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[1] Chui, Michael, et al. "Notes from the Al frontier: Insights from hundreds of use cases." McKinsey Global Institute (2018).
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Research on Dynamic Pricing

Scientific Production on Dynamic Pricing?
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Dynamic Pricing

Consider an e-commerce which sells a product
* Customers visit the product page and decide whether to buy or not
* By aggregating users choices, we are able to build a demand curve

/ Demand Curve

/ Objective Function

>

Price

[3] Arnoud V Den Boer. Dynamic pricing and learning: historical origins, current research, and new directions. Surveys
in operations research and management science, 20(1):1-18, 201
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Provide a dynamic pricing algorithm:

e Common among all products
* Online

* Explainable
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The Long Tail Paradigm

Real-World scenario:
= 20000 products in total

.

~ 1000 best sellers

Small number = 12000 long tail

~ 7000 never sold before
S of best-sellers
E products
n:..- Large number of

low-sale products
.

Products

[4] Chris Anderson. The long tail: Why the future of business is selling less of more. Hachette Books, 2006
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Setting and Goal



Available Data
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- Textual description

- Weekly Sales _
- Supplier’s Cost

- Price History
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Problem Formulation

* The e-commerce sells N non-perishable products with
unlimited availability

* Ateverytimet, for every product j, we aim to set a percentage
margin m;; defined as

Pjt — ¢

Mip 1=
Jt .
Cj

o pjt is the selling price of product j at time ¢
o ¢; is the acquisition cost for product j
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Objective Function

Goal: Maximize total profit
fie(mje) = mye ¢; vje (mye)

vjt(mjt) is the number of units products j would sold at time ¢
by setting the margin as mj;

This implies find the optimal pricing strategy:

N

m; := argmax fit(mj¢)
{mltrmZtr"'}j=1
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Solution
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Demand Curve Model

* To estimate the volume curve v; we resort to Bayesian Linear
Regression (BLR) with a basis function expansion:

M-1
je(m,wj,) = Wo,jt + z w; jt¢i(m)
=1

* We assume that the true volume curve is non-increasing in
price. This assumption:

* |Is realistic in our setting since this goods are non-luxury
* Alleviate data scarcity problems
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Bernstein Polynomials

Price values are expanded using transformed Bernstein Polynomial

T
0 0.2 0.4 0.6 0.8 1 0 0.2 1

Bernstein Polynomials ——  Transformed Bernstein
Polynomials Expansion

1 - 1

¢ (0, M) = (IZ) p (1 —p)M*

0.5 —

We select a positive support

N 2
W~ LN (4, 0°) prior distribution of BLR
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Dealing with Price Exploration

* BLR uncertainty over weights’ posterior to sample3 a single curve
Uje (1 Wje)

* Objective function U; (-, Wj;) is computed over the range of
possible margins

Demand Curve Model Uncertainty

Demand Curve Model Mean

Margin
[5] Thompson, William "On the likelihood that one unknown probability exceeds another in view of the evidence of two
samples." Biometrika (1933): 285-294.
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Dealing with Price Exploration

* BLR uncertainty over weights’ posterior to sample3 a single curve
Uje (1 Wje)

* Objective function U; (-, Wj;) is computed over the range of
possible margins

Sampled Demand Curve

Demand Curve Model Uncertainty

Demand Curve Model Mean

Margin
[5] Thompson, William "On the likelihood that one unknown probability exceeds another in view of the evidence of two
samples." Biometrika (1933): 285-294.
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Dealing with Price Exploration

* BLR uncertainty over weights’ posterior to sample3 a single curve
Uje (1 Wje)
* Objective function U; (-, Wj;) is computed over the range of

possible margins o _
: Objective Function
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[5] Thompson, William "On the likelihood that one unknown probability exceeds another in view of the evidence of two
samples." Biometrika (1933): 285-294.
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Why Product Aggregation

* Most of the products do not register enough sales to fit the
BLR model properly

* Naive Strategy: for each long-tail product, apply the same
margin as the most similar best-seller product

» Best-sellers and long-tail products have significantly
different market behaviors: the Naive Strategy doesn’t

control the bias induced by the procedure

e QOur goal is to design a way to aggregate data from similar
long-tail products
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Products Similarity

* The only technical data available are products’ textual
descriptions

Cosine 1 0.3

N similarity
Kij = tﬁ] logd_fl » S =

0.7 7 1A

tfij = number of df; = number of products

occurrences of.word Lin containing i in description
description of j
* We resort to TF-IDF to encode each product in a vector k;,

then, cosine similarity is used to build a matrix expressing
the similarity between each couple of products
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Aggregation Structure

@a-Products

Using a single linkage hierarchical
clustering on similarity matrix, we
construct a tree structure
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Product Aggregation Strategy

* Threshold 7 represents the
minimum amountofdata e 3
samples required to start the a
single product pricing routine ®

* For every product j:

e If its non-zero samples are
at least 7, the product can
be priced alone L )

e If not, we climb up a level 1 2 3 4 5 6
in the tree and recursively
perform this check on the
next meta-product
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Data Sample Aggregation

* Once the meta-product a related to product j has been found,
the meta-product data are estimated:

Vat = E Ukt
. Ukt
Met = Myt —
Vat

kea

* Treating the meta-product as a single product, compute its
optimal margin, and apply it to product j
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Experimental Campaign



Experimental Setting

* The solution is tested in both synthetic and real environments

* An A/B testis performed on a real e-commerce over 7826
products with an yearly turnover of 2.5MEuros

e The test lasted T = 8 weeks

* The same time period C of the previous year is considered as
benchmark

-

Configuration A

N, = 5694 products
Priced by our algorithm

~N

-

\_

Configuration B A

Np = 2132 products
Priced by human specialist
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Evaluation Metric

 The chosen metric is the total profit collected during the period

of 8 weeks
T
M(A, T) = z Z vjtmthj

t=1 jEA

* Due to the different overall magnitude in the two sets” weekly

profits, we compare the ratio of profits between the two
periods

_ M(A,T)M(B,C)
- M@A,C)M(B,T)
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Overall Results

* \We separated the analysis between bestsellers (or popular)
products and long-tail ones

 The metricis in favor of our algorithm, attesting an

increment in profits w.r.t previous year that is 40% higher
in configuration A

Popular Long tail Total
Gp Gir G
1.18 1.91 1.4
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Results at Product Level

Set A
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Configuration A had a positive increase in profits in 65% of the
product. Configuration B had only 29% of the products improved
from previous year
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Conclusions

 We provided a novel dynamic pricing algorithm especially suited
for long-tail business models

 We proposed an aggregation strategy to automatically group
products with too scarce data

 We evaluated the methodology through a real-world campaign,
obtaining results in favor of the algorithm
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Future Works

* Integration of advertising and recommendation strategies in the
long-tail framework

* Modelling of products’ interactions in term of units sold

* Analyzing the performances under a more complex user
behavior model
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Thank you for the attention!

Take a look
at our work
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