

Last-Iterate Global Convergence of Policy Gradients for Constrained Reinforcement Learning

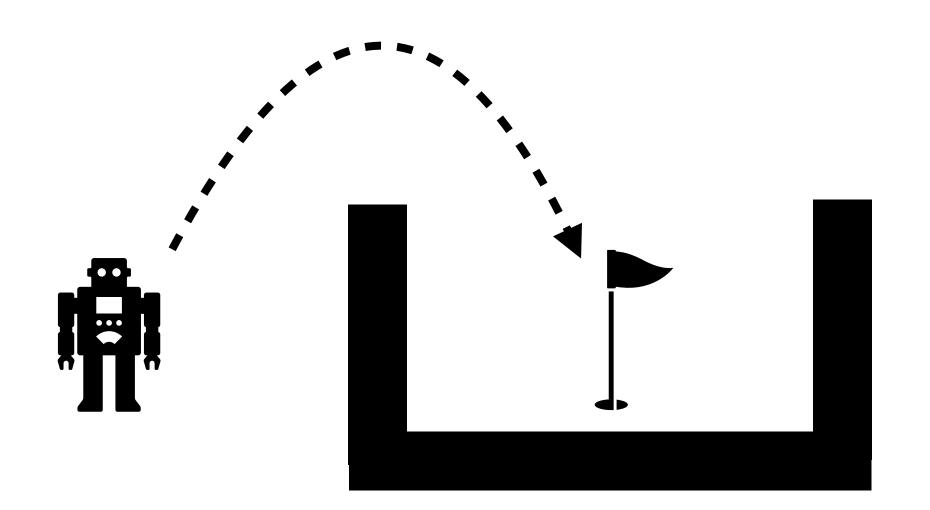
A. Montenegro, M. Mussi, M. Papini, A. M. Metelli

38th Conference on Neural Information Processing Systems (NeurIPS 2024)

Constrained Reinforcement Learning (CRL)

Introduction

- Real-world scenarios: reach a goal + meet structural/utility-based constraints
- Constrained RL: extension of RL with the possibility to account for constraints



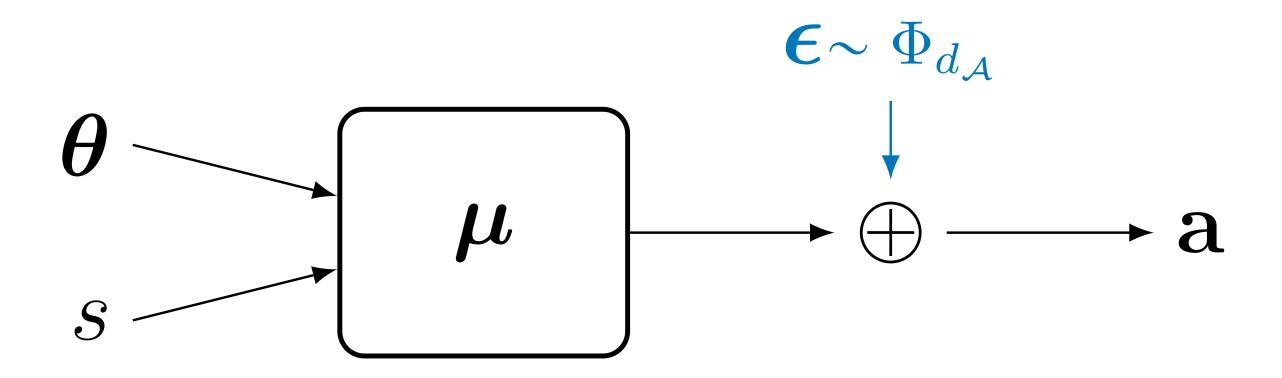
Policy Gradients (PGs) for CRL

Introduction

- Continuous State and Action Spaces
- Robustness to Actuators and Sensors Noise
- Robustness to Partial Observability
- Possibility to incorporate expert-knowledge in the Policy-design Phase

Action-based (AB) Exploration

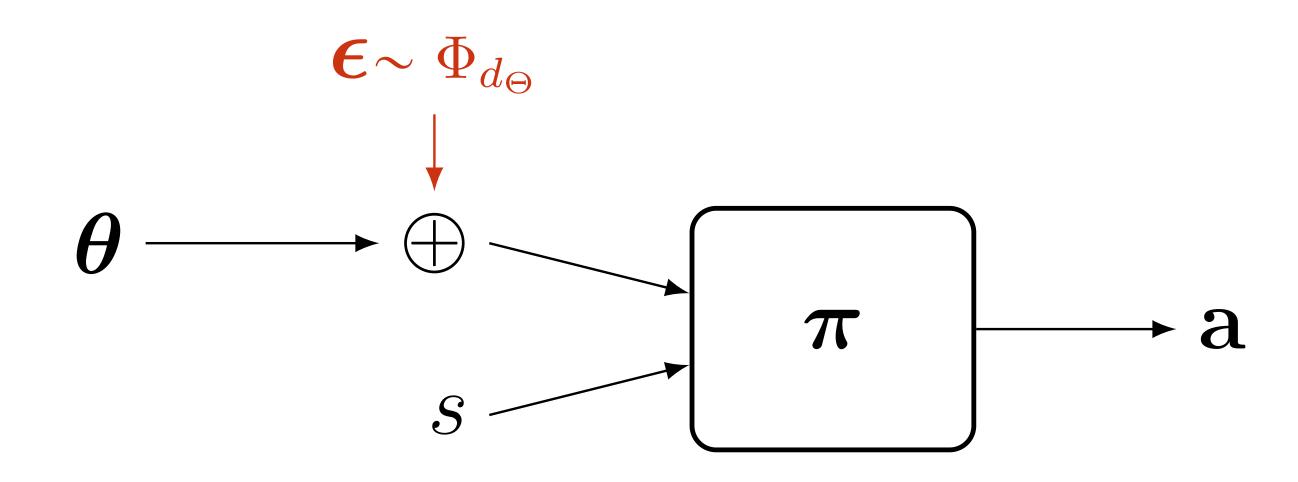
PGs Exploration Approaches



$$J_{\mathbf{A}}(\boldsymbol{\theta}) = \mathbb{E}_{\tau \sim p_{\mathbf{A}}(\cdot|\boldsymbol{\theta})} \left[R(\tau) \right]$$

Parameter-based (PB) Exploration

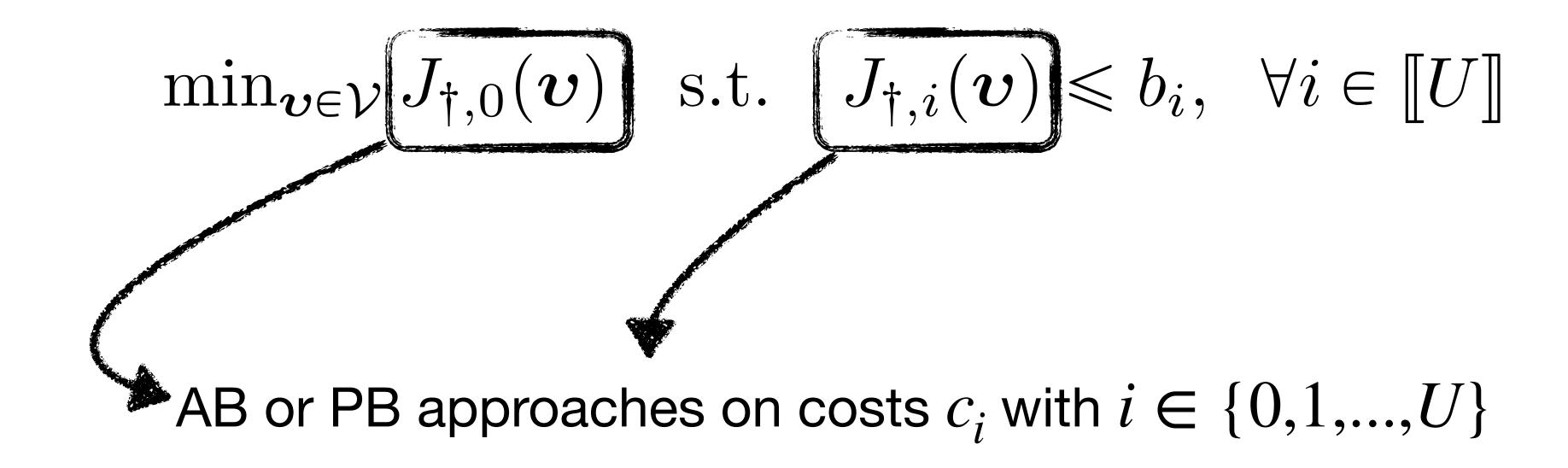
PGs Exploration Approaches



$$J_{\mathbf{P}}(\boldsymbol{\theta}) = \mathbb{E}_{\boldsymbol{\theta} \sim \nu_{\boldsymbol{\rho}}} \left[\mathbb{E}_{\tau \sim p_{\mathbf{A}}(\cdot | \boldsymbol{\theta})} \left[R(\tau) \right] \right]$$

- Continuous State and Action spaces
- Multiple constraints on cost functions c_i
- Both exploration paradigms are supported
- Inexact Gradients

$$\min_{\boldsymbol{v}\in\mathcal{V}} J_{\dagger,0}(\boldsymbol{v})$$
 s.t. $J_{\dagger,i}(\boldsymbol{v}) \leq b_i, \ \forall i \in \llbracket U \rrbracket$



$$\min_{m{v} \in \mathcal{V}} J_{\dagger,0}(m{v})$$
 s.t. $J_{\dagger,i}(m{v}) \leqslant b_i$, $\forall i \in [\![U]\!]$ $i\text{-th threshold}$

C-PG

Exploration-Agnostic Algorithm

Algorithm

Projected Alternate Ascent Descent on the ω -Regularized Lagrangian w.r.t. the Dual Variable

C-PG: Convergence

Exploration-Agnostic Algorithm

Assumptions:

- 1. ψ -Gradient Domination ($\psi \in [1,2]$)
- 2. Regularity of \mathcal{L}_{ω}
- 3. Existence of a saddle point

C-PG: Convergence

Exploration-Agnostic Algorithm

Theorem

$$\mathbb{E}\left[J_0(\boldsymbol{v}_k) - J_0(\boldsymbol{v}_0^*)\right] \leqslant \epsilon + \frac{\beta_1}{\alpha_1} + \frac{\omega}{2} \|\boldsymbol{\lambda}_0^*\|_2^2 \quad \text{and} \quad \mathbb{E}\left[\left(J_i(\boldsymbol{v}_k) - b_i\right)^+\right] \leqslant 4\epsilon + 4\frac{\beta_1}{\alpha_1} + \omega \|\boldsymbol{\lambda}_0^*\|_2, \ \forall i \in [U]$$

Holds for both exploration approaches

C-PG: Convergence

Exact Gradients

Exploration-Agnostic Algorithm

 $\psi = 1$ $\psi = 2$ $\mathcal{O}(\epsilon^{-2})$ $\mathcal{O}(\epsilon^{-1}\log(\epsilon^{-1}))$

Estimated Gradients $\mathcal{O}(\epsilon^{-6}\log(\epsilon^{-1}))$

 $\mathcal{O}(\epsilon^{-4}\log(\epsilon^{-1}))$

Enforcing Constraints on Risks

Risk and Exploration Agnostic Algorithms

- AB and PB explorations have a semantic difference when enforcing constraints
- In order to induce safer behaviors, we can enforce constraints on risk measures

Enforcing Constraints on Risks

Risk and Exploration Agnostic Algorithms

- We employ a unified risk measure formulation
- Additional parameter to learn required
- Can be mapped to
 - Average cost
 - CVaR
 - Mean-Variance
 - Chance

Conclusions

Our Contribution

- Framework to handle CRL with PGs (both AB and PB) in continuous spaces and with multiple constraints
- Both approaches exhibit last-iterate global convergence to a feasible (hyper)policy guarantees
- We extend the framework to handle risk-based constraints
- We numerically validate our results