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WHAT IS THE LONG TAIL?

Products

Best-Sellers

S
a
l
e
s

Long-Tail

Long tail [Anderson, 2006]
consists in sell:

• a small number of products
with high volumes

• a large number of products
with low volumes

MOTIVATION

WHY THIS WORK?
• An increasing number of e-commerce are joining the long-

tail paradigm
• No other work exploits the peculiarities of the long-tail

framework to make dynamic pricing

WHERE WE START?
• We work with an e-commerce to price over

20000 products:
– ≈ 1000 are best seller
– ≈ 12000 are long tail with at least a sale
– ≈ 7000 have never been sold

• The market presents seasonalities and trends

WHICH ARE THE CHALLENGES?
• Design a learning algorithm that is robust and sample effi-

cient:
– Robust: essential when data are scarce and noisy, as in

real-world settings
– Sample efficient : essential in non-stationary settings to

limit delay in learning
• Find an effective solution to cluster products:

– We cannot rely only on transaction data (too scarce)
– Long-tail products have different market dynamics

than best-seller → trivial one-to-one aggregations may
fail

SETTING AND GOAL

SETTING

• We have a textual description and transaction data for
product j ∈ J (J is the set containing all the products)

• At every time t, we aim to set a margin mjt :=
pjt − cj

cj
(pjt and cj are the selling price and the acquisition cost)

• vjt(mjt) is the actual number of sales (volumes) for an
item j at time t when choosing margin mjt

GOAL

Select the margin maximizing the total profit :

m∗
jt = argmax

mjt∈Mj

fjt(mjt)

fjt(mjt) := mjt cj vjt(mjt)

ALGORITHM

pDISTANCE ESTIMATIONp

IDEA: Compute a distance matrix using textual descriptions

• The distance is computed for all the couples of products using
Term Frequency-Inverse Document Frequency (TF-IDF) algorithm

• We obtain a matrix D = [djk]j,k∈J , where djk is the distance be-
tween any couple of items j, k ∈ J

pTREE STRUCTURE GENERATIONp

IDEA: Generate a binary tree from the distance matrix D

• In this tree:
– Each leaf represents a product j ∈ J
– Each non-terminal node represents a meta-product K

pAGGREGATION STRATEGYp

IDEA: Map every product to a meta-product

• Return a set of minimal meta-products, each
with a sufficient amount of data to get an accu-
rate estimate of the demand curve

• Ensuring every selected meta-product is (the
minimal) provided by at least a given percent-
age of non-zero (aggregated) volumes samples
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pMETA-PRODUCT PRICINGp

IDEA: Price product j using meta-product K

• Meta-product is composed by products k ∈ K

• Volumes of products k ∈ K are aggregated
and deseasonalized

v̄Kτ := sKτ

∑
k∈K

vkτ , ∀τ ∈ T

• Margins of products k ∈ K are averaged, con-
sidering volumes as weights

mKτ :=
∑
k∈K

mkτ · vkτ∑
h∈K vhτ

, ∀τ ∈ T

• Optimal margins are selected according to a
Thompson Sampling-like approach
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pDEMAND CURVE MODELSp

IDEA: Model the non-increasing monotonicity margin → volumes

• The model considers a subset of historical data, related to the last
N weeks → trend effects are negligible

• The seasonality is stable → removed using historical data

• The demand is modeled as d̂j(m) =
Z∑

h=0

θh ϕh(m)

• The demand curve is forced to be monotonic non-increasing with
a Bayesian Regression Model → LogNormal prior θh over all the
basis functions ϕh(m)

• The basis functions are (h = {0, . . . , Z}):

ϕh(m) = BZ(m) · (IZ+1 − SZ+1)
−1 · Ih

where BZ(m) is the vector of Bernstein Polynomials (degree Z)
and SZ+1 is the square matrix with all 1 in the superdiagonal

BERNSTEIN POLYNOMIALS
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REAL-WORLD APPLICATION

REAL-WORLD SETTING

• A/B test involving ≈ 8000 products with
− ≈ 2.5 MEuros of turnover
− ≈ 0.5 MEuros of margin

• The test includes both long-tail and best-seller products
• The test is conducted for 8 weeks in fall/winter 2021
• The performances are matched with the ones of set B,
considering as control period the same time-span of the
previuos year
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RESULTS OVERVIEW

Best-Seller Long-Tail Overall

+18% +91% +40%

VARIATIONS IN PRODUCTS’ MARGIN
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