
8 + Ko ™"+ Ko 1_(2/0[)Jr37 og =

We now decide to further simplify the term 8*K®/27T1=(%/2) in order to bound it by a constant
K for the sake of simplicity in calculations. To make this bound hold we have to impose a
constraint on the minimum 7"

8aKa/2T1—(a/2) <K —_ T> 8—204/(2—04)/}—{.
This lead us to the final result for a € (2, 00):

69 T
agra/2ml—(a/2 —« 2—a [
sng,,[R(A)a(MUSS,T)] < 8K L Ko™ 4 Ko [1_(2/04)"‘371@% <02K>]’

which holds for T > max{eos?K, 8*20‘/(2*0‘)/,[(}_

Case o = 2. The term A can be bounded by modifying the proof of case a € [2, 0) starting

from Equation (38):
1 2 1/(40%) 15K
A=TE, min{,2A} <J min{l,S}dx
o

0 Tx
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15K (Y40 15K

< -
ST +% T:de
1/(402
15K 15K ()/(U)
= — og(x
T T -

T
= K 1+1 T +1 1
T 6\ 1K) 8\ 102
1
<1+log|— ],
+ log (402>
where the last inequality is derived assuming 7" > 15K and observing that y(1+log(1/y)) <1
for y € [0, 1].
The term B is equal to:
B = 8*K*/2T'~(*/2) = 64K.

In order to compute term C, we can start from the result of Equation (39), and observe that
for a = 2 we get (for T > eKo?):

T T
—a 2

T
—2

Merging all these three terms together, under the condition that T > max{ec?K, 15K}, we
get:

T 1
B[R« (M0SS, T)] < 37K log [ —— ) +log [ —
sup [R()~(MOSS,T)] < 37K log <K02> + log (402

> +64K + (072 + 9K +1

O]

Theorem 6 (MOSS Minimax Upper Bound for g(x)=x%). Let g fulfilling Assumption 2 and
v be a o?-subgaussian MAB. The g-regret of MOSS is bounded by:

sup Ey[R(.)«(MOSS, T)] <

(322) oo Ko/ 7102 4 oo it ael0,2)
37K o%log (745) + 0 log (423) + 130?°K + K + 02 if a=2and T>T
Ko? (1_?§/a) +371log (UQLK)) + K(1+0%) if ac(2,0)andT>T

where T = ma>i{eJ2K, 15K} and T = max{eaQLK, §-20/C2=) /KK}. For the case a €
(2,00) and T < T and the case o = 2 and T < T, the g-regret is still logarithmic and
the exact expression is reported in the proof.
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Proof. We can see the problem of finding a regret bound for a o?-subgaussian stochastic
MAB with expected payoffs in [0,1] as a 1-subgaussian stochastic MAB with expected
payoffs in [0,1/0] by dividing all by o. Given that, the proof follows from Lemma 3 and
Lemma 2. O

Appendix C. Technical Lemmas

Lemma 3. Let v be a o%-subgaussian MAB with sub-optimality gaps in [0,1]. Then, running
algorithm 2 dividing the observed rewards by o leads to the g-regret:

E, [R()a (91, T)] =0"E, [R()"‘ (917 T)],

where By [Rya (U, T)] is the g-regret (considering g = (-)*) of 2 for a 1-subgaussian bandit
V' with expected rewards in [0,1/0].

Proof. Consider a K-armed o?-subgaussian bandit with expected rewards j; bounded in
[0, 1], for every i € [K]. We can convert this problem in a 1-subgaussian bandit one with
expected rewards (and, by consequence, sub-optimality gaps) in [0, 1/c] by scaling all the
expected rewards by .2 The new expected rewards are given by:

/ i

ILI/.
7 O_’

and the related suboptimality gaps become:
L= A
A=y —py =P = 2
o o

The g-expected cumulative regret By [R(.)a (2, T))] of the new problem will become:

Ey[Roye (LT = Y, (AD°Ey [Ni(T)]
ie[KT\{1}
v (?) E, [Ni(T)]
ie[KT\{1}
—ot Y AR, [NAT))
ie[K\{1}
=0 “E, [R()a (A, 7]

This implies that the regret of the initial problem can be calculated as:
EV [R()a (91, T)] = O'aE,// [R()a (Ql, T)],

where E,/[R)o(4,T)] is the regret of the transformed problem, which is a K-armed 1-
subgaussian with expected payoffs bounded in [0, 1/0]. O

9. This can be seen by taking a generic random variable X and with finite first and second-order moments
(i.e., with finite mean and variance). This is due to the fact that multiplying by o a 1-subgaussian random
variable, we get a ¢ subgaussian random variable. This can be proven by taking a generic 1-subgaussian
random variable X and observe that for every k € R, we have E[k - X]| = k- E[X] and:

VAeR: E[exp(_ Mk X)] = E[exp(N X)] < exp((N)?/2) = exp(A\*k?/2).

Y
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Lemma 4 (Lemma 9.3, Lattimore and Szepesvéri 2020). Let § € (0,1) and X1, Xo,...
be independent and 1-subgaussian random variables. Let fi(t) = %22:1 Xs. Then, for any

A > 0:
R 4 1 156
P(Hs)l:u(s)—i— 510g+<55>+A<0><A2'

Lemma 5 (Proposition 2.8, Lattimore and Szepesvari 2020). If X > 0 is a non-negative
random variable, then:

o0
E[X] - f P(X > 2) da.
0
Lemma 6 (Lemma 8.2, Lattimore and Szepesvari 2020). Let Xi,..., X1 be a sequence of

independent 1-subgaussian random variables, [i(t) = %Zzzl X;,e>0,a>0 and:

I 2a
K = ]I At‘i‘ 728 bl
;1 {u() p }

4 2a
m’zu—ktz[:]]l{ﬂ(t)-i-«/t?E},

where u = 2ae~2. Then, it holds:

E[x] <E[+] <1+ g%(a +Vra+ ),

Appendix D. Numerical Examples

In this appendix, we provide numerical examples to empirically validate our findings. We
consider the performances of UCB1 with a bandit made of K = 10 arms over 10 runs and
comparing the empirical regret (EXP, mean + std) with the instance-dependent lower (LB)
and upper (UB) bounds, for different choices of function g and for different time horizons
T e {1-10°,5-1051-10°}. The results are presented in Table 2. We can observe how the
empirical results are consistent with our theoretical findings for all the g and all the time
horizons T' considered.

T | g(A) = max{0,A <} g(A) = VA g(8) = A2 g(8) = A
LB EXP UB LB EXP UB LB EXP UB LB EXP UB

1-10° || 3.36  7.61+£0.23 26.84 | 27.01 50.63+3.67 216.09 | 2.07 4.73+0.17 16.58 | 9.96 19.74£1.09 79.65
5-10° || 3.82 8.714+0.17 30.59 | 30.79 61.61 +4.01 246.3 | 2.36 545+0.11 189 | 11.35 23.49+1.04 90.78
1-10% || 4.03 8.93+0.18 3221 | 32.41 66.36 +£2.25 259.31 | 2.49 5.63+0.11 19.89 | 11.95 25.06 + 0.69 95.58

Table 2: Examples of g-expected cumulative regret lower and upper bounds in comparison
with the empirical performance (10 runs, mean =+ std).
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