
Pricing the Long Tail by Explainable Product Aggregation and
Monotonic Bandits

Marco Mussi
marco.mussi@polimi.it
Politecnico di Milano

Milan, Italy

Gianmarco Genalti
gianmarco.genalti@polimi.it

Politecnico di Milano, ML cube
Milan, Italy

Francesco Trovò
francesco1.trovo@polimi.it

Politecnico di Milano
Milan, Italy

Alessandro Nuara
alessandro.nuara@mlcube.com

ML cube
Milan, Italy

Nicola Gatti
nicola.gatti@polimi.it
Politecnico di Milano

Milan, Italy

Marcello Restelli
marcello.restelli@polimi.it

Politecnico di Milano
Milan, Italy

ABSTRACT
In several e-commerce scenarios, pricing long-tail products effec-
tively is a central task for the companies, and there is broad agree-
ment that Artificial Intelligence (AI) will play a prominent role in
doing that in the next future. Nevertheless, dealing with long-tail
products raises major open technical issues due to data scarcity
which preclude the adoption of the mainstream approaches requir-
ing usually a huge amount of data, such as, e.g., deep learning. In
this paper, we provide a novel online learning algorithm for dy-
namic pricing that deals with non-stationary settings—due to, e.g.,
the seasonality or adaptive competitors—, and is very efficient in
terms of the need for data thanks to assumptions—such as, e.g., the
monotonicity of the demand curve in the price—that are customar-
ily satisfied in long-tail markets. Furthermore, our dynamic pricing
algorithm is paired with a clustering algorithm for the long-tail
products which aggregates similar products such that the data of
all the products of the same cluster are merged and used to choose
their best price. We first evaluate our algorithms in an offline syn-
thetic setting, comparing their performance with the state of the art
and showing that our algorithms are more robust and data-efficient
in long-tail settings. Subsequently, we evaluate our algorithms in
an online setting with more than 8, 000 products, including popular
and long-tail, in an A/B test with humans for about two months.
The increase of revenue thanks to our algorithms is about 18% for
the popular products and about 90% for the long-tail products.

CCS CONCEPTS
• Applied computing → Multi-criterion optimization and
decision-making; Online shopping.

KEYWORDS
E-commerce, Pricing, Drop-shipping, Long-tail, Online Learning,
Multi-Armed Bandit, Bayesian Model, Explainable Model

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
KDD ’22, August 14–18, 2022, Washington, DC, USA
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9385-0/22/08. . . $15.00
https://doi.org/10.1145/3534678.3539142

ACM Reference Format:
Marco Mussi, Gianmarco Genalti, Francesco Trovò, Alessandro Nuara,
Nicola Gatti, and Marcello Restelli. 2022. Pricing the Long Tail by Explain-
able Product Aggregation and Monotonic Bandits. In Proceedings of the 28th
ACM SIGKDD Conference on Knowledge Discovery and Data Mining (KDD
’22), August 14–18, 2022, Washington, DC, USA. ACM, New York, NY, USA,
11 pages. https://doi.org/10.1145/3534678.3539142

1 INTRODUCTION
The long-tail business model is pervasive in e-commerce. In par-
ticular, the long tail is a business strategy allowing companies to
get a significant profit by selling low volumes of hard-to-find items
to many customers instead of selling exclusively large volumes of
a small portion of popular items [14]. The importance of the long
tail is well known and investigated in several works since 2004. We
mention just a few seminal works, e.g., by Anderson [4, 5].

On the one hand, dealing effectively with the long tail is techni-
cally challenging as data per product are extremely scarce. Most
importantly, such a data scarcity precludes the adoption of several
Artificial Intelligence (AI) tools of great success, such as, e.g., deep
learning, thus leaving the problem of designing suitable tools open.
On the other hand, effective long-tail optimization is crucial for a
company. Indeed, the revenue from the long tail usually represents
a significant portion of the company’s revenue (e.g., up to 33%). Fur-
thermore, the competition with other companies on the long tail
is weaker than that on the popular products due to the difficulties
in optimizing the pricing. Therefore, an effective optimization can
lead to a significant increase of revenue for every company.

In this paper, we focus on real-world long-tail scenarios that are
usually non-stationary due to the seasonality and/or competitors’
adaptive behaviors. We design an online learning algorithm for dy-
namic pricing, namely DynaLT (Dynamic pricing for the Long Tail),
which updates the estimates on the demand curve sample by sample
and makes decisions to balance the customary machine learning
trade-off between exploitation and exploration. We assume that the
process to learn is stochastic. Such an assumption is reasonable
even in the presence of adaptive competitors since, as we observed
in our experimental analysis, the competitors rarely change the
prices of long-tail products. Technically speaking, we use historical
data to capture seasonality, and we combine them with a sliding
window to forget old data.

The main challenges due to the long tail we face are two. The
first challenge concerns the design of learning algorithms that are

3623

https://orcid.org/0000-0001-8356-6744
https://orcid.org/0000-0002-4472-4161
https://orcid.org/0000-0001-5796-7667
https://orcid.org/0000-0002-6379-0260
https://orcid.org/0000-0001-7349-3932
https://orcid.org/0000-0002-6322-1076
https://doi.org/10.1145/3534678.3539142
https://doi.org/10.1145/3534678.3539142

KDD ’22, August 14–18, 2022, Washington, DC, USA Marco Mussi et al.

robust and efficient when data are scarce. More precisely, when a
small amount of data are available, the observation of a new sample
can dramatically change the shape of the estimated demand curve.
In this case, robustness is crucial to avoid significant variations of
the algorithm outputs. Similarly, data efficiency is of paramount im-
portance in non-stationary settings to effectively track the changes
and limit the delay in the learning process. We force the monotonic-
ity of the demand curve learned by the algorithm to address this
challenge. Remarkably, this assumption commonly holds with the
long-tail products and allows better robustness (as new samples
cannot dramatically change the shape of the demand curve learned
by the algorithm) and data efficiency (as a sample at a given price
provides information to many other prices). We force monotonic-
ity by resorting to a specific class of Bernstein polynomials when
estimating the demand curve. The second challenge concerns the
design of algorithms capable of clustering the products such that
every product of the same cluster will be priced with the same
policy. In this case, there are two critical issues. The former is that
the clustering cannot be based only on transaction data as data are
too scarce. The second is that the common approaches assign some
long-tail products to a popular product, which may be inefficient
in practice due to the different market dynamics. The peculiarity
of our clustering algorithm resides in exploiting similarities among
products discovered from textual data describing the products, and
it provides an explainable clustering by decision-tree approaches.

We first evaluate our algorithms in an offline synthetic setting,
comparing their performance with the state-of-the-art and showing
that our algorithms are more robust and data-efficient in the long-
tail settings, thus supporting the need to adopt monotonicity in
practice. Subsequently, we evaluate our algorithms in a real-world
online setting with more than 8,000 products, including popular
and long-tail, in an A/B test with humans for about two months. Re-
markably, in this experiment, we obtain a revenue increase of about
18% for the popular products and 90% for the long-tail products.

2 APPLICATION DOMAIN AND MOTIVATION
2.1 Industrial Context

Business Scenario. Our work has been conducted in collaboration
with an Italian e-commerce website selling more than 20, 000 dif-
ferent products composed of non-perishables consumables. Notice
that in this case the assumption of monotonicity of the demand
curve trivially holds as these products are not luxury, Veblen, or
Giffen. The e-commerce website adopts the drop-shipping busi-
ness model. Thus, it is not subject to warehousing costs and can
suggest/recommend many different products to the customers, in-
cluding long-tail products leading to rare yearly transactions. In
particular, 75% of the products provide about 590 KEuros corre-
sponding to about 10% of the total e-commerce turnover, and the
number of units sold for these products in 2021 is smaller than 10.
Furthermore, about 50% of the products available in the catalog
present no order in 2021. By a simple analysis of the transactions
carried out in 2021, it can be observed that the products, once
re-ordered according to the number of units sold, satisfy the well-
known (long-tail) Zipf’s Law [47], as shown in Figure 1.

In addition to long-tail products, the e-commerce website also
sells a small number of popular products with a high turnover,

0 100 200 300 400 500 600 700 800 900 1,000
0

500

1,000

1,500

2,000

Product ID

Q
ua
nt
ity

Items sales
Zipf’s Law

Figure 1: Units sold per product in 2021 by the e-commerce
for the top 1, 000 products, compared with (long-tail) Zipf’s
Law 𝑧 (𝑥) = 𝑐

𝑥0.8 .

which need to be priced adequately. To simplify the business pro-
cesses, the e-commerce website management required the design
of a single algorithm to perform pricing on long-tail and popular
products coherently. The adoption of a single algorithm for both
kinds of products is due to the simplicity in its management and
to maintain fairness w.r.t. customers, as argued by Garbarino and
Lee [20], Haws and Bearden [21]. Moreover, adopting different pric-
ing policies for different products could be perceived as unfair by
customers. The objective function to maximize is the total profit.

Market Landscape. The e-commerce website with which we col-
laborate works in a market presenting a significant seasonality.
We study it as follows. For every year, we count the number of
sales per week and then we normalize them by the total number
of the annual sales. In this way, we obtain how the percentage of
the annual sales distributed over 52 weeks. Figure 2 shows such a
distribution once averaged over 5 years. The size of the market, not
reported in the figure, changes year by year, dramatically shrinking
in 2020 due to the COVID-19 pandemic outbreaks.

0 5 10 15 20 25 30 35 40 45 50
0

1

2

3

4

Weeks

%
of

Ye
ar
ly

Sa
le
s

Figure 2: Percentage of sales over the 52 weeks in a year
(standard deviation is depicted as semitransparent areas).

3624

Pricing the Long Tail by Explainable Product Aggregation and Monotonic Bandits KDD ’22, August 14–18, 2022, Washington, DC, USA

Notice that such a non-stationary behavior of the environment
is also due to the presence of competitors whose share is significant
w.r.t. the total market. Customarily, to monitor and compensate
such effects, companies exploit data-scraping services to monitor
competitors’ pricing. Notice that this approach is not economically
sustainable in the case of long-tail products due to the large number
of different products to monitor which in its turn would require
significant expenses in terms of scraping. However, a preliminary
set of experiments on a few popular products shows that the com-
petitors do not behave adversarially, i.e., no prompt reaction to price
changes by the analyzed e-commerce website triggers a prompt
response of the competitors. Therefore, in what follows, we model
the competitors by including them as one of the effects present in
the non-stationary stochastic environment.

2.2 Related Works
We distinguish two main research fields related to our work. The
former deals with learning for dynamic pricing, while the latter
focuses on long tail.1

Dynamic Pricing. Many works deal with the problem of learning
the demand curve and then choosing the best price given the curve
estimated by the algorithm. These works do not address the cus-
tomary trade-off between exploration and exploitation, and thus
they provide no theoretical guarantees. For instance, Besbes and
Zeevi [11] force monotonicity on a model-wise level and show that
linear regression models are suitable and efficient for modeling
a demand function. Broder and Rusmevichientong [13] and Bes-
bes and Zeevi [10] provide parametric formulations of the demand
function. However, these approaches only apply to stationary set-
tings that rarely meet real-world pricing applications. Cope [15]
and Bauer and Jannach [7] are seminal works on Bayesian infer-
ence applied to dynamic pricing, even dealing with non-stationary
features such as competitors’ prices. However, they do not force
the algorithm to learn a monotonic demand curve. Araman and
Caldentey [6] propose a model’s monotonic formulation on the de-
mand function using a Bayesian framework where market-related
information is captured through a prior belief on the parameters.
Wang et al. [43] investigate non-parametric models for demand
function estimation. Furthermore, the authors assume that the de-
mand function is smooth and study how this property affects mod-
els’ robustness. Nambiar et al. [35] propose a model to tackle both
the non-stationarity data and the model misspecification. However,
contextual knowledge is required on a product-wise level that is usu-
ally not available to retailers. Shukla et al. [39] propose a dynamic
pricing algorithm that focuses on the monotonic willingness-to-
pay of customers. Our scenario lacks contextual information about
customers, so this approach cannot be applied.

Differently from the aforementioned works, Multi-Armed Ban-
dits (MABs) provide theoretical guarantees, effectively addressing
the trade-off between exploration and exploitation. The seminal
work resorting to the MAB framework for dynamic pricing is pro-
vided by Rothschild [38]. This approach has been extended in multi-
ple directions. First, Kleinberg and Leighton [25] tackle the problem

1For a comprehensive analysis of the dynamic-pricing literature, refer to [9, 16, 36].

of dealing with continuous-demand functions by proposing a dis-
cretization of the price values that provides theoretical guarantees
on the algorithm’s regret. Subsequently, Trovò et al. [41, 42] and
Misra et al. [32] exploit that, in many practical settings, the de-
mand function is monotonically decreasing in the price to design
novel algorithms outperforming the classical MAB policies em-
pirically. We also mention the work by Mueller et al. [33] which
faces the multi-product pricing scenario through a contextual MAB
algorithm, which has strong theoretical guarantees in stationary
and non-stationary environments but does not deal with long-tail
products.

Long-Tail Pricing. A few recent works have been proposed in the
dynamic pricing literature to deal with the long tail. In particular,
Gandhi et al. [19] and Adam et al. [2] provide parametric models
for the demand curve estimation in a setting where many products
may present no transactions in the historical data. However, these
works merely estimate the demand curve without addressing the
exploration/exploitation dilemma, and thus no guarantees can be
provided. We also mention the work by Miao et al. [31], proposing
a pricing algorithm where an online clustering is performed to deal
with long-tail products. The authors perform dynamic pricing in a
context-based fashion where clustering is based only on transaction
data. This requires observing at least one transaction per product,
which is rarely met in real-world long-tail settings. In Ye et al. [46]
products are clustered through contextual information. However,
due to the unique nature of the involved products, this setting is
not feasible in our scenario.

3 PROBLEM FORMULATION
We study the scenario in which an e-commerce website sells a set J
of non-perishable products with unlimited availability. We assume
that a textual description and transaction data are available for all
the products 𝑗 ∈ J sold in the past.

At every time 𝑡 , we aim to set a percentage margin (from now on,
the margin)𝑚 𝑗𝑡 ∈ M 𝑗 , whereM 𝑗 is the finite set of feasible values
for the margin of an item 𝑗 ∈ J . Such a margin𝑚 𝑗𝑡 is defined as:

𝑚 𝑗𝑡 :=
𝑝 𝑗𝑡 − 𝑐 𝑗

𝑐 𝑗
, (1)

where 𝑝 𝑗𝑡 and 𝑐 𝑗 are the selling price and the acquisition cost for
product 𝑗 at time 𝑡 , respectively. Finally, we denote with 𝑣 𝑗𝑡 (𝑚 𝑗𝑡)
the actual number of sales (volumes) for an item 𝑗 at time 𝑡 when
choosing margin𝑚 𝑗𝑡 .

The objective function the e-commerce website aims tomaximize
is the total profit. Formally, the maximization problem is:2

𝑚∗
𝑗𝑡 = arg max

𝑚 𝑗𝑡 ∈M 𝑗

𝑓𝑗𝑡 (𝑚 𝑗𝑡), (2)

where:

𝑓𝑗𝑡 (𝑚 𝑗𝑡) :=𝑚 𝑗𝑡 𝑐 𝑗 𝑣 𝑗𝑡 (𝑚 𝑗𝑡) . (3)

2Let us remark that this problem also applies to a generic convex combination of
turnover and total profit.

3625

KDD ’22, August 14–18, 2022, Washington, DC, USA Marco Mussi et al.

Given a policy 𝜋 returning at day 𝑡 a margin value𝑚 𝑗𝑡 for each
product 𝑗 ∈ J , we define the pseudo-regret over time 𝑡 ∈ 𝑇 as:

𝑅(𝜋) :=
∑︁
𝑡 ∈𝑇

𝑓𝑗𝑡 (𝑚∗
𝑗𝑡) − E

∑︁
𝑡 ∈𝑇

𝑓𝑗𝑡 (𝑚 𝑗𝑡)
 ,

where 𝑓𝑗𝑡 (𝑚∗
𝑗𝑡
) is the expected value provided by a clairvoyant

algorithm choosing the optimal margin for each product, formally
𝑚∗

𝑗𝑡
∈ arg max𝑚∈M 𝑗

𝑓𝑗𝑡 (𝑚 𝑗𝑡). Intuitively, the notion of regret pro-
vides a measure of the cumulative loss of our policy 𝜋 w.r.t. the
(clairvoyant) policy choosing at each time 𝑡 the optimal margin
maximizing 𝑓 (·). Thus, our goal is the minimization of the pseudo-
regret 𝑅(𝜋), which is equivalent to the task of maximizing of the
cash flow margin accumulated over time.

4 PRICING SINGLE PRODUCTS
To model the demand curve for each product 𝑗 , we use the transac-
tion data aggregated over a time interval of one week. These data
consist in the aggregated average margin𝑚 𝑗𝜏 and amount of units
sold 𝑣 𝑗𝜏 , for every product 𝑗 and each week 𝜏 .

Seasonality. Motivated by the seasonality analysis depicted in
Figure 2, we factorize the dependence of the volumes on seasonality
and margin with two different, independent functions. In particular,
we define the adjusted volumes 𝑣 𝑗𝜏 of product 𝑗 at time 𝜏 as follows:

𝑣 𝑗𝜏 := 𝑣 𝑗𝜏 𝑠 𝑗𝜏 ,

where 𝑠 𝑗𝜏 is a coefficient, independent of the chosen margin, repre-
senting the seasonality for product 𝑗 at time 𝜏 . This coefficient is
estimated from historical data as discussed in Appendix A.1. The
above factorization allows a dramatic reduction of the samples
needed to have a stable estimate of the demand curve.

Non-stationary demand. In addition to seasonality effects, the
market can be non-stationary due to trends (e.g., contractions or
expansions) and adaptive behaviors of the competitors. These ef-
fects change the dependency of volumes on margin over time. We
deal with these kinds of non-stationarity sources by adopting a
sliding window that discards outdated data for the estimation of
the volumes. More precisely, we use data coming from the last 𝑌
years for the estimation of the seasonality coefficients 𝑠 𝑗𝜏 , while
we adopt a sliding window of 𝑁 weeks for the estimation of the
adjusted volumes. Notice that, when 𝑁 is small, the trend effect can
be considered to be negligible, and the demand curve is sufficiently
stable. In particular, the sliding window size is chosen to find the
best trade-off to balance issues due to the non-stationary environ-
ment and trend w.r.t. the model’s sample request to face noise and
outliers (see Section 6.1).

4.1 Bayesian Estimation of the Demand Curve
We aim to find the best margin for a product 𝑗 using its transaction
data. Our estimation algorithm is based on a Bayesian Linear Regres-
sion (BLR) [40]. In such a regression model, we build an estimate
𝑑 𝑗 (·) of the demand function for product 𝑗 as a linear combination
of the basis function taken as input, formally:

𝑑 𝑗 (𝑚) =
𝑍∑︁
ℎ=0

𝜃ℎ 𝜙ℎ (𝑚), (4)

0 0.2 0.4 0.6 0.8 1

0

0.5

1

(a) Bernstein Polynomials.

0 0.2 0.4 0.6 0.8 1

0

0.5

1

(b) Basis Function using transformed
Bernstein Polynomials.

Figure 3: Selected Basis Functions.

where 𝜃ℎ represents the ℎ-th weight distribution and 𝜙ℎ (𝑚) repre-
sents the ℎ-th basis function of the margin𝑚 ∈ M 𝑗 . Notice that the
BLR method returns a distribution 𝑑 𝑗 (𝑚) for each margin𝑚 ∈ M 𝑗 ,
which allows the adoption of a MAB approach in the following step
of the algorithm. To increase data efficiency and robustness of the
learning process in long-tail scenarios, we force our regression to
return a monotonic non-increasing demand curve in the margin.
Such an assumption is reasonable in our setting, as the products
are non-perishable consumables and, therefore, they are not luxury,
Veblen, or Giffen [18, 24].

The demand curve estimation is performed using data collected
during 𝜏 ∈ T := {𝑡 −𝑁, . . . , 𝑡 −1}, i.e., pairs (𝑚 𝑗𝜏 , 𝑣 𝑗𝜏) of input mar-
gins𝑚 𝑗𝜏 and output seasonally adjusted volumes 𝑣 𝑗𝜏 . To force the
monotonicity of the estimated demand curve 𝑑 (·), we use a specific
transformation of the standard Bernstein polynomials [8, 27] as basis
functions in combination with a non-negative prior distribution for
the 𝜃ℎ parameters. Formally, the Bernstein polynomials of degree
𝑍 are composed by 𝑍 + 1 functions, defined as:

𝑏ℎ,𝑍 (𝑚) =
(
𝑍

ℎ

)
𝑚ℎ (1 −𝑚)𝑍−ℎ, ℎ = {0, . . . , 𝑍 }, (5)

where
(𝑍
ℎ

)
is the binomial coefficient. Notice that the choice of

Bernstein polynomials allows us to model any demand function
satisfying mild assumptions. More precisely, Bernstein polynomials
converge to any function satisfying boundedness and continuity in a
given range for a sufficiently large degree 𝑍 of the polynomials [28].

An example of Bernstein polynomials with 𝑍 = 20 is shown in
Figure 3a. Defining the row vector 𝐵𝑍 (𝑥) as:

𝐵𝑍 (𝑚) :=
[
𝑏0,𝑍 (𝑚), 𝑏1,𝑍 (𝑚), . . . , 𝑏𝑍,𝑍 (𝑚)

]
, (6)

a monotonic version 𝜙ℎ (𝑚) of the original basis functions is ob-
tained as follows [30, 45]:

𝜙ℎ (𝑚) := 𝐵𝑍 (𝑚) · (𝐼𝑍+1 − 𝑆𝑍+1)−1 · Iℎ, ℎ = {0, . . . , 𝑍 }, (7)

where 𝐼𝑍+1 is the identity matrix of order 𝑍 + 1, 𝑆𝑍+1 is the square
matrix of dimension 𝑍 + 1 with all 1 in the superdiagonal (𝑠𝑖,𝑖+1 = 1
for each 𝑖 , 0 otherwise) [37], and Iℎ is the indicator operator se-
lecting ℎ-th element of the vector. An example of 𝜙ℎ (𝑚) obtained
transforming the Bernstein’s basis functions with 𝑍 = 20 is pre-
sented in Figure 3b. Since Bernstein polynomials are defined over
the support [0, 1], we re-scale values over this range. From now
on, for the sake of presentation and w.l.o.g., we assume that the
margins are s.t. M 𝑗 ⊆ [0, 1].

3626

Pricing the Long Tail by Explainable Product Aggregation and Monotonic Bandits KDD ’22, August 14–18, 2022, Washington, DC, USA

𝑣 𝑗𝑡

𝑚 𝑗𝑡

𝑣 𝑗𝑡

𝑚 𝑗𝑡

�̂� 𝑗𝑡

𝑓 (𝑚 𝑗𝑡)

𝑑 (𝑚 𝑗𝑡)

Objective function

MAB samples (𝑚 𝑗𝑡 ∈ M 𝑗)

Thompson Sampling
Realization

Prediction

Uncertainty Bounds

Figure 4: Optimal margin �̂� 𝑗𝑡 estimation process.

To guarantee that the resulting demand function 𝑑 𝑗 (·) is mono-
tone, we use both the basis 𝜙ℎ (·) as defined in Equation (7) and a
prior distribution for the 𝜃ℎ parameters having a non-negative sup-
port. Therefore, we use the Lognormal distribution [45] to model
the parameters 𝜃ℎ . Formally, we have the following:

𝜃ℎ ∼ LN(𝜇ℎ, 𝜎ℎ), ∀ℎ ∈ {0, . . . , 𝑍 },

where LN(𝜇ℎ, 𝜎ℎ) denotes the Lognormal distribution with mean
𝜇ℎ and standard deviation 𝜎ℎ . Finally, the model fitting is performed
using an Variational Inference approach provided in Blei et al. [12],
fitting a new parameter distribution using the last 𝑁 available
samples, i.e., relying on the data

{
(𝑚 𝑗𝜏 , 𝑣 𝑗𝜏)

}
𝜏 ∈T .

4.2 Exploration Strategy
Our problem can be naturally formulated as an online learning
problem, where the goal is to balance the acquisition of informa-
tion on the stochastic functions properly while, at the same time,
maximizing the cumulative reward. The procedure addressing the
exploration/exploitation at best is summarized in Figure 4. In par-
ticular, we resort to a sampling procedure similar to Thompson
Sampling (TS) [3, 23]. By construction, a Bayesian model provides
in output a Lognormal probability distribution of the posteriors on
the weights, which is used to drive the exploration in the learning
process. Formally, we sample from the posterior distribution of
BLR weights, retrieving a single realization of the posterior binding
margins with the demand curve (𝑑 (𝑚 𝑗𝑡)).

According to the MAB framework, we choose the best arm over
a finite set of possible margins (representing the arms)M 𝑗 . We can
compute the value of the expected objective function 𝑓 (𝑚 𝑗𝑡),∀𝑚 𝑗𝑡 ∈
M 𝑗 , which is the counterpart of Equation 3 computed with the es-
timated demand function 𝑑 (·):3

𝑓 (𝑚 𝑗𝑡) =𝑚 𝑗𝑡 𝑑 (𝑚 𝑗𝑡) . (8)

The optimal margin �̂� 𝑗𝑡 is the best arm, corresponding to:

�̂� 𝑗𝑡 = arg max
𝑚 𝑗𝑡 ∈M 𝑗

𝑓 (𝑚 𝑗𝑡), (9)

where 𝑓 (𝑚 𝑗𝑡) is the objective function estimated using demand
curve 𝑑 (·), the latter coming from TS over the model.

3Recall that the demand curve is no longer the expected volumes curve due to aggre-
gation (see Section 5.4) and seasonality adjustment process.

1 2 3 4 5 6

𝛽

𝛾

𝛼

Figure 5: Example of a tree structure.

5 PRICING LONG-TAIL PRODUCTS
The algorithms proposed in Section 4 cannot be directly applied
to long-tail products since the available data are not sufficient to
produce a reliable estimate of the demand curve. The commonly
adopted approach to applying to a long-tail product the same mar-
gin used for a popular product presenting similar characteristics
may lead to wrong business decisions. This is mainly because the
competition over long-tail and popular products is different, which,
in its turn, can lead to different optimal margins.

We deal with long-tail products by aggregating similar products
subject to the constraint that the aggregated data are sufficient to
produce an accurate estimation of the corresponding demand curve.
Then, we apply our bandit pricing algorithm to each aggregation
of products singularly. In the following sections, we describe the
steps of our algorithm.

5.1 Distance Estimation
In this step, we exploit textual information to estimate the sim-
ilarities among the products. This kind of information is indeed
the only information available in large-scale e-commerce websites
regarding the products. Initially, our algorithm removes the stop-
words from the textual description (i.e., recurring words such as,
e.g., “the” and “that”), as done in the work by Wilbur and Sirotkin
[44]. Subsequently, the algorithm encodes into vectors the products’
textual descriptions using Term Frequency – Inverse Document Fre-
quency (TF-IDF) [22, 29]. After that, it computes a distance matrix
D =

[
𝑑 𝑗𝑘

]
𝑗,𝑘∈J

, in which every entry provides the distance 𝑑 𝑗𝑘
between each pair of vectors obtained using TF-IDF. Such a matrix
expresses the similarities among the products. Additional technical
details are provided in Appendix A.2.

5.2 Tree Structure Generation
In this step, we generate a binary tree structure based on the prod-
ucts’ similarities by applying the hierarchical clustering approach
proposed by [34] to the products and the corresponding distance
matrix D.4 In this tree structure, every terminal node (i.e., leaf)

4We remark that the application of the hierarchical clustering algorithm by [34]
requires the choice of a distance metric and a linkage method, e.g., a method to
compute the distance of two clusters. We adopt the metric induced by D, and we opt
for the use of the single linkage, as suggested by Ding and He [17].

3627

KDD ’22, August 14–18, 2022, Washington, DC, USA Marco Mussi et al.

Textual
Description

Distance
Estimation

Tree
Structure
Generation

Demand
Curve Models

Meta-product
Demand
Estimation

Meta-product
Pricing

Optimal
Margins

Distance
Matrix

Transaction
Data

Aggregation
Strategy

Meta-productsTree Structure

�̂�

�̂�

�̂�

𝛼

𝛾

𝛽

Figure 6: Scheme of the DynaLT algorithm.

corresponds to a product 𝑗 ∈ J , and each non-terminal node corre-
sponds to an aggregation of products, which we call meta-products.
More precisely, a meta-product is the aggregation of those prod-
ucts whose leaves are reachable in the subtree whose root is the
meta-product. Formally, we define a meta-product K as the set of
products 𝑗 present in the corresponding subtree. Figure 5 depicts
an example of the tree structure resulting from the application
of the above clustering approach over 6 products, in which prod-
ucts (terminal nodes) are depicted as squares, and meta-products
(non-terminal nodes) are depicted as circles. In this example, the
meta-product 𝛼 = {1, 2, 3, 4} is the aggregation of the products 1, 2,
3, and 4. We remark that such a tree structure provides an explain-
able way to describe the similarities among the products whose
interpretation is crucial in real-world applications, as it directly
shows which products and aggregations are similar. Notice that,
while all the non-terminal nodes are in principle meta-products, our
algorithm works with only a subset of them chosen as discussed in
the next step and discards the remaining ones.

5.3 Product Aggregation Strategy
In this step, the algorithm chooses the specific subset of meta-
products to be priced. The rationale is to return a set of minimal
meta-products, each populated with a sufficient amount of data to
obtain an accurate demand curve estimation.

For every product 𝑗 , we define a vector s𝑗 := (𝑠 𝑗𝑡−𝑁 , . . . , 𝑠 𝑗𝑡−1),
whose elements 𝑠 𝑗𝜏 = 1 if at least a unit of the product 𝑗 has
been sold at time 𝜏 , 𝑠 𝑗𝜏 = 0 otherwise. Similarly, given a meta-
product 𝛼 , we define a vector s𝛼 := (𝑠𝛼𝑡−𝑁 , . . . , 𝑠𝛼𝑡−1), obtained
as s𝛼 := ⊕𝑗 ∈𝛼 s𝑗 , where ⊕ is the bit-wise “or” operation of the
vectors corresponding to the products 𝑗 belonging to 𝛼 . Notice that
𝑠𝛼𝜏 = 1 if at time 𝜏 at least a unit of at least one product belonging
to the meta-product 𝛼 has been sold. The condition stating that
the amount of data for a meta-product 𝛼 are sufficient is that the
number of time points for which there is at least a sale of meta-
product 𝛼 is at least 𝑞 𝑁 , where 𝑞 ∈ (0, 1] is a parameter that we
can tune. The above condition can be evaluated by computing the
sum of the elements of s𝛼 and comparing it with 𝑞 𝑁 .

Finally, the choice of the meta-products is performed as follows.
Starting from each product 𝑗 we check the above condition, and if it
is satisfied, the product 𝑗 is chosen as ameta-product. An example of
this case is represented by the product 1 in Figure 5. If the condition

does not hold on the single product, we traverse upward the nodes
of the aforementioned tree structure, and stop as soon as the above
condition is satisfied. In this case, the meta-product corresponding
to the non-terminal node is selected to build the demand model
for the product 𝑗 . Notice that the minimality principle we adopt is
motivated by the need for balancing between the bias and variance
of the demand curve estimates. Indeed, merging additional products
to aminimal meta-product wouldmost likely increase the bias of the
demand curve estimated for each product therein, while providing
only a negligible benefit in terms of variance reduction.

5.4 Meta-product Demand Estimation and
Pricing

In this step, the algorithm estimates the demand curve of each
selected meta-product and prices the corresponding products. Let
us consider a meta-product aggregating the set of productsK ⊆ J
and the corresponding sale statistics pairs (𝑚𝑘𝜏 , 𝑣𝑘𝜏) for all products
𝑘 ∈ K and time 𝜏 ∈ T . We compute the demand curve of a meta-
product using the overall volume 𝑣K𝜏 for a specific time 𝜏 and the
corresponding average margin𝑚K𝜏 used to get such a volume at
time 𝜏 . The above quantities are computed, for each 𝜏 ∈ T , as:

𝑣K𝜏 := 𝑠K𝜏

∑︁
𝑘∈K

𝑣𝑘𝜏 ,

𝑚K𝜏 :=
∑︁
𝑘∈K

𝑚𝑘𝜏 ·
𝑣𝑘𝜏∑

ℎ∈K 𝑣ℎ𝜏
,

where the average margin is computed averaging the products
margins weighted by their seasonality-adjusted volumes, and the
coefficient 𝑠K𝜏 is computed similarly to its single-product counter-
part (details are provided in Appendix A.1). The estimated demand
function and the final selected margin �̂�K𝑡 for the meta-product
are computed using the same procedure described in Section 4, i.e.,
using margins𝑚K𝜏 as input of the regression model and volumes
𝑣K𝜏 as output, as well as the selection of the margin. Indeed, once
the above conversion has been applied, the meta-product data are
of the same nature as the one of a single product 𝑗 and, therefore,
are processed in the same way. Finally, the selection of the margin
for a product 𝑗 is provided by the margin of the meta-product K
including 𝑗 with the smallest cardinality. For instance, in Figure 5,
the margin of product 2 is selected using meta-product 𝛼 , while
product 1 using the margin corresponding to meta-product 𝛽 .

3628

Pricing the Long Tail by Explainable Product Aggregation and Monotonic Bandits KDD ’22, August 14–18, 2022, Washington, DC, USA

Table 1: 𝑅(𝜋) in the presence of noise and outliers (15 runs,
standard deviation in brackets).

Outlier percentage 𝑜
0% 10% 20%

N
oi
se

st
d
𝜎

0.001 DynaLT 6.05 (0.12) 7.92 (0.2) 8.91 (0.25)
NM-BLR 7.51 (0.04) 10.43 (0.08) 11.61 (0.14)

0.005 DynaLT 9.36 (0.29) 18.17 (0.81) 22.09 (1.09)
NM-BLR 16.34 (0.42) 21.88 (0.55) 25.15 (0.68)

0.01 DynaLT 16.0 (0.27) 35.51 (1.74) 36.75 (1.56)
NM-BLR 27.34 (0.6) 37.71 (1.64) 37.12 (1.21)

A visual representation of the overall algorithm described in the
previous sections is provided in Figure 6. The process starts from the
textual description of each product and, thanks to these information,
builds the tree structure. Subsequently, using the transaction data
available, it builds the meta-products, estimates the corresponding
demand functions, and, finally, it provides a margin to apply to
each product in the catalog.

6 EXPERIMENTAL EVALUATION
In this section, we evaluate the empirical performance of our al-
gorithms. Initially, we show how the resort to monotonic bandits
improves the pricing performance. To do that, we use an offline
setting whose optimal solution is known. Subsequently, we describe
the application of our algorithm to a real-world long-tail setting.

6.1 Pricing Single Products
We compare our algorithm, namely DynaLT , with a BLR approach
not exploiting the monotonicity, denoted with NM-BLR, where we
use the Normal prior for the parameters 𝜃ℎ and Bernstein’s polyno-
mials in Equation (7) as basis functions. A detailed description of the
setting is deferred to Appendix A.3. We compare the two algorithms
in terms of empirical regret 𝑅(𝜋), i.e., the empirical counterpart of
the regret 𝑅(𝜋). Results are averaged over 15 independent runs for
each algorithm (standard deviation is reported in brackets).

6.1.1 Noise and Outliers. First, we study how DynaLT and NM-
BLR methods are affected by the variation of the standard deviation
of the noise of the volumes 𝑣 𝑗𝜏 and the introduction of outliers, i.e.,
the presence of customers performing significantly larger orders
than usual. The time-stationary volume function we use is:

𝑣 (𝑥) = 2𝑒−(𝑥+1.2)
5
2 + 𝜖,

where prices 𝑥 ∈ [0.32, 1.00] and 𝜖 ∼ N(0, 𝜎) is a Gaussian zero-
mean noise with standard deviation 𝜎 . The product had a unitary
cost 𝑐 = 0.3. In what follows, outliers are modeled as using, with
probability 𝑜 , a different noise term 𝜖 ′ ∼ N(0, 𝜎 ′) having 𝜎 ′ = 10𝜎 .
In particular, we investigate scenarios with 𝜎 ∈ {0.001, 0.005, 0.01}
and 𝑜 ∈ {0%, 10%, 20%}. The algorithms have been run over a time
horizon of |𝑇 | = 100 weeks.

Results. The empirical regret 𝑅(𝜋) obtained with the two meth-
ods are summarized in Table 1 (the smaller, the better). On average,
DynaLT outperforms its non-monotone counterpart NM-BLR on

Table 2: 𝑅(𝜋) in the presence of non-stationarities (15 runs,
standard deviation in brackets).

Number of Changes 𝑐
1 2 3

W
in
do

w
Si
ze

𝑁 20 DynaLT 4.16 (0.54) 8.86 (1.85) 6.51 (0.56)
NM-BLR 4.82 (0.8) 12.8 (2.17) 10.27 (0.23)

30 DynaLT 4.55 (0.8) 9.49 (2.15) 6.82 (0.49)
NM-BLR 4.84 (0.84) 12.45 (1.75) 12.75 (0.27)

40 DynaLT 3.95 (0.54) 7.46 (1.54) 6.14 (0.65)
NM-BLR 4.32 (0.22) 9.87 (1.69) 11.85 (0.69)

every setting. Overall, as expected, the performance of the two
algorithms degrades as the standard deviation of the noise 𝜎 and
the outlier percentage 𝑜 increase. Without outliers, DynaLT is sig-
nificantly better than NM-BLR for each value of the noise, and the
improvement increases as the noise gets larger, with an improve-
ment in terms of regret from ≈ 20% for 𝜎 = 0.001 to ≈ 41% for
𝜎 = 0.01. Conversely, with outliers, the advantage of using DynaLT
is significant only for small values of noise standard deviation, e.g.,
𝜎 = 0.001 and 𝜎 = 0.05, leading to a reduction of the regret in the
range [12%, 23%]. Finally, with both a large noise standard deviation
(𝜎 = 0.01) and outliers (𝑜 = 10% and 𝑜 = 20%), the performance of
the two techniques are comparable.

6.1.2 Non-stationarities. Second, we evaluate our algorithm in a
non-stationary setting. To do that, we simulate some changes in
the environment due to, e.g., a new competitor or a new product.
This is done by abruptly changing the product volume function at
specific time points. The specific shapes of the different volume
functions are provided in Appendix A.3. In particular, we introduce
𝑐 ∈ {1, 2, 3} abrupt changes occurring at evenly spaced time points
(over the entire time horizon). Notice that, since the underlying
demand functions are different for different values of 𝑐 , the regrets
corresponding to these scenarios cannot be directly compared. Even
in this case, we evaluate the impact of exploiting the monotonicity
w.r.t. a traditional demand function estimation method (NM-BLR).
Furthermore, we analyze the impact of changing the sliding window
length 𝑁 ∈ {20, 30, 40}. In this experiment, the empirical regret
𝑅(𝜋) is computed w.r.t. a clairvoyant policy that knows when the
changes in the environment would occur, and its value has been
averaged over 15 independent runs. The algorithms have been run
over a time horizon of |𝑇 | = 120 weeks.

Results. The empirical regrets are reported in Table 2 (the smaller,
the better). Even in this scenario, the performance provided by
DynaLT is, on average, better than those of NM-BLR. However, the
difference is significant only in the setting with 𝑐 = 3. This suggests
that monotonicity allows for a better estimate of the demand func-
tions, especially if the environment changes frequently. Moreover,
the performance for DynaLT achieved with different window sizes
do not change significantly, suggesting that this method is less
sensitive to changes in the window size.

3629

KDD ’22, August 14–18, 2022, Washington, DC, USA Marco Mussi et al.

6.2 Pricing Long-tail Products
The DynaLT has been used for two months on a real-world e-
commerce website, comparing its performance with the pricing
strategy previously used by the business managers.5

Setting. In this test, we have a catalog J of 7, 826 products, with
a turnover of 2.50 MEuros per year and a cumulative net margin of
0.53 MEuros (according to 2021 statistics). We divide the products
into two sets defined by e-commerce specialists, according to both
technical and market aspects, to set a proper A/B testing procedure.
Specifically, 2, 132 products have been priced by the company’s
experts, while 5, 694 have been priced by DynaLT . From now on,
we refer to the former one as the control set B and to the latter as
the test set A. As showed previously in Figure 1, only ≈ 3% of the
products got on average at least 1 sale per week during 2021. We
refer to this subset of products as popular, while the remaining ones
are addressed as long-tail. Based on this classification, we further
divide each one of the A and B sets into two subsets containing
only popular products (A𝑃 and B𝑃 , respectively) and long-tail ones
(A𝐿𝑇 and B𝐿𝑇 , respectively).

The pricing process for the two above tests has been conducted
over a test period |𝑇 | = 8 weeks, from November 22, 2021, to
January 16, 2022. Since it is not possible to compute the regret
𝑅(𝜋) of the strategies in a real-world scenario, we evaluate the
different pricing schemes in terms of their profits. Formally, the
performances of the two strategies have been evaluated using the
rate of the profits between the analyzed period and the one obtained
in a control period 𝐶 , from November 23, 2020, to January 17, 2021.
Let us define the total profit achieved by DynaLT as:

𝑀 (A,𝑇) :=
∑︁
𝑡 ∈𝑇

∑︁
𝑗 ∈A

𝑣 𝑗𝑡𝑚 𝑗𝑡𝑐 𝑗 , (10)

where𝑚 𝑗𝑡 is chosen by DynaLT . Similarly, we can define the profit
𝑀 (B,𝑇) achieved by human experts in the period 𝑇 over the set B,
and the profits 𝑀 (A,𝐶) and 𝑀 (B,𝐶) of DynaLT on the set A and
human expert on the set B, respectively, over the period 𝐶 .

The performance metric we adopt is:

𝐺 := 𝑀 (A,𝑇)
𝑀 (A,𝐶)

𝑀 (B,𝐶)
𝑀 (B,𝑇) . (11)

Intuitively, 𝐺 is greater than 1 if DynaLT increases the profit ob-
tained during the period𝑇 w.r.t. period𝐶 more than human experts
did. The DynaLT hyperparameters are set using historical data
from 2016 to 2021. The algorithm is implemented in Python 3.8.5,
relying on the 2.5.0 version of TensorFlow for what concerns the
BLR model implementation, and runs over a Windows 10 machine
(Intel Core i7-8750H @ 2.20GHz CPU with 16 GB of DDR4 system
memory). Despite DynaLT took in charge ≈ 5, 700 products to price
every week, the BLR model for demand estimation only had to fit
in ≈ 1, 200 different instances. This highlights that the aggregation
step is crucial to decrease the computational load of the pricing
process, which reduces of ≈ 80% the number of models that need to
be fit. Thanks to the use of such an approach, theDynaLT algorithm
runs on this architecture in ≈ 20 minutes, where ≈ 2 minutes are
required for the aggregation step and the remaining ≈ 18 minutes
are used for the training of the demand curve model.
5Further details about the e-commerce website have been retained due to NDA.

0 0.2 0.4 0.6 0.8 1

0

200

400

Proportion of Products

%
In
cr
ea
se

in
Pr
ofi

t

Set A
Set B

(a) Profit increase for the products
in set A (blue) and B (orange).

0 0.2 0.4 0.6 0.8 1
−100

0

100

200

Proportion of Products

%
In
cr
ea
se

in
Pr
ofi

t

Set A𝑃
Set B𝑃

(b) Profit increase per single popular
product in set A𝑃 (blue) and set B𝑃

(orange).

Figure 7: Profit increase by product.

Table 3: Performance in the real-world experiment.

Popular Long-tail Overall
𝐺𝑃 𝐺𝐿𝑇 𝐺

1.18 1.91 1.4

Global Performance. The results, in terms of performance index
𝐺 , of the real-world experiment are summarized in Table 3. DynaLT
algorithm over the set A provides an increase of ≈ 5% in terms of
profit during the period 𝑇 w.r.t. period 𝐶 . Instead, the choice of the
experts over the set B provided a reduction of the profit of ≈ 25%.
Therefore, the performance index 𝐺 is ≈ 1.4.

Figure 7a represents the increases in profit for each product in
settings A (blue area) and B (orange areas). While the set A records
an increase in profit w.r.t. last year in ≈ 63% of the products, set
B achieves a positive performance in ≈ 29% of the products. This
suggests that the improvement provided by DynaLT is due to a
better pricing strategy over a large number of products.

Long-Tail and Best-Sellers Comparison. As mentioned before,
both products’ sets A and B are mostly constituted by long-tail
products. Indeed, 5, 481 out of 5, 694 products in A, and 2, 078 out
of 2, 132 products in B are long-tail products. We will refer to the
aforementioned subsets of long-tail products A𝐿𝑇 and B𝐿𝑇 , respec-
tively. The performance index𝐺 computed over the new sets (using
A𝐿𝑇 and B𝐿𝑇 in the definition in place of A and B, respectively)
is 𝐺𝐿𝑇 = 1.91, suggesting that the pricing of long-tail products
is significantly improved thanks to DynaLT. In the case of popu-
lar products, the improvement is smaller as we have 𝐺𝑃 = 1.18.
Nonetheless, in Figure 7b the profit increment for the popular prod-
ucts in the set A𝑃 occurs for ≈ 55% of the popular products, while
in set B𝑃 only in 14% of the cases we have an improvement.

Competitors’ Behavior. Finally, we validate the hypothesis that
the competitors do not behave adversarially. To do that, we col-
lected data on the pricing strategy of 3 competitors over 35 prod-
ucts in the set A over the period 𝑇 used for the experiment. We
performed a Spearman’s rank correlation test (for a detailed expla-
nation, see [26]) to assess if the competitors react to our volumes’
changes, i.e., if the variation of the prices we applied is correlated
to theirs. Formally, the null hypothesis of the test was “The two
variables are uncorrelated”. The tests set with a significance level
of 0.05 did not provide any strong statistical evidence that the two
prices variation are correlated. In practice, the competitors change

3630

Pricing the Long Tail by Explainable Product Aggregation and Monotonic Bandits KDD ’22, August 14–18, 2022, Washington, DC, USA

prices with a low frequency and disregard the specific changes
performed by our algorithms. This result supports the adoption of
a sliding window to capture the competitors adaptation.

7 CONCLUSIONS
In this paper, we propose DynaLT to manage the complex task of
pricing products in an e-commerce scenario in the presence of long-
tail products. Indeed, this kind of product commonly constitutes
the majority of the ones present in a catalog, but automatic pricing
methods are usually unable to handle them due to the scarcity of
their transaction data. We propose a modeling approach based on
the demand curve’s properties, which can speed up the demand
curve learning process, and an aggregation strategy to automati-
cally group products with too little data. The modeling approach
has been tested on synthetically generated data to show the ad-
vantages of including the monotonicity property, and the overall
DynaLT has been implemented in a real-world e-commerce website,
showing that its application increases the profits on average of 18%
w.r.t. what is gained by manually pricing the products.

In future, we will investigate the integration of advertising and
recommendation strategies in DynaLT to understand whether the
product presentation to a user may improve the performance. We
will also study more complex user models, i.e., assuming that the
buyer is strategic w.r.t. the price choice.

REFERENCES
[1] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey

Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, et al.
2016. TensorFlow: A System for Large-Scale Machine Learning. In Symposium
on Operating Systems Design and Implementation (OSDI). USENIX Association,
265–283.

[2] Hammaad Adam, Pu He, and Fanyin Zheng. 2020. Machine Learning for De-
mand Estimation in Long Tail Markets. Columbia Business School Research Paper
Forthcoming -, - (2020), 1–43.

[3] Shipra Agrawal and Navin Goyal. 2012. Analysis of Thompson Sampling for the
Multi-armed Bandit Problem. In Conference on Learning Theory (COLT), Vol. 23.
JMLR Workshop and Conference Proceedings, 39.1–39.26.

[4] Chris Anderson. 2004. The Long Tail. https://www.wired.com/2004/10/tail/
[5] Chris Anderson. 2006. The long tail: Why the future of business is selling less of

more. Hachette Books.
[6] Victor F Araman and René Caldentey. 2009. Dynamic pricing for nonperishable

products with demand learning. Operations research 57, 5 (2009), 1169–1188.
[7] Josef Bauer and Dietmar Jannach. 2018. Optimal pricing in e-commerce based

on sparse and noisy data. Decision Support Systems 106 (2018), 53–63.
[8] Serge Bernstein. 1912. Démonstration du théorème de Weierstrass fondée sur le

calcul des probabilités. Communications of the Kharkov Mathematical Society -
(1912), 1–2.

[9] Dimitris Bertsimas and Georgia Perakis. 2006. Dynamic pricing: A learning
approach. In Mathematical and computational models for congestion charging.
Springer, 45–79.

[10] Omar Besbes and Assaf Zeevi. 2009. Dynamic pricing without knowing the
demand function: Risk bounds and near-optimal algorithms. Operations Research
57, 6 (2009), 1407–1420.

[11] Omar Besbes and Assaf Zeevi. 2015. On the (surprising) sufficiency of linear
models for dynamic pricing with demand learning. Management Science 61, 4
(2015), 723–739.

[12] David M Blei, Alp Kucukelbir, and Jon D McAuliffe. 2017. Variational inference:
A review for statisticians. Journal of the American statistical Association 112, 518
(2017), 859–877.

[13] Josef Broder and Paat Rusmevichientong. 2012. Dynamic pricing under a general
parametric choice model. Operations Research 60, 4 (2012), 965–980.

[14] Erik Brynjolfsson, Yu Hu, and Duncan Simester. 2011. Goodbye pareto principle,
hello long tail: The effect of search costs on the concentration of product sales.
Management Science 57, 8 (2011), 1373–1386.

[15] Eric Cope. 2007. Bayesian strategies for dynamic pricing in e-commerce. Naval
Research Logistics 54, 3 (2007), 265–281.

[16] Arnoud V Den Boer. 2015. Dynamic pricing and learning: historical origins, cur-
rent research, and new directions. Surveys in operations research and management

science 20, 1 (2015), 1–18.
[17] Chris Ding and Xiaofeng He. 2002. Cluster merging and splitting in hierarchical

clustering algorithms. In International Conference on Data Mining (ICDM). IEEE
Computer Society, 139–146.

[18] William R Dougan. 1982. Giffen goods and the law of demand. Journal of Political
Economy 90, 4 (1982), 809–815.

[19] Amit Gandhi, Zhentong Lu, and Xiaoxia Shi. 2020. Estimating demand for
differentiated products with zeroes in market share data. Available at SSRN -, -
(2020), 1–57.

[20] Ellen Garbarino and Olivia F Lee. 2003. Dynamic pricing in internet retail: effects
on consumer trust. Psychology & Marketing 20, 6 (2003), 495–513.

[21] Kelly L Haws and William O Bearden. 2006. Dynamic pricing and consumer
fairness perceptions. Journal of Consumer Research 33, 3 (2006), 304–311.

[22] Karen Sparck Jones. 1972. A statistical interpretation of term specificity and its
application in retrieval. Journal of documentation 28, 1 (1972), 11–21.

[23] Emilie Kaufmann, Nathaniel Korda, and Rémi Munos. 2012. Thompson sampling:
An asymptotically optimal finite-time analysis. In International conference on
Algorithmic Learning Theory (ALT). Springer, 199–213.

[24] Simon Kemp. 1998. Perceiving luxury and necessity. Journal of economic psy-
chology 19, 5 (1998), 591–606.

[25] Robert Kleinberg and Tom Leighton. 2003. The value of knowing a demand curve:
Bounds on regret for online posted-price auctions. In Symposium on Foundations
of Computer Science (FOCS). IEEE, 594–605.

[26] Stephen Kokoska and Daniel Zwillinger. 2000. CRC standard probability and
statistics tables and formulae. Crc Press.

[27] George G. Lorentz. 1953. Bernstein Polynomials. University of Toronto Press.
[28] George G. Lorentz. 1953. Degree of Approximation. In Bernstein Polynomials.

University of Toronto Press, Chapter 1.6, 19–23.
[29] Hans Peter Luhn. 1957. A statistical approach to mechanized encoding and

searching of literary information. Journal of research and development 1, 4 (1957),
309–317.

[30] S McKay Curtis and Sujit K Ghosh. 2011. A variable selection approach to
monotonic regression with Bernstein polynomials. Journal of Applied Statistics
38, 5 (2011), 961–976.

[31] Sentao Miao, Xi Chen, Xiuli Chao, Jiaxi Liu, and Yidong Zhang. 2019. Context-
based dynamic pricing with online clustering. arXiv preprint arXiv:1902.06199 -
(2019), 1–53.

[32] Kanishka Misra, Eric M Schwartz, and Jacob Abernethy. 2019. Dynamic on-
line pricing with incomplete information using multiarmed bandit experiments.
Marketing Science 38, 2 (2019), 226–252.

[33] Jonas W Mueller, Vasilis Syrgkanis, and Matt Taddy. 2019. Low-rank bandit
methods for high-dimensional dynamic pricing. InAdvances in Neural Information
Processing Systems (NeurIPS), Vol. 32. NeurIPS Proceedings, 1–11.

[34] Fionn Murtagh. 1983. A survey of recent advances in hierarchical clustering
algorithms. The computer journal 26, 4 (1983), 354–359.

[35] Mila Nambiar, David Simchi-Levi, and He Wang. 2019. Dynamic learning and
pricing with model misspecification. Management Science 65, 11 (2019), 4980–
5000.

[36] Yadati Narahari, CVL Raju, K Ravikumar, and Sourabh Shah. 2005. Dynamic
pricing models for electronic business. sadhana 30, 2 (2005), 231–256.

[37] Peter J. Olver and Chehrzad Shakiban. 2019. Practical Linear Algebra. In Applied
Linear Algebra. Springer, Chapter 1.7, 52–53.

[38] Michael Rothschild. 1974. A two-armed bandit theory of market pricing. Journal
of Economic Theory 9, 2 (1974), 185–202.

[39] Naman Shukla, Arinbjörn Kolbeinsson, Ken Otwell, Lavanya Marla, and Kartik
Yellepeddi. 2019. Dynamic pricing for airline ancillaries with customer context. In
International Conference on knowledge discovery & data mining (SIGKDD). ACM,
2174–2182.

[40] Michael E Tipping. 2001. Sparse Bayesian learning and the relevance vector
machine. Journal of machine learning research 1, Jun (2001), 211–244.

[41] Francesco Trovò, Stefano Paladino, Marcello Restelli, and Nicola Gatti. 2015.
Multi-armed bandit for pricing. In European Workshop on Reinforcement Learning
(EWRL). -, 1–9.

[42] Francesco Trovò, Stefano Paladino, Marcello Restelli, and Nicola Gatti. 2018.
Improving multi-armed bandit algorithms in online pricing settings. International
Journal of Approximate Reasoning 98 (2018), 196–235.

[43] Yining Wang, Boxiao Chen, and David Simchi-Levi. 2021. Multimodal dynamic
pricing. Management Science 67, 10 (2021), 6136–6152.

[44] W John Wilbur and Karl Sirotkin. 1992. The automatic identification of stop
words. Journal of information science 18, 1 (1992), 45–55.

[45] Ander Wilson, Jessica Tryner, Christian L’Orange, and John Volckens. 2020.
Bayesian nonparametric monotone regression. Environmetrics 31, 8 (2020), e2642.

[46] Peng Ye, Julian Qian, Jieying Chen, Chen-hung Wu, Yitong Zhou, Spencer
De Mars, Frank Yang, and Li Zhang. 2018. Customized regression model for
airbnb dynamic pricing. In international conference on knowledge discovery & data
mining (SIGKDD). ACM, 932–940.

[47] George Kingsley Zipf. 1949. Human behavior and the principle of least effort.
Addison-Wesley Press.

3631

https://www.wired.com/2004/10/tail/

KDD ’22, August 14–18, 2022, Washington, DC, USA Marco Mussi et al.

A REPRODUCIBILITY
The implementation of the DynaLT algorithm for the experiments
presented in Section 6 has been done using Python 3. More specif-
ically, the Bayesian Regression Model is implemented using Ten-
sorFlow Probability library [1]. In what follows, we provide the
implementation details to allow the replicability of the experiments,
i.e., the seasonality estimation (Appendix A.1), the distance esti-
mation procedure (Appendix A.2), and the synthetic environment
creation (Appendix A.3). Finally, we discuss the algorithm running
time (Appendix A.4).

A.1 Seasonality
Figure 2 shows that, even if the seasonality effect is relevant, it is
stable across years since the standard deviation bounds provided
as semitransparent areas are small. Therefore, we model it as a
multiplicative factor 𝑠 𝑗𝜏 for each product 𝑗 at time 𝜏 such that we
can compute seasonality adjusted volumes as 𝑣 𝑗𝜏 := 𝑣 𝑗𝜏 · 𝑠 𝑗𝜏 .

The seasonality term 𝑠 𝑗𝜏 is estimated in a data-driven way using
data coming from a set of previous years Y. We denote with 𝑣 𝑗𝑤𝑦

the volume for product 𝑗 corresponding to a week of the year
𝑤 ∈ {1, . . . , 52} and a year 𝑦 ∈ Y. At first, let us compute for a
product 𝑗 the proportion of the volumes sold in a specific week𝑤
for a year 𝑦, formally:

𝑣 𝑗𝑤𝑦 =
𝑣 𝑗𝑤𝑦∑︁

𝑖∈W
𝑣 𝑗𝑖𝑦

. (12)

The seasonality factor 𝑠 𝑗 (𝑤) for a specific week𝑤 is computed as
follows:

𝑠 𝑗 (𝑤) = 1∑
𝑦∈Y 𝑣 𝑗𝑤𝑦/𝑌 + 𝐻

, (13)

where 𝐻 is a shrinkage factor, and 𝑌 := |Y| is the cardinality of the
set Y. Finally, the correction factor 𝑠 𝑗𝜏 is equal to the 𝑠 𝑗 (𝑤) for the
week𝑤 of the year corresponding to time 𝜏 .

The same procedure is applicable for meta-product by using the
aggregated volumes of the product therein, i.e., for meta-product
K :

𝑣K𝑤𝑦 =
∑︁
𝑘∈K

𝑣𝑘𝑤𝑦 .

In the experiments, the shrinkage factor is selected equal to
𝐻 = 0.005 based on empirical evidence.

A.2 Similarity Estimation
In our application, each product 𝑗 ∈ J has a textual description 𝜌 𝑗 ,
which contains information regarding the product, like its brand,
color, and material.6 The corpus of strings Π = {𝜌 𝑗 } 𝑗 ∈J7 is repre-
sented by the descriptions of all the available products.

With |𝜌 𝑗 | we denote the dimension of the string computed as
the number of words it contains. TF-IDF encoding balances the
importance 𝑡 𝑓𝑖 𝑗 of a word 𝑖 in a string 𝜌 𝑗 and the importance 𝑖𝑑 𝑓𝑖

6For the sake of presentation we focus on the textual description, but one might also
concatenate additional textual information, like the product category or its name.
7Note that |Π | = |J |.

TF-IDF
Cosine
Distance

Corpus

< Item description 1 >

< Item description 2 >|J |

|J ||L|

TF-IDF Matrix Distance
Matrix

< Item description |J | >
..............

Figure 8: Overall scheme of the TF-IDF algorithm.

of the word 𝑖 across the whole textual data set. Formally:

𝑡 𝑓𝑖 𝑗 =
𝜐𝑖 𝑗

|𝜌 𝑗 |
,

𝑖𝑑 𝑓𝑖 = log10
|Π |

|{𝜌 ∈ Π s.t. 𝑖 ∈ 𝜌}| ,

where 𝜐𝑖 𝑗 is the number of occurrences of the word 𝑖 in description
𝜌 𝑗 of product 𝑗 , |Π | is the number of string present in the corpus,
and |{𝜌 ∈ Π s.t. 𝑖 ∈ 𝜌}| is the number of textual descriptions 𝜌 in
which the word 𝑖 is present among the one of the entire catalog Π.
The TF-IDF score for the word 𝑖 in the description 𝜌 𝑗 of product 𝑗
is computed as follows:

𝑡 𝑓 𝑖𝑑 𝑓𝑖 𝑗 = 𝑡 𝑓𝑖 𝑗 · 𝑖𝑑 𝑓𝑖 .

The result is a vector 𝜂 𝑗 ∈ [0, 1] |L | , where L is the set of distinct
words (obtained after a stop-word removal procedure) in all the
texts. For each product 𝑗 , [𝜂 𝑗]𝑖 = 𝑡 𝑓 𝑖𝑑 𝑓𝑖 𝑗 is the TF-IDF score of
word 𝑖 ∈ L for the text defined by 𝜌 𝑗 . The distance 𝑑 𝑗𝑙 between
two products 𝑗 and 𝑙 is computed using a transformation of the
cosine similarity, formally:

𝑑 𝑗𝑙 = 1 −
𝜂 𝑗 · 𝜂𝑙𝜂 𝑗 ·𝜂𝑙 .

where · represents the scalar product between vectors and | |𝜂 | |
represents the 2-norm of 𝜂. Figure 8 represents the whole process
that goes from textual data to the computation of a pairwise distance
matrix between the products.8

A.3 Simulation Details
Noisy Environment Simulation. The volumes for the single prod-

uct pricing experiments in Section 6.1 are generated from the vol-
ume function:9

𝑣1 (𝑥) = 2𝑒−(𝑥+1.2)
5
2 + 𝜖,

where prices 𝑥 ∈ [0.32, 1] and 𝜖 ∼ N(0, 𝜎2) is a Gaussian zero-mean
noise with variance 𝜎2. The product had a unitary cost 𝑐 = 0.3. A
graphic representation of the volumes curve corresponding to this
product is provided in Figure 9.

In this, we modified noise’s standard deviation 𝜎 and introduced
some outliers in the data generation process. More specifically, the
outliers generation is obtained through the probability 𝑜 ∈ (0, 1)
that a sample drawn from a demand curve has noise 𝜖 ′ s.t. its
standard deviation is 10 times the one of 𝜖 .

8Other ways of vectorization such as embedded-based ones are also viable options in
the case the textual descriptions are succinct.
9Notice that the chosen demand function satisfies the motononicity assumption.

3632

Pricing the Long Tail by Explainable Product Aggregation and Monotonic Bandits KDD ’22, August 14–18, 2022, Washington, DC, USA

0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

Price

Sc
al
ed

Cu
rv
es

Figure 9: Demand curve used in the noisy experiment and
corresponding reward function obtained maximizing profit.

0.4 0.6 0.8 1
0

0.5

1

Price

Sc
al
e d

Cu
rv
es

0.4 0.6 0.8 1
0

0.5

1

Price
0.4 0.6 0.8 1

0

0.5

1

Price

Figure 10: Demand curves used in the non-stationary experi-
ment and corresponding reward functions.

Non-stationary Environment Simulation. In the second experi-
ment, three different volume functions have been used during the
different phases of the non-stationary process. The volume func-
tions were:

𝑣1 (𝑥) =
3
10 (1 − 𝑥),

𝑣2 (𝑥) = 2𝑒−(𝑥+1.2)
5
2
,

𝑣3 (𝑥) = 7𝑒−(𝑥+1.2)3
.

Their corresponding volumes curves are provided in Figure 10. The
first abrupt change substituted the volume function 𝑣1 (𝑥) with
𝑣2 (𝑥), the second substituted 𝑣2 (𝑥) with 𝑣3 (𝑥), and the third one
𝑣3 (𝑥) with 𝑣1 (𝑥). In this set of experiments the noise’s standard
deviation is 𝜎 = 0.001, and the outliers’ percentage is 𝑜 = 0%.

Algorithm Settings. In the first scenario, the demand curve have
been estimated using Bernstein’s Polynomial with 𝑍 = 75. The
priors for the Lognormal and Gaussian distribution of the BRL
model have been set with 𝜎ℎ = 0.75 and 𝜎ℎ = 0.5, respectively.

The values for the hyper-parameters have been chosen basing
on an independent data set. The sampling procedure described in
Section 4 have been applied to the set of margins M of evenly
spaced values over the domain [0.05, 1.5], where |M| = 50.

In the second scenario, we use the same configurations for the
Bernstein’s Polynomial and the sampling procedure. Conversely,
the prior parameters for the Lognormal and Gaussian priors were
set to 𝜎ℎ = 0.75 and 𝜎ℎ = 2, respectively.

Notice that the clairvoyant solution to the problem ofmaximizing
the profits is non-trivial even knowing the real volume functions,
due to the fact that the introduction of noise and outliers do not
allow to compute it in a closed form solution. We estimated the
optimal solution using Monte Carlo approach, i.e., we simulated
10, 000 samples from each one of the margins used in the exper-
iments and averaged the values of the profit gained with such a
margin. Then we took the maximum over the computed profits as
the optimal solution for the problem. Thanks to this approach, the
empirical regret is computed as the difference between this value
and the one obtained using the analyzed algorithms.

A.4 Algorithm Running Time
The algorithm running time can be analyzed by dividing the process
into two phases: first, the distance estimation and the tree structure
generation, then, the proper optimal price estimation.

Similarity and Tree Structure. This phase is required to be per-
formed only when there are changes in the catalog of the products.
The running time for the distance estimation algorithm is O(|J |2)
for what concerns the operations required to construct the dis-
tance matrix. Building the agglomerative clustering tree structure
requires a running time O(|J |2 log |J |) when using single linkage,
and O(|J |3) in the general case. It is worth noting that adding a
new product to the catalog corresponds to an incremental update of
the distance matrix, i.e., adding a new row and column to the matrix
consisting of the distance of the new products w.r.t. the previous
ones.

Optimal Pricing. The proper estimate of the optimal price must
be performed at every time 𝑡 , as well as the association of a product
𝑗 with the related meta-product K . This is because the cluster
stopping condition is defined over transactions data, which changes
over time. Given |J | products, we must estimate at most (worst-
case scenario) |J | BLR models.

3633

	Abstract
	1 Introduction
	2 Application Domain and Motivation
	2.1 Industrial Context
	2.2 Related Works

	3 Problem Formulation
	4 Pricing Single Products
	4.1 Bayesian Estimation of the Demand Curve
	4.2 Exploration Strategy

	5 Pricing Long-Tail Products
	5.1 Distance Estimation
	5.2 Tree Structure Generation
	5.3 Product Aggregation Strategy
	5.4 Meta-product Demand Estimation and Pricing

	6 Experimental Evaluation
	6.1 Pricing Single Products
	6.2 Pricing Long-tail Products

	7 Conclusions
	References
	A Reproducibility
	A.1 Seasonality
	A.2 Similarity Estimation
	A.3 Simulation Details
	A.4 Algorithm Running Time

