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Abstract

NOWADAYS, when it comes to selling a product online, there are sev-
eral key factors that require careful consideration. Two of the most
significant factors are the pricing strategy and the investments in

advertising. When determining the price of a product, it is essential to
strike a balance. The price should neither be set too low, as this would
result in a reduced revenue from the single sale, nor too high, as it may de-
ter potential buyers. The amount of money we invest in advertising should
be balanced to let people know our offer without overspending or reaching
people who are not interested. These two aspects are usually handled dis-
jointedly by humans, but this, even if we proceed to optimize for the two
components individually, may lead to a suboptimal solution. In this thesis,
we focus on the adoption of online learning to solve the task of finding the
optimal price for a product and how to advertise it properly. This thesis
encompasses various facets of pricing and advertising, offering both the-
oretical frameworks and practical solutions for addressing the associated
challenges. The first part of the thesis faces pricing methods. Initially, we
introduce a practical and efficient approach tailored to e-commerce pricing.
This method empowers e-commerce businesses to price properly the long
tail. Subsequently, our focus shifts to theoretical aspects of pricing, par-
ticularly emphasizing the problem of learning temporal dynamics. In the
second part, we discuss the theoretical aspects of advertising, with a partic-
ular focus on marketing mix models and how to handle them in a tractable
way. In the third and final part, we bring together the problems of pric-
ing and advertising, presenting a unified approach to address both aspects
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concurrently. This integrated approach allows us to strive for efficient and
optimal solutions in the complex landscape of online product sales.
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Sommario

AL giorno d’oggi, un e-commerce che vuole commercializzare un
prodotto online deve tenere in considerazione diversi aspetti per
poterlo fare al meglio. Due dei fattori più significativi sono la

strategia di selezione del prezzo ottimale e gli investimenti pubblicitari.
Nel determinare il prezzo per un prodotto, è essenziale trovare un giusto
equilibrio. Il prezzo non dovrebbe essere troppo basso, poiché ciò com-
porterebbe una riduzione del ricavo dalla singola vendita, né troppo alto,
poiché potrebbe scoraggiare potenziali acquirenti. L’importo in denaro che
investiamo nella pubblicità dovrebbe essere bilanciato per far conoscere la
nostra offerta senza spendere eccessivamente ed evitando di raggiungere
persone non interessate. Solitamente, questi due aspetti sono gestiti sep-
aratamente dagli esseri umani, ma ottimizzare i due componenti individ-
ualmente, potrebbe portare a una soluzione non ottimale. In questa tesi,
ci concentriamo sull’adozione dell’apprendimento online per risolvere il
problema di trovare il prezzo ottimale per un prodotto e di come pubbliciz-
zarlo correttamente. Questa tesi comprende vari aspetti relativi a pricing e
advertising, offrendo sia prospettive teoriche che soluzioni pratiche per af-
frontare le sfide associate. La prima parte della tesi approfondisce i metodi
di pricing. Inizialmente, presentiamo un approccio pratico ed efficiente per
il pricing ottimale dei prodotti in vendita su siti di e-commerce che con-
sente di prezzare coerentemente la long tail. Successivamente, l’attenzione
si sposta sugli aspetti teorici del pricing, con particolare enfasi sul prob-
lema dell’apprendimento delle dinamiche temporali. Nella seconda parte,
discutiamo gli aspetti teorici dell’advertising, con particolare attenzione al
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marketing mix model, il cui scopo è trovare il giusto mix di campagne di di-
verso tipo per massimizzare le vendite. Nella terza e ultima parte, uniamo i
problemi dell’optimal pricing e dell’advertising, presentando un approccio
unificato per affrontare entrambi gli aspetti contemporaneamente. Questo
approccio integrato ci consente di cercare soluzioni efficienti ed ottimali
nel complesso panorama delle vendite online dei prodotti.
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CHAPTER1
Introduction

Motivated by the rapid increase in the quantity of data and the exponential
growth of online platforms, companies are continually seeking innovative
strategies to enhance their market presence, capture consumer attention,
and optimize their pricing models. Machine Learning (ML) has emerged
in recent years as a groundbreaking transformative force, empowering or-
ganizations to revolutionize the way they price products and promote them
through advertising. The traditional paradigms of pricing and advertising,
once reliant on static models and generalized strategies, are rapidly giving
way to data-driven, adaptive approaches powered by ML algorithms.

1.1 What is Machine Learning?

Machine Learning (ML, Bishop, 2006) is a field within the broader world of
Artificial Intelligence (AI, Russell and Norvig, 2021). The term “Machine
Learning” is an “umbrella” term that encompasses a wide range of tech-
niques and methodologies designed to enable machines to learn from data
and make predictions or decisions without being specifically programmed.
This term is used to enclose various learning paradigms, including super-
vised learning, unsupervised learning, and reinforcement learning.
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Chapter 1. Introduction

Supervised learning is the first branch of ML. It involves training models
using labeled data. A supervised learning algorithm learns to map inputs
and outputs. This branch encloses regression and classification algorithms.
It relies on a structured dataset for training, making it a powerful tool for
solving specific problem domains.

Unsupervised learning, on the other hand, deals with unlabeled data and
focuses on discovering patterns and structures within the data. This branch
of ML includes techniques such as clustering and dimensionality reduction.
Unsupervised learning is especially valuable when the data lack clear labels
or when exploring large and complex datasets.

Reinforcement Learning (RL) is the last and the most complex branch
of ML. It revolves around training agents to make sequential decisions in
an unknown environment. RL poses additional challenges w.r.t. supervised
and unsupervised learning as we usually have to understand how to actively
collect data to properly learn what is around our agent.

1.2 Why Online Learning and Multi-Armed Bandits?

In this thesis, we face the challenge of solving sequential decision-making
problems, specifically in the context of dynamic pricing and advertising
budget optimization. These problems are a specific kind of RL problems
in which we want to make decisions online, at every step, on the action to
perform (e.g., a price to set, a budget to invest). These scenarios in which
we make decisions step-by-step are referred as online learning problems.
In making these decisions, we have to take into account two different ob-
jectives at each time step. Indeed, we want both to use (exploit) the in-
formation we have to select the most profitable actions, but also discover
(explore) new options that may be more profitable w.r.t. the ones known
until now. Given that our knowledge is due to the actions we perform,
online learning algorithms have the difficult task of balancing this trade-
off called exploration-exploitation dilemma. Within the domain of online
learning, we encounter two primary categories of algorithms: online re-
inforcement learning algorithms, which are grounded in the framework of
Markov Decision Processes (MDPs, Puterman, 2014), and Multi-Armed
Bandits (MABs, Lattimore and Szepesvári, 2020). Online RL is well-suited
for handling more complex scenarios, where these algorithms can optimize
a specific metric, typically referred to as the reward, over states/actions tra-
jectories, and in which the evolution of the state is influenced by our action.
In contrast, the conventional definition of MAB lacks the concept of states,
meaning that actions impact only the rewards.
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1.3. Original Contributions and Overview

In this thesis, we choose to adopt MABs for several reasons, both due to
the problems we face and the characteristics of the bandits that make them
suited for us. The main advantages of MABs w.r.t. reinforcement learning
methods are:

• Simplicity: MAB algorithms are simpler and computationally lighter
w.r.t. online RL ones. They are particularly effective when limited
computational resources are available, or we need to make quick de-
cisions in real time. Online reinforcement learning can be more com-
plex and requires training a full reinforcement learning agent, which
can be an overkill for simpler decision-making problems.

• Explainability: MABs behavior is more prone to be understood by
human actors due to their simplicity. Indeed, the exploration strategy
is designed with a clear trade-off between exploring new actions and
exploiting known actions. The agent’s choice to explore new actions
or exploit a known arm is easier to explain and understand compared
to the exploration strategies in RL, which can be more dynamic and
complex.

• Theoretical Guarantees: MABs are designed to handle the exploration-
exploitation trade-off efficiently. Their theoretical guarantees can be
studied to characterize and optimize their behavior, thanks to the im-
mediate feedback that simplifies the learning process and facilitates
the design of algorithms with provable guarantees. On the other hand,
rewards in RL may be delayed, sparse, or noisy, making it more chal-
lenging to attribute rewards to specific actions and assess the agent’s
performance in the short term.

1.3 Original Contributions and Overview

In this dissertation, we face the problem of online decision-making in the
context of dynamic pricing and advertising budget optimization. These two
topics are, indeed, two sides of the same coin. In order to sell a product,
one must be able to select both the price that is proper for the reference
market and advertise it properly. The price should neither be set too low, as
this would result in reduced revenue from the single sale, nor too high, as it
may deter potential buyers. The amount of money we invest in advertising
should be balanced to let the people know of us without overspending and
reaching people who are not interested in what we are selling. The goal,
indeed, is to maximize the combination of pricing and advertising policies
to increase our revenue.
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Chapter 1. Introduction

We focus on three main topics that correspond to the three parts in which
this thesis is structured: dynamic pricing, advertising optimization, and
joint optimization of pricing and advertising. The three parts are all binded
each other from (i) the scope of the algorithms proposed, whose final goal
in all the cases is to improve the revenues due to the sales we perform, and
(ii) the methodology used to pursue the goal, as all the algorithms presented
in this thesis are based on Multi-Armed Bandits.

Before diving into the details of pricing and advertising, we start the
thesis by summarizing in Chapter 2 all the fundamental notions of online
learning and MABs that we need in order to understand the content of the
next chapters.

1.3.1 Part I: Dynamic Pricing

In Part I, we first present, in Chapter 3, an overview of dynamic pricing,
and we introduce all the fundamental notions on this topic. In Chapter 4,
we present (Mussi et al., 2022a) a practical algorithm to perform dynamic
pricing in the scenario of an e-commerce website that wants to price both
popular and long-tail product in order to maximize its turnover. The al-
gorithm we propose is tested on a large e-commerce selling a wide range
of products with different kinds of customers. The experimental campaign
we conducted demonstrates the empirical soundness of the proposed solu-
tion. Then, we move to a more theoretical aspect of pricing. In Chapter 5,
we go beyond and formulate a new approach (Bacchiocchi et al., 2024)
for handling dynamic pricing using MAB methods that take into account
temporal dependences through the introduction of autoregressive processes
to model such a dependency. Such processes are useful to represent the
smooth trends that are not captured by standard MABs, but represent a
phenomenon that cannot be ignored. We theoretically characterize our
solution, and we discuss its soundness. Even in this case, we conducted
simulations by applying our solution to a real-world dataset that has been
generalized in order to be used to test this environment.

1.3.2 Part II: Advertising

In Part II, we first overview, in Chapter 6, all the scenarios in which machine
learning can be adopted in advertising. Then, we focus on the problem of
budget optimization in online advertising, we revise the fundamental no-
tions in this field, and in particular, we focus our attention on the problem
of optimal budget allocation for Marketing Mix Models (MMMs). Then,
in Chapter 7, we go to the core of the contribution for this part. We pro-
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1.3. Original Contributions and Overview

pose (Mussi et al., 2023a) a theoretical framework to face the problem of
optimizing the budget in MMM online. The method learns the best combi-
nation of campaigns in order to optimize the target metric. For this setting,
we provide a lower bound on the regret, and we provide an optimistic algo-
rithm with regret guarantees, balancing the customary exploration-exploitation
trade-off. The algorithm we developed is demonstrated to be efficient under
several KPI under analysis, and is tested in a simulation environment based
on real-world data from an MMM use case.

1.3.3 Part III: Joint Pricing and Advertising

In Part III, we face the problem of jointly optimizing the price at which we
want to sell an item and the expenditure to advertise it. This part presents
a unique chapter, Chapter 8, as the fundamentals of pricing and advertising
are already provided in Chapters 3 and 6, respectively. We propose a new
setting for handling the problem in which the reward can be factorized and
intermediate observations are available. After having theoretically charac-
terized the setting, we provide two algorithms with different peculiarities,
and we studied their theoretical guarantees. We test our solutions to verify
the goodness and the results are in favor of our solution w.r.t. the state of
the art in this field.

Finally, in Chapter 9, we summarize all the results presented in this
dissertation, and we draw some possible future directions.
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CHAPTER2
Foundations of Online Decision-Making

In Chapter 1, we mentioned online learning and MABs in particular as
the class of approaches that we consider in this thesis to handle sequential
decision-making problems. With online learning, we usually refer to the
branch of machine learning facing the problem of statistical learning in an
online manner. Compared to supervised learning, this kind of algorithms
presents additional challenges, as we have to understand how to (i) prop-
erly learn from data and (ii) how to actively collect new samples in order
to improve our knowledge. While we perform our actions, we have to deal
with the so-called exploration-exploitation dilemma. This implies that we
have to select actions balancing the knowledge we have and the consequent
willingness to exploit it with the request for more knowledge that we in-
trinsically must have in order to reach the optimal solution.

Sequential decision-making and online learning in particular, contains
within it two classes of algorithms: Reinforcement Learning (RL, Sut-
ton and Barto, 2018) and Multi-Armed Bandits (MABs, Lattimore and
Szepesvári, 2020). In Reinforcement Learning, we have to choose a path, a
sequence of actions, that leads us to the optimal solution. In Multi-Armed
Bandits, the rounds are usually isolated and the effect of an action usu-
ally holds only for one round. Given that the literature on online decision-
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Agent

Environment

Xt

Action Reward
It

Figure 2.1: MAB interaction scheme.

making is extremely wide, in this chapter, we will present only a selection
of the fundamental notions useful to understand the works that will be dis-
cussed in the next chapters of this thesis.

Chapter Outline This chapter is structured as follows. First, in Sec-
tion 2.1, we present the MABs’ basic notions and the interaction scheme.
Then, in Section 2.2, we classify the most famous kinds of MABs given
their characteristics. In Section 2.3, we present how to evaluate the perfor-
mance of an online decision-making algorithm and the possible objectives.
Finally, in Section 2.4, we present the more widely adopted algorithms, and
we briefly discuss their characteristics and theoretical guarantees.

2.1 Overview on MABs

Multi-Armed Bandits (Lattimore and Szepesvári, 2020) are a class of al-
gorithms in which we consider an agent performing action, which interacts
with an environment. The latter, at every time step t P JT K (where T P N
is the time horizon or time budget), takes as input the action It P JkK (also
called arm), and gives back a reward Xt P R. A representation of this
simple interaction scheme is provided in Figure 2.1. The peculiarity of
this framework stands in the fact that we receive the feedback (i.e., the re-
ward) only for the action we are performing, and we get no information
about what would have happened if we had chosen another action.1 This
makes it necessary to manage the exploration-exploitation trade-off dis-
cussed above. Indeed, with no information on the arms not pulled, in a
noisy environment, if we wrongly choose the optimum, and if we exploit it
forever, we will constantly pay a penalty due to the suboptimal choice.

1This kind of feedback is also called bandit feedback. If we get the feedback also on the non-performed
actions, we talk about full or expert feedback.
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2.2 Fundamental Dichotomies of MABs

In the previous section, we talked about the concept of reward in an in-
formal way. Now, we provide a more precise classification of the various
classes of MABs given their reward, action space, and the presence of a
state.

2.2.1 Classification due to the Rewards

Formally, the reward at time t is a scalar Xt P R. Given the peculiari-
ties of the entity generating it, we can classify MABs as follows. The first
important dichotomy about the reward is the one between stochastic and
adversarial MABs. The second classification we analyze is due to the de-
pendency of the reward on time.

Stochastic and Adversarial Rewards In the stochastic setting, when an
arm i P JkK is played, the agent observes a feedback X „ νi (i.e., the
reward) sampled from the probability distribution νi with expected value
µi (i.e., the expected reward). The rewards are usually classified into two
categories: subgaussian (unbounded) and bounded random variables. In
the former, we assume an additive noise model, i.e., X “ µi`ϵ, where µi is
the expected return, usually assumed to be bounded (e.g., in r0, 1s) and ϵ is
a zero-mean σ2-subgaussian random variable, independent conditioned to
the past.2 In the latter, we assume that when we pull arm i we get X P r0, 1s

drawn from a bounded (e.g., Bernoulli) distribution with expected value µi.
In the adversarial setting, when an arm i P JkK is played, the agent

observes a feedback that is chosen a priori from an adversary, which is
supposed to select all the values of the reward before the interaction starts.

Stationary and Non-stationary Rewards The reward that an agent ob-
serves after the pull of a specific arm can be based on a distribution which
can be fixed over time, or time-dependent. In the case in which for every
arm the reward distribution does not change over time, we can talk about
stationary setting, while we talk about non-stationary or time-dependent
setting if at least one arm changes the distribution generating its payoffs
over time.

In this thesis, we focus on stationary stochastic σ2-subgaussian MABs.

2We recall that a zero-mean random variable ϵ is σ2-subgaussian if it holds that Erexppξϵqs ď exppσ2ξ2{2q

for every ξ P R.
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2.2.2 Classification due to the Action Spaces

In the customary multi-armed bandit setting, we consider a finite num-
ber of arms that are assumed to be isolated, so no relation between arms
is present (Lattimore and Szepesvári, 2020). However, in the last two
decades, several approaches have been proposed to handle bandits with in-
finitely many arms. In these scenarios of infinite arms, the first point we
have to face is the way in which we want to impose a correlation between
the arms.

A first example of how we can consider such correlation is by impos-
ing structure between arms using non-parametric methods (Srinivas et al.,
2010) where a kernel defines the distance betweeen two actions and the
influences that they have each other. Another widely known example of
that is the Linear Bandit setting (Abbasi-Yadkori et al., 2011). In this set-
ting, the agent chooses an action vector a P A Ă Rd and receives a re-
ward X “ xθ, ay ` ϵ where θ P Rd is unknown to the learner, and ϵ is
a zero-mean σ2-subgaussian random variable, independent conditioned to
the past. In this case, the structure between arms is a consequence of the
linear structure of the rewards.

2.2.3 Classification due to the Presence of a State/Context

Another dichotomy in MABs is due to the presence of a state, also called
context in MAB scenarios. The context is a vector embedding information
about the situation in which the environment we are facing is in. It influ-
ences, together with the action we choose, the reward. In this interaction
framework, before we are asked to pick an action from our action space,
we receive information about the state in which we are. The goal is, given
the state/context provided, to select the best action for such a context.

At this point, with this notion of state, we may ask ourselves what is the
difference between a contextual MAB and a reinforcement learning prob-
lem. The difference lies in the fact that in RL, we are concerned about
optimizing the entire trajectory, since the next state (as well as the reward)
depends on the action we choose (and the current state) (Sutton and Barto,
2018). In contextual MAB, on the other hand, the next state (context) does
not depend on the current state and action but is assumed to be sampled
from a certain distribution, independent from the choices of the learner
which is interacting with the environment.
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2.3 Performance Evaluation in Stochastic MAB

MAB algorithms can have two different objectives, namely best-arm iden-
tification (a.k.a. pure exploration) and regret minimization. These two ob-
jectives are in contrast to each other and require different solutions (Bubeck
et al., 2009).

2.3.1 Best-Arm Identification

The goal of Best-Arm Identification (BAI) is to find the best arm i˚, i.e.,
the one with the highest expected value. We have two possible scenarios in
this case: fixed-budget BAI and fixed-confidence BAI.

Fixed-Budget BAI In this scenario, we are provided with a time budget
T for our learning process. The goal is to minimize the probability of in-
dicating at the end of such a time budget the wrong arm as the best arm.
Formally, given an algorithm that recommends Î˚ P JkK at the end of the
learning process, we measure its performance with the error probability,
i.e., the probability of recommending a suboptimal arm at the end of the
time budget T :

eT :“ PpÎ˚
‰ i˚

q.

Fixed-Confidence BAI In this scenario, we are required to provide the
best arm Î˚ P JkK with a confidence δ P p0, 1q. The goal is to minimize
the number of samples (i.e., the required time budget T ) to indicate at the
end of the learning process the best arm with a given confidence of at least
1 ´ δ.

2.3.2 Regret Minimization

The goal of regret minimization in the case of stochastic payoffs is, given
a time horizon, to keep the cumulative loss w.r.t. the best possible action as
low as possible.3 Defining µ˚ as the expected value of the optimal action,
the cumulative regret over a time horizon T is:

RpT q :“
T
ÿ

t“1

pµ˚
´ µItq “

T
ÿ

t“1

∆It , (2.1)

where ∆It “ µ1 ´ µIt is the so called suboptimality gap.
3For the adversarial setting, the regret is computed w.r.t. the best fixed action, i.e., the one with the highest

cumulative reward.
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More formally, to evaluate a policy π induced by an algorithm given a
bandit instance ν “ pνiq

k
i“1, we want to look at its expected cumulative

regret:

E
ν

rRpπ, T qs :“ E
ν

«

T
ÿ

t“1

pµ˚
´ µItq

ff

“ E
ν

«

T
ÿ

t“1

∆It

ff

, (2.2)

where the expectation is taken w.r.t. the randomness of the rewards and the
possible randomness of the policy/algorithm.

Given the definition of expected cumulative regret, we can now analyze
decision-making algorithms to assess their performances. The goal is to
find an upper bound on the cumulative regret that holds in expectation and
compare it with the lower bound on the expected cumulative regret for a
given setting.4 The goal is to assess if the upper bound of an algorithm
matches the lower bound for the setting, at least in the more relevant quan-
tities (e.g., the time horizon T , the number of arms k). For what concerns
the most important quantity, i.e., the time horizon T , an algorithm is con-
sistent over a class of bandits if, for every bandit ν in the class, it holds
that:

lim
TÑ`8

EνrRpπ, T qs

T p
“ 0,

for some p ą 0 (Lattimore and Szepesvári, 2020).
To assess the performance of an algorithm or the complexity of a set-

ting, there are two kinds of bounds that we can take into account, namely
instance-dependent and minimax (also called instance-independent or worst-
case) bounds. In the instance-dependent bounds, we consider a specific
instance ν of the class of MABs under analysis, and we characterize the
upper and lower bounds by presenting the results w.r.t. the properties of a
specific instance, e.g., the suboptimality gaps ∆i. In the minimax bounds,
we search inside the class of MABs under analysis, the most challenging in-
stance ν, and we evaluate the performance of such instance. These bounds
classify the complexity of a given MAB class, so the result does not include
the quantities of a specific instance.

2.4 Widely Adopted Algorithms

In this section, we present three representative types of MAB algorithms.
First, we present UCB1 (Auer et al., 2002a; Bubeck, 2010), the most known

4Regret bounds can also be defined in high probability: after having fixed δ P p0, 1q, we can find a bound
holding with probability 1 ´ δ. However, this formulation is weaker if compared to results in expectation. For
this reason, in this thesis, we consider results that hold in expectation.

12



2.4. Widely Adopted Algorithms

algorithm to handle stochastic MAB, which considers a finite set of arms
and σ2-subgaussian or bounded rewards. Then, we present the Lin-UCB
algorithm (Abbasi-Yadkori et al., 2011), the most known solution for han-
dling linear bandits with continuous arm d-dimensional space and linear
stochastic payoffs in the performed actions. Finally, we present GP-UCB
(Srinivas et al., 2010), an algorithm widely used in practice to handle con-
tinuous action space in a non-parametric manner using kernel methods.

Bachmann-Landau Notation Before presenting the algorithms described
above and briefly characterizing their performances, we need to introduce
some notation to present the bounds in a simplified way. This notation
is due to Bachmann and Landau and allows us to present the results in
a simple manner, avoiding constants and other quantities that are not of
interest. Given a regret upper bound RpT q, we can write that the bound
RpT q is OpfpT qq if:

RpT q “ OpfpT qq ðñ lim sup
TÑ8

RpT q

fpT q
ă 8.

In the same way, given a regret lower bound RpT q, we can write that the
bound RpT q is ΩpfpT qq if:

RpT q “ ΩpfpT qq ðñ lim inf
TÑ8

RpT q

fpT q
ą 0.

The same results can be simplified by also omitting logarithmic depen-
dences using the notations rOp¨q for the upper bounds.

2.4.1 UCB1

The first algorithm we present is UCB1, whose pseudocode is provided in
Algorithm 2.1. The first finite-time analysis of its theoretical guarantees is
due to Auer et al. (2002a). This algorithm selects at each time step t P JT K
an action in an optimistic way. The optimistic estimate is composed of the
sum of two components: the empirical mean of the rewards retrieved by
pulling an arm, and a bound (i.e., the Hoeffding bound) to the quantity of
how much we are uncertain about such an estimate. The goal is to let us
guarantee that the real value is below the optimistic bound with high proba-
bility. The version presented in Algorithm 2.1 is a more efficient Hoeffding
confidence bound which does not require the knowledge of the optimization
horizon T , and it is first presented and analyzed by Bubeck (2010).
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Algorithm 2.1: UCB1 (Auer et al., 2002a; Bubeck, 2010).

Input: number of arms k, exploration parameter α ą 2,
subgaussianity parameter σ

1 Initialize Ni Ð 0, pµi Ð 0, @i P JkK
2 for t P JT K do

3 Compute UCBi Ð pµi ` σ

c

α log t

Ni

, @i P JkK

4 Select It P argmaxiPJkK UCBi

5 Play It and observe reward Xt

6 Update pµIt Ð
pµItNIt ` Xt

NIt ` 1
7 NIt Ð NIt ` 1
8 end

UCB1 presents a regret an instance-dependent upper bound on expected
cumulative regret in the order of Oplog T q (Bubeck, 2010), and matches
the lower bound for this setting up to constants factors (Lai and Robbins,
1985). From the minimax perspective, UCB1 presents a worst-case upper
bound on expected cumulative regret in the order of rOp

?
T q, and matches

the lower bound for this setting up to logarithmic factors.5

2.4.2 Lin-UCB

The second algorithm we present is Lin-UCB (Abbasi-Yadkori et al., 2011),
whose pseudocode is presented in Algorithm 2.2. Lin-UCB is the most
famous and widely adopted algorithm for Linear Bandits. The main dif-
ference from the algorithmic point of view is that the estimate of the em-
pirical mean is substituted by a Ridge-regularized regression. The opti-
mistic bound models how the values estimated through the regression con-
centrate to the real values. Also here, the goal is to define an optimistic
confidence area in which the real values of θ are contained in high prob-
ability. Lin-UCB is optimal and presents an expected cumulative regret
upper bound of rOp

?
T q and is optimal up to logarithmic factors (Lattimore

and Szepesvári, 2020).

5For what concerns the minimax optimality, MOSS (Audibert and Bubeck, 2009, 2010) is minimax optimal
up to constant factors.
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Algorithm 2.2: Lin-UCB (Abbasi-Yadkori et al., 2011).

Input: Regularization parameter λ ą 0, exploration bounds
pβt´1qtPJT K

1 Initialize t Ð 1, V0 “ λId, b0 “ 0d, pθ0 “ 0d

2 for t P JT K do
3 Compute at P argmaxaPA UCBtpaq :“ xpθt´1, ay ` βt´1 }a}V´1

t´1

4 Play action at and observe Xt

5 Update Vt “ Vt´1 ` ata
T
t , bt “ bt´1 ` atXt

6 Compute pθt “ V´1
t bt

7 end

2.4.3 GP-UCB

The last algorithm we present is GP-UCB (Srinivas et al., 2010), whose
pseudocode is reported in Algorithm 2.3. The main characteristic of this al-
gorithm is that it is based on Gaussian Process (GP) Regression (Rasmussen
and Williams, 2006). This employment of kernels due to the GP allows us
to establish a concept of similarity between arms. The algorithm runs a non-
parametric regression using standard Gaussian process techniques, and add,
as in the previous cases, a confidence interval to take care of uncertainty.
This bound is multiplied by the epistemic uncertainty directly retrieved by
the Gaussian Process.

Algorithm 2.3: GP-UCB (Srinivas et al., 2010).

Input: Input space A, GP prior µ̂0 “ 0 and σ0

1 for t P JT K do
2 Compute at P argmaxaPA UCBtpaq :“ µ̂t´1paq `

?
βtσ̂t´1paq

3 Play action at and observe Xt

4 Perform a Bayesian update to obtain µ̂t and σ̂t

5 end
GP-UCB with Radial Basis Function kernel presents a cumulative re-

gret upper bound of rOp
?
T q that holds in high probability (Chowdhury and

Gopalan, 2017). This result is optimal up to logarithmic factors (Cai and
Scarlett, 2021).
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CHAPTER3
Introduction on Dynamic Pricing

Most international economic forecasts agree that nearly 50% of the annual
value unlocked by the adoption of Artificial Intelligence (AI) from 2030 on
will be in marketing and sales (Chui et al., 2018). Examples of activities
in which AI tools can play a central role in marketing and sales include at-
tracting and acquiring new customers, suggesting and recommending prod-
ucts, and optimizing customers’ retention and loyalty. In particular, AI can
effectively automate these processes so as to increase their efficiency dra-
matically. The most important choice that AI can help us make when we
want to sell an item on an e-commerce website is the price at which sell it.
In recent years, plenty of e-commerce are adopting the practice of dynamic
pricing to define the optimal pricing of the products through AI methods.

With dynamic pricing, we refer to the practice of keeping the pricing
schedule dynamic in time. In dynamic pricing, the optimal price is defined
through several factors, that depend on the specific instance we are con-
sidering. The most important factor we have to consider when performing
dynamic pricing is the conversion rate curve, i.e., the relation between the
price we set and the probability of a user buying a given item at such a
price.1 Several other factors can be taken into account to find the best price.

1In several parts of this thesis, we talk about conversion rate and demand curves in a comparable way. We
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Examples are the availability of a given item, the expected request in the fu-
ture, the price of the competitors, the types of customers (if we are allowed
to display different prices for different users).

The main advantage of dynamic pricing is the extreme flexibility that
is enabled in managing the prices, deciding the objective (e.g., net worth,
turnover) and the time horizon we want to optimize.

In the last years, most of the tools performing dynamic pricing are en-
abled by AI techniques that are mainly used to make both sales forecasting
and demand estimation. The customary AI technique chosen to perform
dynamic pricing tasks is multi-armed bandits, which, thanks to their ability
to efficiently use samples and efficiently exploit acquired knowledge during
the learning process, are the best-suited tool to perform this task (Den Boer,
2015).

3.1 Foundations of Dynamic Pricing

In this section, we first discuss the various scenarios and assumptions on the
product, customers, and competition that are usually considered in dynamic
pricing settings. Then, we present what practically implies the estimate of a
demand curve, and the common problem in its estimate. Finally, we present
a simple example of an objective function.

Standard Assumptions Most of the works in dynamic pricing make use
of the same standard assumptions. The first assumption, which is valid for
almost all the products usually sold by e-commerce, is about the demand,
which is usually assumed to be decreasing in price. This assumption holds
for all products different from Veblen, Giffen or luxury items. The other
assumptions about the products are that they are not perishable and with
virtually unlimited availability. The latter assumption is usually adopted
(as it is virtually true) when we perform dynamic pricing for e-commerce
websites adopting the dropshipping (Singh et al., 2018) paradigm. If it
does not hold, the objective function will be radically different to take into
account the availability, and the main challenges in dynamic pricing will be
related to demand forecasting.

Demand Curve One of the most important challenge of dynamic pricing
is the task of demand (or conversion rate) estimation. Suppose we want to
estimate the conversion rate for the sake of simplicity. Such a conversion
rate is a function D : P Ñ r0, 1s, where P is the set of possible prices. It

refer to the conversion rate curve as the normalized version of the demand curve. We often adopt the term
demand due to its generality.
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dt

pt
0

1

Figure 3.1: Example of a conversion rate dt w.r.t. price pt at time t.

represents the willingness (i.e., probability) of a customer buying an item
at a given price. This task is fundamental in almost every dynamic pric-
ing algorithms, no matter the assumptions we are considering (e.g., limited
or unlimited availability) that can be integrated into the objective function
(see below). Given a fixed cost c, we can estimate the conversion rate curve
model at time t w.r.t. both margin mt and prices pt, and the two will be
equally informative. Given a time-varying acquisition cost ct, computing
the conversion rate w.r.t. margin and price leads to different results. This
requires to understand if the elasticity of the customers is on the margin
or on the price. Assuming that the acquisition cost changes due to mar-
ket dynamics for all the players (i.e., for our competitors and us), we can
consider the margin. Otherwise, it is convenient to select the price. An
example of conversion rate curve dtpptq w.r.t. price pt at time t is provided
in Figure 3.1. We can notice how the conversion rate is a probability, so
it is bounded in r0, 1s. As stated above, the conversion rate curve’s goal is
to measure customers’ willingness to buy an item. Such a conversion rate
may vary significantly or be almost stable over the prices. In the first case,
we talk about elastic customers (e.g., the ones of Figure 3.1), while in the
second, we talk about unelastic customers (e.g., the ones of Figure 3.2).

Demand Estimation The estimate of the demand curve model can be
performed in several ways, given the type of transactional data we have.
Suppose to be able to observe (in addition to the purchases) when a cus-
tomer visits a page and does not purchase the item. We have two ways to
perform demand estimation in this scenario. The first way is to see every
purchase or give up from the purchase at a given price as the realization of a
Bernoulli Random Variable where the expected value is the demand at such
a price. An example of that is provided Figure 3.3 (considering continuous
price space P). The second way, useful in the case in which we maintain
the prices for time periods of comparable length, is to draw the curve using
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dt

pt
0

1

Figure 3.2: Example of a unelastic conversion rate dt w.r.t. price pt at time t.

d̂t

pt
0

1

Figure 3.3: Example of an estimate of the demand d̂t w.r.t. price pt at time t using data as
Bernoulli random variables.

d̂t

pt
0

1

Figure 3.4: Example of an estimate of the demand d̂t w.r.t. price pt at time t using data as
normalized Binomial random variables.

the number of purchases normalized by the number of purchases in addition
to the number of give-ups. In this way, we get a buying probability, which
can be seen as a (normalized) realization of a Binomial Random Variable.
An example of this procedure is depicted in Figure 3.4 (even in this case,
we consider a continuous price space P). The main difficulty in demand
estimation is due to the fact that, often, we have no access to the number
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of give ups, and so it is difficult to get the zero values in Figure 3.3 or de-
fine normalization factors in Figure 3.4.2 A naive solution is, at least for
the second case, to ignore the denominator, model the volumes, and then
normalize these values. However, the sample in this way will be extremely
noisy due to external factors such as seasonality, trend effects, temporary
promo, and changes in competitors and markets.

Objective Function Objective functions may vary depending on the time
horizon defined for our strategy by the business unit. However, given a time
horizon T , our goal is usually to maximize some function of the volumes
vt and the selling price pt, given the acquisition cost ct. This correspond to
find the set of prices maximizing pp1, . . . , pT q:

pp˚
1 , . . . , p

˚
T q P argmax

pp1,...,pT qPPT

T
ÿ

t“1

ft.

ft represents our objective function, which, in the case of unlimited avail-
ability of the item under consideration, will be like:

ft “ ppt ´ αctq vtpptq,

with α P r0, 1s a coefficient allowing to select as an objective generic con-
vex combination of net worth (that can be obtained by selecting α “ 1) and
turnover (that instead can be obtained by selecting α “ 0). One of the goals
of a dynamic pricing algorithm is to replace vt, which is unknown a priori,
with an estimate of the demand pdt (demand and volumes, once we remove
seasonality, trends, and exogenous factors, are binded by a constant, which
does not impact in the price we select). Our empirical objective function,
when we replace the volumes with the demand becomes:

pp˚
1 , . . . , p

˚
T q P argmax

pp1,...,pT qPPT

T
ÿ

t“1

pft,

where:

pft “ ppt ´ αctq pdtpptq.

A graphical representation of such a process for a given time instant t is
provided in Figure 3.5. In such a figure, we can observe an intuitive tradeoff
in the price we set. On the one hand, if the price is too low, the objective

2This is due to the fact that, for example, we cannot see the reaction of the customers which observes the
prices outside our e-commerce, e.g., in a price comparison tool.
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d̂t

f̂t

pt

p˚
t

Figure 3.5: Example of an estimated demand pdt (green) and objective function pft (red) at
time t.

function will suffer a low per-item margin, even if we will sell a lot of
items. On the other side, when the price is high, we will have a large per-
item margin, but we will sell fewer items. So, we need to balance this
tradeoff. In the case of limited availability of the products, the objective
function may be revisited to take into account the availability constraints.
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CHAPTER4
Dynamic Pricing for the Long Tail

In this chapter, we propose an approach to manage pricing strategies in e-
commerce websites. The goal of this algorithm, namely DynaLT (Dynamic
pricing for the Long Tail), is to propose a unified approach for pricing, able
to price all kinds of product, from the ones with very high volumes, requir-
ing precise pricing strategies, to the ones with very low volumes, which in-
stead requires to be properly managed to face the problem of data scarcity.
In particular, we propose an online learning data-efficient algorithm able
to define prices using a data aggregation strategy for the products with few
sales in the past, in order to face the problem of data scarcity.

This chapter presents (Mussi et al., 2022a) a joint project with Gian-
marco Genalti, Alessandro Nuara, Francesco Trovó, Nicola Gatti and Mar-
cello Restelli, published at the ACM Conference on Knowledge Discov-
ery and Data Mining (KDD). A preliminary version of this work (Genalti
et al., 2022) appeared at the European Workshop on Reinforcement Learn-
ing (EWRL).
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4.1 Introduction

The long-tail business model is pervasive in e-commerce. In particular,
the long tail (Anderson, 2006) is a business strategy allowing companies
to get a significant profit by selling low volumes of hard-to-find items to
many customers instead of selling exclusively large volumes of a small set
of popular items (Brynjolfsson et al., 2011). On the one hand, dealing ef-
fectively with the long tail is technically challenging as data per product
are extremely scarce. Most importantly, such a data scarcity precludes the
adoption of several Artificial Intelligence (AI) tools of great success, such
as, e.g., deep learning, thus leaving the problem of designing suitable tools
open. On the other hand, effective long-tail optimization is crucial for a
company. Indeed, the revenue from the long tail usually represents a sig-
nificant portion of the company’s revenue. Furthermore, the competition
with other companies on the long tail is weaker than that on the popular
products due to the difficulties in optimizing the pricing. Therefore, an
effective optimization of the long tail can lead to a significant increase in
revenue.

Original Contribution In this chapter, we focus on real-world long-tail
scenarios that are usually non-stationary due to the seasonality and/or com-
petitors’ adaptive behaviors. We design an online learning algorithm for
dynamic pricing, which updates the estimates on the demand curve sample
by sample and makes decisions to balance the customary machine learning
trade-off between exploitation and exploration. We assume that the process
to learn is stochastic. Such an assumption is reasonable even in the presence
of adaptive competitors since, as we observed in our experimental analy-
sis, the competitors rarely change the prices of their product. Technically
speaking, we use historical data to capture seasonality, and we combine
them with a sliding window to forget old data.

The main challenges due to the long tail we face are two. The first
challenge concerns the design of learning algorithms that are robust and ef-
ficient when data are scarce. More precisely, when a small amount of data
are available, the observation of a new sample can dramatically change
the shape of the estimated demand curve. In this case, robustness is cru-
cial to avoid significant variations of the algorithm outputs. Similarly, data
efficiency is of paramount importance in non-stationary settings to effec-
tively track the changes and limit the delay in the learning process. We
force the monotonicity of the demand curve learned by the algorithm to ad-
dress this challenge. Remarkably, this assumption commonly holds with
long-tail products and allows better robustness (as new samples cannot dra-
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matically change the shape of the demand curve learned by the algorithm)
and data efficiency (as a sample at a given price provides information to
many other prices). We force monotonicity by resorting to a specific class
of Bernstein polynomials when estimating the demand curve. The sec-
ond challenge concerns the design of algorithms capable of clustering the
products such that every product of the same cluster will be priced with
the same policy. In this case, there are two critical issues. The former is
that the clustering cannot be based only on transaction data as data are too
scarce. The second is that the common approaches assign some long-tail
products to a popular product, which may be inefficient in practice due to
the different market dynamics. The peculiarity of our clustering algorithm
resides in exploiting similarities among products discovered from textual
data describing the products, and it provides an explainable clustering by
decision-tree approaches.

We first evaluate our algorithms in an offline synthetic setting, com-
paring their performance with the state-of-the-art and showing that our al-
gorithms are more robust and data-efficient in the long-tail settings, thus
supporting the need to adopt monotonicity in practice. Subsequently, we
evaluate our algorithms in a real-world online setting with more than 8,000
products, including popular and long-tail, in an A/B test with humans for
about two months. In this experiment, we obtain a revenue increase of
about 18% for the popular products and 90% for the long-tail products.

4.2 Application Domain and Motivation

4.2.1 Industrial Context

Business Scenario Our work has been conducted in collaboration with an
Italian e-commerce website selling more than 20, 000 different products (in
the specific case, we consider non-perishables consumables). Notice that
in this case the assumption of monotonicity of the demand curve trivially
holds as these products are not luxury, Veblen, or Giffen. The e-commerce
website adopts the drop-shipping business model. Thus, it is not subject to
warehousing costs and can suggest/recommend many different products to
the customers, including long-tail products leading to rare yearly transac-
tions. In particular, 75% of the products provide about 590 KEuros corre-
sponding to about 10% of the total e-commerce turnover, and the number
of units sold for these products in 2021 is smaller than 10. Furthermore,
about 50% of the products available in the catalog present no order in 2021.
By a simple analysis of the transactions carried out in 2021, it can be ob-
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Figure 4.1: Units sold per product in 2021 by the e-commerce for the top 1, 000 products,
compared with (long-tail) Zipf’s Law zpxq “ c

x0.8 .

served that the products, once re-ordered according to the number of units
sold, satisfy the well-known (long-tail) Zipf’s Law (Zipf, 1949), as shown
in Figure 4.1.

To simplify the business processes, the e-commerce website manage-
ment required the design of a single algorithm to perform pricing on long-
tail and popular products coherently. The adoption of a single algorithm
for both kinds of products is due to the simplicity in its management and
to maintain fairness w.r.t. customers. Moreover, adopting different pricing
policies for different products could be perceived as unfair by customers.
The objective function to maximize is the total profit.

Market Landscape The e-commerce website with which we collaborate
works in a market presenting a significant seasonality. We study it as fol-
lows. For every year, we count the number of sales per week and then we
normalize them by the total number of the annual sales. In this way, we ob-
tain the percentage of the annual sales distributed over 52 weeks. Figure 4.2
shows such a distribution once averaged over 5 years. The same analysis
has been conducted to understand the buyers’ trend over the different days
of the week. The result is presented in Figure 4.3, where we can observe a
strong intra-week periodic behavior. The size of the market, not reported in
the figures, changes year by year, dramatically shrinking in 2020 due to the
COVID-19 pandemic outbreaks. Notice that such a non-stationary behavior
of the environment is also due to the presence of competitors whose share is
significant w.r.t. the total market. Customarily, to monitor and compensate
such effects, companies exploit data-scraping services to monitor competi-
tors’ pricing. Notice that this approach is not economically sustainable in
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Figure 4.2: Percentage of sales over the 52 weeks in a year (standard deviation is depicted
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the case of long-tail products due to the large number of different products
to monitor which in its turn would require significant expenses in terms of
scraping. However, a preliminary set of experiments on a few popular prod-
ucts shows that the competitors do not behave adversarially, i.e., no prompt
reaction to price changes by the analyzed e-commerce website triggers a
prompt response of the competitors. To assert this fact, we performed a
Spearman’s rank correlation test (see Kokoska and Zwillinger, 2000) to
assess if the competitors react to our volumes’ changes, i.e., if the varia-
tion of the prices we applied is correlated to theirs. The test is conducted
over 35 best seller product, for which we have reliable data. Formally, the
null hypothesis of the test is “The two variables are uncorrelated”. The

29



Chapter 4. Dynamic Pricing for the Long Tail

tests set with a significance level of 0.05 do not provide any strong sta-
tistical evidence that the two prices variation are correlated. In practice,
the competitors change prices with a low frequency and disregard the spe-
cific changes performed by our algorithms. Therefore, in what follows, we
model the competitors by including them as one of the effects present in
the non-stationary stochastic environment.

4.3 Relevant Literature of Dynamic Pricing

In this section, provide an overview of the relevant works in dynamic pric-
ing. We divide this section in two parts. The first provides an overview
of learning for dynamic pricing (Section 4.3.1), while the second focuses
on long tail (Section 4.3.2). For a comprehensive analysis of the dynamic-
pricing literature, refer to (Narahari et al., 2005; Bertsimas and Perakis,
2006; Den Boer, 2015).

4.3.1 Learning for Dynamic Pricing

Rothschild (1974) presents one of the seminal works on the adoption of
MAB algorithms for dynamic pricing. This algorithm has been subse-
quently extended in several directions to capture the characteristics of dif-
ferent pricing settings. Kleinberg and Leighton (2003) study the problem
of dealing with continuous-demand functions and proposes a discretiza-
tion of the price values to provide theoretical guarantees on the regret of
the algorithm. This approach suffers from the drawback that the reward is
assumed to have a unique maximum in the price. Such an assumption is
hard to be verified in practice. Trovò et al. (2015, 2018) relax this assump-
tion, assuming that the demand function is monotonically decreasing and
exploiting this assumption in the learning algorithm to provide uncertainty
bounds tighter than those of classical frequentist MAB algorithms. How-
ever, the model formulation explicitly imposes neither monotonicity nor
weak monotonicity on the estimated demand functions, so decisions that
violate business logic can be allowed during the learning process. The au-
thors show how the monotonicity assumption does not improve the asymp-
totic bound of regret provided by the MAB theory. On the other hand, ex-
ploiting monotonicity allows for an empirical improvement in performance
(see Section 4.7 and Mussi et al. 2023b). The same argument also holds
for the work proposed by Misra et al. (2019), where the monotonicity prop-
erty of the demand function is used to ensure faster convergence. However,
monotonicity is not forced as a model-specific feature. Besbes and Zeevi
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(2015) show that linear models are a suitable and efficient tool for model-
ing a demand function. Other works that adopt a parametric formulation of
the demand function are by Besbes and Zeevi (2009) and Broder and Rus-
mevichientong (2012). These works assume stationary customer behavior.
Cope (2007) and Bauer and Jannach (2018) are two of the main works
on Bayesian inference applied to dynamic pricing. They both do not im-
pose monotonic constraints on the model. Interestingly, Bauer and Jannach
(2018) take into account non-stationary features (e.g., competitors’ prices).
Araman and Caldentey (2009) use a Bayesian approach to dynamic pricing
using a prior belief on the parameters to capture market-related informa-
tion and force the model to be monotonic. Wang et al. (2021a) investigates
non-parametric models for demand function estimation. In this case, the
authors assume that the demand function is smooth. Finally, Nambiar et al.
(2019) propose a model to deal with both the non-stationarity data and the
model misspecification. However, the required contextual knowledge at a
product-wise level is not usually available in practice.

4.3.2 Long-Tail Pricing

A few recent works have been proposed in the dynamic pricing literature to
deal with the long tail. In particular, Gandhi et al. (2020) and Adam et al.
(2020) provide parametric models for the demand curve estimation in a set-
ting where many products may present no transactions in the historical data.
However, these works merely estimate the demand curve without address-
ing the exploration/exploitation dilemma, and thus no guarantees can be
provided. Miao et al. (2019) propose a pricing algorithm where an online
clustering is performed to deal with long-tail products. The authors per-
form dynamic pricing in a context-based fashion where clustering is based
only on transaction data. This requires observing at least one transaction
per product, which is rarely met in real-world long-tail settings. In Ye et al.
(2018), products are clustered through contextual information. However,
due to the unique nature of the involved products, this approach cannot be
adopted in several scenarios as this information are often not provided.

4.4 Problem Formulation

We study the scenario in which an e-commerce website sells a set J of non-
perishable products with unlimited availability. We assume that a textual
description and transaction data are available for all the products j P J
sold in the past.
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At every time t P JT K, we aim to set a percentage margin (from now on,
the margin) mjt P Mj , where Mj is the finite set of feasible values for the
margin of an item j P J . Such a margin mjt is defined as:

mjt :“
pjt ´ cj

cj
, (4.1)

where pjt and cj are the selling price and the acquisition cost for product j
at time t, respectively. Finally, we denote with vjtpmjtq the actual number
of sales (volumes) for an item j at time t when choosing margin mjt.

Learning Problem The objective function the e-commerce website aims
to maximize is the total profit. Formally, the maximization problem is:1

m˚
jt “ argmax

mjtPMj

fjtpmjtq, (4.2)

where:
fjtpmjtq :“ mjt cj vjtpmjtq. (4.3)

Given a policy π returning at day t a margin value mjt for each product
j P J , we define the pseudo-regret over time t P JT K as:

Rpπ, T q :“
ÿ

tPJT K

fjtpm
˚
jtq ´

ÿ

tPJT K

fjtpmjtq,

where fjtpm
˚
jtq is the expected value provided by a clairvoyant algorithm

choosing the optimal margin for each product. Intuitively, the notion of
regret provides a measure of the cumulative loss of our policy π w.r.t. the
(clairvoyant) policy choosing at each time t the optimal margin maximiz-
ing fp¨q. Thus, our goal is the minimization of the pseudo-regret Rpπ, T q,
which is equivalent to the task of maximizing of the cash flow margin ac-
cumulated over time.

4.5 Pricing Single Products

To model the demand curve for each product j, we use the transaction data
aggregated over a time interval of one week. These data consist in the
aggregated average margin mjτ and amount of units sold vjτ , for every
product j and each week τ .

Seasonality Motivated by the seasonality analysis depicted in Figure 4.2,
we factorize the dependence of the volumes on seasonality and margin with

1Let us remark that this problem also applies to a generic convex combination of turnover and total profit.
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two different, independent functions. In particular, we define the adjusted
volumes v̄jτ of product j at time τ as follows:

v̄jτ :“ vjτ sjτ ,

where sjτ is a coefficient, independent of the chosen margin, representing
the seasonality for product j at time τ . This coefficient is estimated from
historical data as discussed in Appendix A.1. The above factorization al-
lows a dramatic reduction of the samples needed to have a stable estimate
of the demand curve.

Non-stationary demand In addition to seasonality effects, the market can
be non-stationary due to trends (e.g., contractions or expansions) and adap-
tive behaviors of the competitors. These effects change the dependency of
volumes on margin over time. We deal with these kinds of non-stationarity
sources by adopting a sliding window that discards outdated data for the
estimation of the volumes. More precisely, we use data coming from the
last Y years for the estimation of the seasonality coefficients sjτ , while we
adopt a sliding window of N weeks for the estimation of the adjusted vol-
umes. Notice that, when N is small, the trend effect can be considered to
be negligible, and the demand curve is sufficiently stable. In particular, the
sliding window size is chosen to find the best trade-off to balance issues
due to the non-stationary environment and trend w.r.t. the model’s sample
request to face noise and outliers (see Section 4.7.1).

4.5.1 Bayesian Estimation of the Demand Curve

We aim to find the best margin for a product j using its transaction data.
Our estimation algorithm is based on a Bayesian Linear Regression (BLR,
Tipping, 2001). In such a regression model, we build an estimate d̂jp¨q

of the demand function for product j as a linear combination of the basis
function taken as input, formally:

d̂jpmq “

Z
ÿ

h“0

θh ϕhpmq, (4.4)

where θh represents the h-th weight distribution and ϕhpmq represents the
h-th basis function of the margin m P Mj . Notice that the BLR method
returns a distribution d̂jpmq for each margin m P Mj , which allows the
adoption of a MAB approach in the following step of the algorithm. To
increase data efficiency and robustness of the learning process in long-tail
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scenarios, we force our regression to return a monotonic non-increasing de-
mand curve in the margin. Such an assumption is reasonable in our setting,
as the products are non-perishable consumables and, therefore, they are not
luxury, Veblen, or Giffen (Dougan, 1982; Kemp, 1998).

The demand curve estimation is performed using data collected during
τ P T :“ tt ´ N, . . . , t ´ 1u, i.e., pairs pmjτ , v̄jτ q of input margins mjτ

and output seasonality-adjusted volumes v̄jτ . To force the monotonicity of
the estimated demand curve d̂p¨q, we use a specific transformation of the
standard Bernstein polynomials (Bernstein, 1912; Lorentz, 1953a) as basis
functions in combination with a non-negative prior distribution for the θh
parameters. Formally, the Bernstein polynomials of degree Z are composed
by Z ` 1 functions, defined as:

bh,Zpmq “

ˆ

Z

h

˙

mh
p1 ´ mq

Z´h, h “ t0, . . . , Zu, (4.5)

where
`

Z
h

˘

is the binomial coefficient. Notice that the choice of Bernstein
polynomials allows us to model any demand function satisfying mild as-
sumptions. More precisely, Bernstein polynomials converge to any function
satisfying boundedness and continuity in a given range for a sufficiently
large degree Z of the polynomials (Lorentz, 1953b). An example of Bern-
stein polynomials with Z “ 20 is shown in Figure 4.4a. Defining the row
vector bZpxq as:

bZpmq :“ rb0,Zpmq, b1,Zpmq, . . . , bZ,Zpmqs , (4.6)

a monotonic version ϕhpmq of the original basis functions is obtained as
follows (McKay and Ghosh, 2011; Wilson et al., 2020):

ϕhpmq :“ bZpmq ¨ pIZ`1 ´ SZ`1q
´1

¨ 1h, h “ t0, . . . , Zu, (4.7)

where IZ`1 is the identity matrix of order Z ` 1, SZ`1 is the square matrix
of dimension Z ` 1 with all 1 in the superdiagonal (si,i`1 “ 1 for each i,
0 otherwise, Olver and Shakiban, 2019), and 1h is the indicator operator
selecting h-th element of the vector. An example of ϕhpmq obtained trans-
forming the Bernstein’s basis functions with Z “ 20 is presented in Fig-
ure 4.4b. Since Bernstein polynomials are defined over the support r0, 1s,
we rescale values over this range. From now on, for the sake of presentation
and w.l.o.g., we assume that the margins are s.t. Mj Ď r0, 1s.

To guarantee that the resulting demand function d̂jp¨q is monotone, we
use both the basis ϕhp¨q as defined in Equation (4.7) and a prior distribution
for the θh parameters having a non-negative support. Therefore, we use the
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Lognormal distribution (Wilson et al., 2020) to model the parameters θh.
Formally, we have the following:

θh „ LN pµh, σhq, @h P t0, . . . , Zu,

where LN pµh, σhq denotes the Lognormal distribution with mean µh and
standard deviation σh. Finally, the model fitting is performed using the last
N available samples, i.e., relying on the data tpmjτ , v̄jτ quτPT .

4.5.2 Exploration Strategy

Our problem can be naturally formulated as an online learning problem,
where the goal is to balance the acquisition of information on the stochas-
tic functions properly while, at the same time, maximizing the cumulative
reward. The procedure addressing the exploration/exploitation at best is
summarized in Figure 4.5. In particular, we resort to a sampling procedure
similar to Thompson Sampling (TS, Agrawal and Goyal, 2012; Kaufmann
et al., 2012; Chowdhury and Gopalan, 2017). By construction, a Bayesian
model provides in output a probability distribution of the posteriors on the
weights, which can be used to drive the exploration in the learning pro-
cess. Formally, we sample from the posterior distribution of BLR weights,
retrieving a single realization of the posterior binding margins with the de-
mand curve (d̂pmjtq).

According to the MAB framework, we choose the best arm over a finite
set of possible margins (representing the arms) Mj . We can compute the
value of the expected objective function f̂pmjtq, @mjt P Mj , which is the
counterpart of Equation 4.3 computed with the estimated demand function

35



Chapter 4. Dynamic Pricing for the Long Tail

v̄jt

mjt

v̄jt

mjt

m̂jt

f̂pmjtq

d̂pmjtq

Objective function

MAB samples (mjt P Mj)

Thompson Sampling
Realization

Prediction

Uncertainty Bounds

Figure 4.5: Optimal margin m̂jt estimation process.

d̂p¨q:2

f̂pmjtq “ mjt d̂pmjtq. (4.8)

The optimal margin m̂jt is the best arm, corresponding to:

m̂jt “ argmax
mjtPMj

f̂pmjtq, (4.9)

where f̂pmjtq is the objective function estimated using demand curve d̂p¨q,
the latter coming from TS sample over the model.

4.6 Pricing Long-Tail Products

The algorithms proposed in Section 4.5 cannot be directly applied to long-
tail products since the available data are not sufficient to produce a reliable
estimate of the demand curve. The commonly adopted approach to apply-
ing to a long-tail product the same margin used for a popular product pre-
senting similar characteristics may lead to wrong business decisions. This
is mainly because the competition over long-tail and popular products is
different, which, in its turn, can lead to different optimal margins.

We deal with long-tail products by aggregating similar products subject
to the constraint that the aggregated data are sufficient to produce an ac-
curate estimation of the corresponding demand curve. Then, we apply our
bandit pricing algorithm to each aggregation of products singularly. In the
following sections, we describe the steps of our algorithm.

2Recall that the demand curve is no longer the expected volumes curve due to aggregation (see Section 4.6.4)
and seasonality adjustment process.
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4.6.1 Distance Estimation

In this step, we exploit textual information to estimate the similarities among
the products. This kind of information is indeed the only information avail-
able in large-scale e-commerce websites regarding the products. Initially,
our algorithm removes the stop-words from the textual description (i.e., re-
curring words such as, e.g., “the” and “that”), as done in the work by Wilbur
and Sirotkin (1992). Subsequently, the algorithm encodes into vectors the
products’ textual descriptions using Term Frequency - Inverse Document
Frequency (TF-IDF, Luhn, 1957; Jones, 1972). After that, it computes a
distance matrix D “ rdjksj,kPJ , in which every entry provides the distance
djk between each pair of vectors obtained using TF-IDF. Such a matrix ex-
presses the similarities among the products. Additional technical details are
provided in Appendix A.2.

4.6.2 Tree Structure Generation

In this step, we generate a binary tree structure based on the products’
similarities by applying the hierarchical clustering approach proposed by
(Murtagh, 1983) to the products and the corresponding distance matrix D.3

In this tree structure, every terminal node (i.e., leaf) corresponds to a prod-
uct j P J , and each non-terminal node corresponds to an aggregation of
products, which we call meta-products. More precisely, a meta-product is
the aggregation of those products whose leaves are reachable in the sub-
tree whose root is the meta-product. Formally, we define a meta-product
K as the set of products j present in the corresponding subtree. Figure 4.6
depicts an example of the tree structure resulting from the application of
the above clustering approach over 6 products, in which products (terminal
nodes) are depicted as squares, and meta-products (non-terminal nodes) are
depicted as circles. In this example, the meta-product α “ t1, 2, 3, 4u is the
aggregation of the products 1, 2, 3, and 4. We remark that such a tree
structure provides an explainable way to describe the similarities among
the products whose interpretation is crucial in real-world applications, as
it directly shows which products and aggregations are similar. Notice that,
while all the non-terminal nodes are in principle meta-products, our algo-
rithm works with only a subset of them chosen as discussed in the next step
and discards the remaining ones.

3We remark that the application of the hierarchical clustering algorithm by (Murtagh, 1983) requires the
choice of a distance metric and a linkage method, e.g., a method to compute the distance of two clusters. We
adopt the metric induced by D, and we opt for the use of the single linkage, as suggested by Ding and He (2002).
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4.6.3 Product Aggregation Strategy

In this step, the algorithm chooses the specific subset of meta-products to
be priced. The rationale is to return a set of minimal meta-products, each
populated with a sufficient amount of data to obtain an accurate demand
curve estimation.

For every product j, we define a vector sj :“ psjt´N , . . . , sjt´1q, whose
elements sjτ “ 1 if at least a unit of the product j has been sold at time
τ , sjτ “ 0 otherwise. Similarly, given a meta-product α, we define a vec-
tor sα :“ psαt´N , . . . , sαt´1q, obtained as sα :“ ‘jPαsj , where ‘ is the
bit-wise “or” operation of the vectors corresponding to the products j be-
longing to α. Notice that sατ “ 1 if at time τ at least a unit of at least
one product belonging to the meta-product α has been sold. The condition
stating that the amount of data for a meta-product α are sufficient is that the
number of time points for which there is at least a sale of meta-product α
is at least q N , where q P p0, 1s is a parameter that we can tune. The above
condition can be evaluated by computing the sum of the elements of sα and
comparing it with q N .

Finally, the choice of the meta-products is performed as follows. Start-
ing from each product j we check the above condition, and if it is satisfied,
the product j is chosen as a meta-product. An example of this case is rep-
resented by the product 1 in Figure 4.6. If the condition does not hold on
the single product, we traverse upward the nodes of the aforementioned
tree structure, and stop as soon as the above condition is satisfied. In this
case, the meta-product corresponding to the non-terminal node is selected
to build the demand model for the product j. Notice that the minimality
principle we adopt is motivated by the need for balancing between the bias
and variance of the demand curve estimates. Indeed, merging additional
products to a minimal meta-product would most likely increase the bias of
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the demand curve estimated for each product therein, while providing only
a negligible benefit in terms of variance reduction.

4.6.4 Meta-product Demand Estimation and Pricing

In this step, the algorithm estimates the demand curve of each selected
meta-product and prices the corresponding products. Let us consider a
meta-product aggregating the set of products K Ď J and the corresponding
sale statistics pairs pmkτ , v̄kτ q for all products k P K and time τ P T . We
compute the demand curve of a meta-product using the overall volume v̄Kτ

for a specific time τ and the corresponding average margin mKτ used to
get such a volume at time τ . The above quantities are computed, for each
τ P T , as:

v̄Kτ :“ sKτ

ÿ

kPK
vkτ ,

mKτ :“
ÿ

kPK
mkτ ¨

vkτ
ř

hPK vhτ
,

where the average margin is computed by averaging the products’ margins
weighted by their seasonality-adjusted volumes, and the coefficient sKτ is
computed similarly to its single-product counterpart (details are provided
in Appendix A.1). The estimated demand function and the final selected
margin m̂Kt for the meta-product are computed using the same procedure
described in Section 4.5, i.e., using margins mKτ as input of the regression
model and volumes v̄Kτ as output, as well as the selection of the margin.
Indeed, once the above conversion has been applied, the meta-product data
are of the same nature as the one of a single product j and, therefore, are
processed in the same way. Finally, the selection of the margin for a prod-
uct j is provided by the margin of the meta-product K including j with
the smallest cardinality. For instance, in Figure 4.6, the margin of prod-
uct 2 is selected using meta-product α, while product 1 using the margin
corresponding to meta-product β.

A visual representation of the overall algorithm described in the previ-
ous sections is provided in Figure 4.7. The process starts from the textual
description of each product and, thanks to these information, builds the tree
structure. Subsequently, using the transaction data available, it builds the
meta-products, estimates the corresponding demand functions, and, finally,
it provides a margin to apply to each product in the catalog.
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Figure 4.7: Overview of the algorithm.

40



4.7. Experimental Evaluation

4.7 Experimental Evaluation

In this section, we evaluate the empirical performance of our algorithms.
Before doing that, we describe how we implement the actual choices de-
scribed so far. Then, we show how the resort to monotonic bandits im-
proves the pricing performance. To do that, we use an offline setting whose
optimal solution is known. Subsequently, we describe the application of
our algorithm to a real-world long-tail setting.

4.7.1 Pricing Single Products

We compare our algorithm with a BLR approach not exploiting the mono-
tonicity, denoted with NM-BLR, where we use the Normal prior for the
parameters θh and Bernstein’s polynomials in Equation (4.7) as basis func-
tions. A detailed description of the setting is deferred to Appendix A.3.
We compare the two algorithms in terms of empirical regret R̂pπ, T q, i.e.,
the empirical counterpart of the regret Rpπ, T q. Results are averaged over
15 independent runs for each algorithm (standard deviation is reported in
brackets).

Noise and Outliers

First, we study how our solution and the NM-BLR method are affected by
the variation of the standard deviation of the noise of the volumes vjτ and
the introduction of outliers, i.e., the presence of customers performing sig-
nificantly larger orders than usual. The time-stationary volume function we
use is:

vpxq “ 2e´px`1.2q
5
2

` ϵ,

where prices x P r0.32, 1.00s and ϵ „ N p0, σq is a Gaussian zero-mean
noise with standard deviation σ. The product had a unitary cost c “ 0.3. In
what follows, outliers are modeled as using, with probability o, a different
noise term ϵ1 „ N p0, σ1q having σ1 “ 10σ. In particular, we investigate
scenarios with σ P t0.001, 0.005, 0.01u and o P t0%, 10%, 20%u. The
algorithms have been run over a time horizon of T “ 100 weeks.

Results The empirical regret R̂pπ, T q obtained with the two methods are
summarized in Table 4.1 (the smaller, the better). On average, DynaLT out-
performs its non-monotone counterpart NM-BLR on every setting. Overall,
as expected, the performance of the two algorithms degrades as the stan-
dard deviation of the noise σ and the outlier percentage o increase. Without
outliers, DynaLT is significantly better than NM-BLR for each value of the
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Table 4.1: R̂pπ, T q in the presence of noise and outliers (15 runs, standard deviation in
brackets).

Outlier percentage o
0% 10% 20%

N
oi

se
st

d
σ 0.001

DynaLT 6.05 p0.12q 7.92 p0.2q 8.91 p0.25q
NM-BLR 7.51 p0.04q 10.43 p0.08q 11.61 p0.14q

0.005
DynaLT 9.36 p0.29q 18.17 p0.81q 22.09 p1.09q
NM-BLR 16.34 p0.42q 21.88 p0.55q 25.15 p0.68q

0.01
DynaLT 16.0 p0.27q 35.51 p1.74q 36.75 p1.56q
NM-BLR 27.34 p0.6q 37.71 p1.64q 37.12 p1.21q

noise, and the improvement increases as the noise gets larger, with an im-
provement in terms of regret from « 20% for σ “ 0.001 to « 41% for
σ “ 0.01. Conversely, with outliers, the advantage of using DynaLT is sig-
nificant only for small values of noise standard deviation, e.g., σ “ 0.001
and σ “ 0.05, leading to a reduction of the regret in the range r12%, 23%s.
Finally, with both a large noise standard deviation (σ “ 0.01) and outliers
(o “ 10% and o “ 20%), the performance of the two techniques are com-
parable.

Non-stationarities

Second, we evaluate our algorithm in a non-stationary setting. To do that,
we simulate some changes in the environment due to, e.g., a new com-
petitor or a new product. This is done by abruptly changing the product
volume function at specific time points. The specific shapes of the different
volume functions are provided in Appendix A.3. In particular, we intro-
duce c P t1, 2, 3u abrupt changes occurring at evenly spaced time points
(over the entire time horizon). Notice that, since the underlying demand
functions are different for different values of c, the regrets corresponding to
these scenarios cannot be directly compared. Even in this case, we evaluate
the impact of exploiting the monotonicity w.r.t. a traditional demand func-
tion estimation method (NM-BLR). Furthermore, we analyze the impact of
changing the sliding window length N P t20, 30, 40u. In this experiment,
the empirical regret R̂pπ, T q is computed w.r.t. a clairvoyant policy that
knows when the changes in the environment would occur, and its value has
been averaged over 15 independent runs. The algorithms have been run
over a time horizon of T “ 120 weeks.

Results The empirical regrets are reported in Table 4.2 (the smaller, the
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Table 4.2: R̂pπ, T q in the presence of non-stationarities (15 runs, standard deviation in
brackets).

Number of Changes c
1 2 3

W
in

do
w

Si
ze

N 20
DynaLT 4.16 p0.54q 8.86 p1.85q 6.51 p0.56q
NM-BLR 4.82 p0.8q 12.8 p2.17q 10.27 p0.23q

30
DynaLT 4.55 p0.8q 9.49 p2.15q 6.82 p0.49q
NM-BLR 4.84 p0.84q 12.45 p1.75q 12.75 p0.27q

40
DynaLT 3.95 p0.54q 7.46 p1.54q 6.14 p0.65q
NM-BLR 4.32 p0.22q 9.87 p1.69q 11.85 p0.69q

better). Even in this scenario, the performance provided by DynaLT is, on
average, better than those of NM-BLR. However, the difference is signifi-
cant only in the setting with c “ 3. This suggests that monotonicity allows
for a better estimate of the demand functions, especially if the environ-
ment changes frequently. Moreover, the performance for DynaLT achieved
with different window sizes do not change significantly, suggesting that this
method is less sensitive to changes in the window size.

4.7.2 Pricing Long-tail Products

The DynaLT has been used for two months on a real-world e-commerce
website, comparing its performance with the pricing strategy previously
used by the business managers.4

Setting In this test, we have a catalog J of 7, 826 products, with a turnover
of 2.50 MEuros per year and a cumulative net margin of 0.53 MEuros (ac-
cording to 2021 statistics). We divide the products into two sets defined by
e-commerce specialists, according to both technical and market aspects, to
set a proper A/B testing procedure. Specifically, 2, 132 products have been
priced by the company’s experts, while 5, 694 have been priced by DynaLT .
From now on, we refer to the former one as the control set B and to the lat-
ter as the test set A. As showed previously in Figure 4.1, only « 3% of the
products got on average at least 1 sale per week during 2021. We refer to
this subset of products as popular, while the remaining ones are addressed
as long-tail. Based on this classification, we further divide each one of the
A and B sets into two subsets containing only popular products (AP and
BP , respectively) and long-tail ones (ALT and BLT , respectively).

4Further details about the e-commerce website have been retained due to NDA.
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The pricing process for the two above tests has been conducted over a
test period T “ 8 weeks, from November 22, 2021, to January 16, 2022.
Since it is not possible to compute the regret R̂pπ, T q of the strategies in
a real-world scenario, we evaluate the different pricing schemes in terms
of their profits. Formally, the performances of the two strategies have been
evaluated using the rate of the profits between the analyzed period and the
one obtained in a control period C, from November 23, 2020, to January
17, 2021. Let us define the total profit achieved by DynaLT as:

MpA, T q :“
ÿ

tPT

ÿ

jPA

vjtmjtcj, (4.10)

where mjt is chosen by DynaLT . Similarly, we can define the profit MpB, T q

achieved by human experts in the period T over the set B, and the profits
MpA, Cq and MpB, Cq of DynaLT on the set A and human expert on the
set B, respectively, over the period C.

The performance metric we adopt is:

G :“
MpA, T q

MpA, Cq

MpB, Cq

MpB, T q
. (4.11)

Intuitively, G is greater than 1 if DynaLT increases the profit obtained dur-
ing the period T w.r.t. period C more than human experts did. The DynaLT
hyperparameters are set using historical data from 2016 to 2021. The algo-
rithm is implemented in Python 3.8.5, relying on the 2.5.0 version of Ten-
sorFlow for what concerns the BLR model implementation, and runs over
a Windows 10 machine (Intel Core i7-8750H @ 2.20GHz CPU with 16 GB
of DDR4 system memory). Despite DynaLT took in charge « 5, 700 prod-
ucts to price every week, the BLR model for demand estimation only had to
fit in « 1, 200 different instances. This highlights that the aggregation step
is crucial to decrease the computational load of the pricing process, which
reduces of « 80% the number of models that need to be fit. Thanks to the
use of such an approach, the DynaLT algorithm runs on this architecture in
« 20 minutes, where « 2 minutes are required for the aggregation step and
the remaining « 18 minutes are used for the training of the demand curve
model.

Global Performance The results, in terms of performance index G, of
the real-world experiment are summarized in Table 4.3. DynaLT algorithm
over the set A provides an increase of « 5% in terms of profit during the
period T w.r.t. period C. Instead, the choice of the experts over the set B
provided a reduction of the profit of « 25%. Therefore, the performance
index G is « 1.4.
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(a) Profit increase for the products in set A
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Figure 4.8: Profit increase by product.

Table 4.3: Performance in the real-world experiment.

Popular Long-tail Overall
GP GLT G

1.18 1.91 1.4

Figure 4.8a represents the increases in profit for each product in settings
A (blue area) and B (orange areas). While the set A records an increase
in profit w.r.t. last year in « 63% of the products, set B achieves a positive
performance in « 29% of the products. This suggests that the improvement
provided by DynaLT is due to a better pricing strategy over a large number
of products.

Long-Tail and Best-Sellers Comparison As mentioned before, both
products’ sets A and B are mostly constituted by long-tail products. In-
deed, 5, 481 out of 5, 694 products in A, and 2, 078 out of 2, 132 products
in B are long-tail products. We will refer to the aforementioned subsets of
long-tail products ALT and BLT , respectively. The performance index G
computed over the new sets (using ALT and BLT in the definition in place
of A and B, respectively) is GLT “ 1.91, suggesting that the pricing of
long-tail products is significantly improved thanks to DynaLT . In the case
of popular products, the improvement is smaller as we have GP “ 1.18.
Nonetheless, in Figure 4.8b the profit increment for the popular products in
the set AP occurs for « 55% of the popular products, while in set BP only
in 14% of the cases we have an improvement.
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4.8 Discussion and Conclusions

In this chapter, we faced the complex task of pricing products in an e-
commerce scenario in the presence of both popular and long-tail products.
Long-tail product commonly constitutes the majority of the ones present
in a catalog, but automatic pricing methods are usually unable to handle
them due to the scarcity of their transaction data. We proposed a modeling
approach based on the demand curve’s properties, which can speed up the
demand curve learning process, and an aggregation strategy to automati-
cally group products with too little data. The modeling approach has been
tested on synthetically generated data to show the advantages of including
the monotonicity property, and the overall DynaLT has been implemented
in a real-world e-commerce website, showing that its application increases
the profits on average of 18% w.r.t. what is gained by manually pricing the
products.
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CHAPTER5
Autoregressive Bandits

for Temporal Structures in Pricing

In this chapter, we propose a novel online decision-making setting, namely,
Autoregressive Bandits (ARBs), in which the observed rewards are gov-
erned by an autoregressive process, whose parameters depend on the cho-
sen action. We show that, under mild assumptions on the reward pro-
cess, the optimal policy can be conveniently computed. Then, we pro-
pose AutoRegressive Upper Confidence Bound (AR-UCB) a
new optimistic regret minimization algorithm, suffering regret in the order
of rO

´

pn`1q3{2
?
kT

p1´Γq2

¯

, where T is the time horizon, k is the number of actions,
n is the order of the AR process, and Γ ă 1 is an index characterizing the
stability of the process.

This chapter presents (Bacchiocchi et al., 2024), a joint work with Fran-
cesco Bacchiocchi, Gianmarco Genalti, Davide Maran, Marcello Restelli,
Nicola Gatti and Alberto Maria Metelli published at the International Con-
ference on Artificial Intelligence and Statistics (AISTATS). A preliminary
version of this work (Bacchiocchi et al., 2023) appeared at the European
Workshop on Reinforcement Learning (EWRL).
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5.1 Introduction

In a large variety of sequential decision-making problems, a learner is re-
quired to choose an action that, when executed, determines: (i) the immedi-
ate reward and (ii) the behavior of an underlying process that will influence,
in some unknown manner, the future rewards. This process is influenced
by the course of actions the agent performs and generates a temporal de-
pendence between the sequence of observed rewards. A class of stochastic
processes widely employed to model the temporal dependencies in real-
world phenomena are the autoregressive (AR) processes (Hamilton, 2020).
In this chapter, we model the reward of a sequential decision-making prob-
lem as an AR process whose parameters depend on the action selected by
the agent at every round. This scenario can be represented as a particu-
lar class of continuous reinforcement learning problems (Sutton and Barto,
2018) where an AR process governs the temporal structure of the observed
rewards through the action-dependent AR parameters that are unknown to
the agent. It is worth mentioning that such a scenario displays notable dif-
ferences compared to more traditional non-stationary learning problems.
Indeed, in the scenario we address, the environment does not change, and
the reward dynamics depend on the agent’s course of actions only. Let us
consider the pricing problem we want to address within this chapter.

Pricing Application Consider the problem of finding the optimal price
for a given product. A pricing strategy aims at maximizing a certain index,
e.g., volumes, turnover, or profit. Usually, pricing algorithms focus on the
one-step performance (Mueller et al., 2019). These solutions, however, fail
in modeling the long-term phenomena that a pricing strategy inherently
presents. Indeed, with one-step pricing algorithms, we fail (i) to model
the long-term effect of our pricing strategy on customer loyalty and (ii)
to capture the different demands of loyal and not-loyal customers. This
problem, even if ubiquitous in the real world (Bowen and Chen, 2001), is
unexplored in the literature, as existing approaches struggle to correctly
deal with these autoregressive dynamics.

Contributions In this chapter, motivated by the real-world problem pre-
sented above, we propose a novel setting, named AutoRegressive Bandit
(ARB), in which the reward follows an AR process of order n whose pa-
rameters depend on the agent’s actions. Importantly, we show that the
optimal policy, differently from many bandit models, is stationary and
closed-loop, as the optimal action depends on the previously observed re-
wards (Section 5.2). Then, we devise a new optimistic algorithm, namely
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AutoRegressive Upper Confidence Bound (AR-UCB), able to
learn the optimal policy in an online fashion (Section 5.3), and we show
that it suffers sublinear regret of order rO

´

pn`1q3{2
?
kT

p1´Γq2

¯

, where T is the op-
timization horizon, k is the number of actions, and Γ ă 1 is a stability index
of the process (Section 5.4). Finally, we empirically evaluate AR-UCB on
both synthetic and real-world data, comparing its performance with several
bandit baselines with competitive results and illustrating its notable robust-
ness w.r.t. the misspecification of key parameters (Section 5.5).

5.2 Problem Formulation

In this section, we introduce the ARB setting, formalize the learning prob-
lem, how the learner interacts with the environment, assumptions, policies
and definition of regret (Section 5.2.1). Subsequently, we derive a closed-
form solution for the optimal policy of an ARB (Section 5.2.2).

5.2.1 Setting

We study the sequential interaction between a learner and an environment.
Let T P N be the learning horizon. At every round t P JT K, the learner
chooses an action at P A :“ JkK, among the k P N available ones. In
the ARB setting, the reward evolves according to an autoregressive process
of order n (AR(n), Hamilton, 2020). Thus, the learner observes a noisy
reward xt of the form:

xt “ γ0patq `

n
ÿ

i“1

γipatqxt´i ` ξt, (5.1)

where xt P X (X Ď R is the reward space), γ0patq P R and pγipatqqiPJnK P

Rn are the unknown parameters depending on chosen action at, and ξt
is a zero-mean σ2-subgaussian random noise, independent conditioned to
the past. The reward evolution can be expressed in an alternative form as
follows:1

xt “xγpatq, zt´1y ` ξt, (5.2)

where zt´1 :“ p1, xt´1, . . . , xt´nqT P Z :“ t1u ˆ X n is the vector of past
rewards expressing past history, and γpaq :“ pγ0paq, . . . , γnpaqqT P Rn`1

is the parameter vector, defined for all the actions a P A. It is worth noting
1Although the linear structure might resemble the contextual linear bandits (Chu et al., 2011), the two settings

are non-comparable. Indeed, in our ARBs the vector zt´1 is not sampled independently at every round, but,
instead, follows a sequential process depending on the past, making the decision problem way more challenging.

49



Chapter 5. Autoregressive Bandits for Temporal Structures in Pricing

that when γipaq “ 0 for all i P JnK and a P A, the ARB setting reduces to
a standard MAB (Auer et al., 2002a).

Assumptions We introduce the assumption that we employ in this chapter
and comment on its role.

Assumption 5.1. The parameters pγipaqqiPJ0,nK fulfill the following condi-
tions:

a. (Non-negative coefficients) γipaq ě 0 for every a P A, i P J0, nK;
b. (Stability) Γ :“ maxaPA

řn
i“1 γipaq ă 1;

c. (Boundedness) m :“ maxaPA γ0paq ă `8.

Some comments are in order. Assumption 5.1.a requires that the coef-
ficients of the AR process are non-negative. This scenario is ubiquitous
in real-world AR phenomena (e.g., pricing, stock markets, digital advertis-
ing), where processes violating such an assumption will generate unrealis-
tic sign alternation behaviors. Indeed xt, in practice, represents the sales
volume in the case of pricing, the value of a stock in the stock market, the
number of customers that an e-commerce website may have, and so on. In
all these real-world scenarios, the quantity xt is meaningful whenever we
consider non-negative values that we want to maximize, and when Assump-
tion 5.1.a is not fulfilled (i.e., at least one γipaq is negative), the positivity
of xt is no longer ensured. Consider the example presented in Figure 5.1,
where we present a general scenario in which, at time τ , we are in a given
with a certain positive xτ . Consider, for the sake of simplicity, a noiseless
setting with n “ 1 (i.e., an AR(1) process) and, for a given action i, we
have γ0paq “ 0. Consider now γ1paq ă 0. Figure 5.1 shows what will hap-
pen in this case. The value of xt continuously changes its sign at each time
step, and this behavior is not compatible with the real-world phenomena of
our interest. This is even more unrealistic if we think about the scenario in
which we have another value of the state xτ ą xτ . In this scenario, after
performing the same action i, we will observe that the best-starting state
xτ leads to a worst next state xτ`1 ă xτ`1. This behavior has no practi-
cal meaning in the applications of our interest. Given these considerations,
we can derive that the worst possible effect of a given action is to reset
the state, which corresponds to have γ1paq “ 0. A representation of this
phenomenon is drawn in Figure 5.2.

Assumption 5.1.b requires that the sum of pγipaqqiPJnK is limited to a
value Γ P r0, 1q and Assumption 5.1.c enforces the boundedness of γ0paq,
a standard assumption in stochastic MABs. These latter assumptions guar-
antee that the AR process does not diverge in expectation regardless of the
sequence of the actions played.
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τ τ ` 1 τ ` 2 t

xt

xτ

xτ`1

xτ`2

xτ

xτ`1

xτ`2

Figure 5.1: An illustration of the effect of
a negative γ1paq over time.

τ τ ` 1

xτ

xt

t

0 ă γ1piq ă 1

γ1piq “ 0

γ1piq ă 0

Figure 5.2: The effect of γ1paq in the evo-
lution of the state xt, in the case of a
non-negative one (black), and a nega-
tive one (red).

Policies and Regret The learner’s behavior is modeled by a deterministic
policy π “ pπtqtPN defined, for every round t P N as πt : Ht´1 Ñ A,
mapping the history of observations Ht´1 “ px0, a1, x1, . . . , at´1, xt´1q P

Ht´1 to an action at “ πtpHt´1q P A where Ht´1 “ X ˆ pAˆX qt´1 is the
set of histories of length t ´ 1. The performance of a policy π is evaluated
in terms of the expected cumulative reward over the horizon T P N, defined
as:

JT pπq :“ E

«

T
ÿ

t“1

xt

ff

with

#

xt “ xγpatq, zt´1y ` ξt

at “ πtpHt´1q
, (5.3)

where the expectation is taken w.r.t. the randomness of the reward noise ξt.
A policy π˚ is optimal if it maximizes the expected average reward, i.e.,
π˚ P argmaxπ JT pπq, whose performance is denoted as J˚

T :“ JT pπ˚q.
The goal of the learner is to minimize the expected cumulative (policy)
regret by playing a policy π, competing against the optimal policy π˚ over
a learning horizon T P N:

Rpπ, T q “ J˚
T ´ JT pπq “ E

«

T
ÿ

t“1

rt

ff

, (5.4)

where rt :“ x˚
t ´ xt is the instantaneous policy regret and px˚

t qtPJT K is the
sequence of rewards observed by playing the optimal policy π˚.

Pricing Application (cont.) The problem of optimal pricing presented in
Section 5.1 can be easily mapped to the ARB setting. Consider the scenario
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in which we want to maximize the volumes over time. The volumes are our
reward xt, and the history of our rewards xt´1, . . . , xt´n provides an indi-
cation of the loyal customer pool over n units of time (e.g., days, weeks).
The ARB setting allows modeling a reward which is the contribution of
both new customers (via γ0) and the loyal customer pool (via γ1, . . . , γn).
Specifically, the price, our action at, induces different values of the coef-
ficient γpatq, to represent the different demand curves that loyal and new
customers might have.

5.2.2 Optimal Policy

In this section, we derive a closed-form expression for the optimal policy
π˚ for the expected cumulative reward of Equation (5.3), under Assump-
tion 5.1.a.

Theorem 5.2.1 (Optimal Policy). Under Assumption 5.1.a, for every round
t P N, the optimal policy π˚

t pHt´1q satisfies:

π˚
t pHt´1q P argmax

aPA
xγpaq, zt´1y. (5.5)

This result deserves some comments. First, the optimal action depends
on the vector of past rewards zt´1 and, thus, on the most recent n rewards
xt´1, . . . , xt´n only. Thus, the optimal policy π˚ is non-Markovian with
memory n or, equivalently, Markovian w.r.t. the state representation zt´1.2

Second, the optimal action maximizes, at every round t P N, the expected
instantaneous reward Erxt|Ht´1s “ xγpaq, zt´1y. This is a consequence
of the non-negativity of the parameters γipaq (Assumption 5.1.a), which
enforces a meaningful evolution of the AR process, compatible with our
real-world motivating scenarios. This way, the action maximizing the ex-
pected immediate reward (i.e., a myopic policy) is optimal for the expected
cumulative reward too. The proof can be found in Appendix B.

5.3 AutoRegressive Upper Confidence Bound

In this section, we present AutoRegressive Upper Confidence
Bound (AR-UCB), an optimistic regret minimization algorithm for the
ARB setting whose pseudo-code is reported in Algorithm 5.1. AR-UCB
leverages the myopic optimal policy for ARBs (Theorem 5.2.1) and imple-
ments an incremental regularized least squares procedure to estimate the

2We can look at the ARB as a particular Markov Decision Processes (Puterman, 2014) with zt´1 P Z as
state representation.
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unknown parameters γpaq, for every action a P A independently. The al-
gorithm requires the knowledge of the order n of the AR process, although
this knowledge can be replaced with the one of an upper bound n ą n of
the AR order.3

AR-UCB starts by initializing for all the actions a P A the Gram ma-
trix V0paq “ λIn`1, where λ ą 0 is the Ridge regularization param-
eter, the vectors b0paq “ pγ0paq “ 0n`1, and the observations vector
z0 “ p1, 0, . . . , 0qT (Line 1).4 Then, for each round t P JT K, AR-UCB
computes the Upper Confidence Bound (UCB) index (Line 3) for every
a P A and the optimistic action at:

at P argmax
aPA

UCBtpaq :“ xpγt´1paq, zt´1y ` βt´1paq }zt´1}Vt´1paq´1 ,

(5.6)
where pγt´1paq is the most recent estimate of the parameter vector γpaq,
zt´1 “ p1, xt´1, . . . , xt´nqT is the observations vector, and βt´1paq ě 0
is an exploration coefficient that will be defined later (Section 5.4). The
index UCBtpaq is designed to be optimistic, i.e., xγpaq, zt´1y ď UCBtpaq

with high probability for all a P A. Then, action at is executed (Line 4)
and the new reward xt is observed. This sample is employed to update the
Gram matrix estimate Vtpatq, the vector btpatq, and the estimate pγtpatq
(lines 6-8).

5.4 Regret Analysis

In this section, we present the analysis of the regret of AR-UCB. We start
providing a self-normalized concentration inequality for estimating the AR
parameters γpaq (Section 5.4.1). Then, we derive a decomposition of the
regret (Section 5.4.2) that is useful to complete the analysis and, finally,
we present the bound on the expected cumulative (policy) regret (Sec-
tion 5.4.3). The complete proofs of the theorems stated in this section can
be found in Appendix B.

5.4.1 Concentration Inequality for Parameter Vectors

We start by providing a concentration result for the estimates pγtpaq of the
true parameter vector γpaq, for every action a P A, as performed in Al-
gorithm 5.1. At the end of each round t P N, where the chosen action

3Indeed, any AR process of order n can be regarded as an AR process of order n ą n setting γipaq “ 0 for
i P Jn` 1, nK. An empirical validation of the AR-UCB performances in the case of a misspecified n is provided
in Section 5.5.4.

4We assume to know the initial observations vector z0. If this is not the case, we can play an arbitrary action
for the first n rounds to observe pxtqtPJnK with just an additional constant loss term.
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Algorithm 5.1: AR-UCB.
Input: Regularization parameter λ ą 0, autoregressive order n, exploration

coefficients pβt´1qtPJT K
1 Initialize t Ð 1, V0paq “ λIn`1, b0paq “ 0n`1, pγ0paq “ 0n`1, @a P A,

z0 “ p1, 0, . . . , 0qT
2 for t P JT K do
3 Compute

at P argmaxaPA UCBtpaq :“ xpγt´1paq, zt´1y ` βt´1paq }zt´1}Vt´1paq´1

4 Play action at and observe xt “ xγpatq, zt´1y ` ξt
5 Update @a P A:
6 Vtpaq “ Vt´1paq ` zt´1z

T
t´11ta“atu

7 btpaq “ bt´1paq ` zt´1xt1ta“atu

8 pγtpaq “ Vtpaq´1btpaq
9 Update zt “ p1, xt, . . . , xt´n`1qT

10 t Ð t ` 1

11 end

is at P A, we solve the Ridge-regularized linear regression problem and
update the coefficient vector estimate pγtpatq associated to at:

pγtpatq “ argmin
rγPRn`1

ÿ

lPOtpatq

pxl ´ xrγ, zl´1yq
2

` λ }rγ}
2
2 “ Vtpatq

´1btpatq,

where Otpaq is the set of rounds where action a has been chosen, i.e.,
Otpaq :“ tτ P JtK : aτ “ au. The following result shows how the estimate
pγpaq concentrates around the true parameters γpaq over the rounds.

Lemma 5.4.1 (Self-Normalized Concentration). Let a P A be an action,
let ppγtpaqqtPO8paq be the sequence of solutions to the Ridge regression prob-
lems computed by Algorithm 5.1. Then, for every regularization parameter
λ ą 0, confidence δ P p0, 1q, simultaneously for every round t P N and
action a P A, with probability at least 1 ´ δ it holds that:

}pγtpaq ´ γpaq}Vtpaq
ď

?
λ}γpaq}2 ` σ

d

2 log

ˆ

k

δ

˙

` log

ˆ

detVtpaq

λn`1

˙

.

Lemma 5.4.1 resembles the self-normalized concentration inequality
from (Abbasi-Yadkori et al., 2011, Theorem 1). However, contrary to
Lin-UCB (Abbasi-Yadkori et al., 2011), the exploration coefficients βtpaq

are different for every action a P A. Lemma 5.4.1 allows properly defining
the exploration coefficients βtpaq employed in Algorithm 5.1, defined for
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every action a P A and round t P J0, T ´ 1K:

βtpaq :“
a

λpm2 ` 1q ` σ

d

2 log

ˆ

k

δ

˙

` log

ˆ

detVtpaq

λn`1

˙

. (5.7)

This formula contains two terms. The first one is a bias term that increases
with m (i.e., the maximum value of the largest γ0paq over the actions a P A,
see Assumption 5.1.c) and with the regularization parameter of the Ridge
regression λ ą 0. The second one is the concentration term and increases
with the subgaussian parameter σ of the noise, the number of actions k, and
the determinant of the design matrix Vtpaq, but decreases in λ. It is worth
noting that βtpaq is obtained from Lemma 5.4.1, by observing that, under
Assumptions 5.1.b and 5.1.c, we have }γpaq}2 ď

?
m2 ` Γ2 ď

?
m2 ` 1.

Thus, the exploration coefficient βtpaq ensures that, with probability 1 ´ δ,
the following inequality holds simultaneously for all actions a P A and
rounds t P J0, T ´ 1K:

}pγtpaq ´ γpaq}Vtpaq
ď βtpaq. (5.8)

We observe that βtpaq (see Equation 5.7) and AR-UCB do not require the
knowledge of the maximum sum Γ of the parameters γipaq over the actions
(see Assumption 5.1.b). This is a desirable feature of our algorithm as
Γ is often unknown in practice and difficult to upper bound or estimate.
Nevertheless, Γ appears in the regret analysis in Section 5.4.2. Differently,
the value of m, needed to compute the optimistic coefficient βtpaq, can be
easily replaced with an upper bound m ą m when unknown.5

5.4.2 Regret Decomposition

In this section, we present a novel decomposition of the regret that will be
employed in the final bound of Section 5.4.3. The contents of this section
are of independent interest and applicable to any learner’s policy π, be-
yond AR-UCB. From a technical perspective, the analysis is composed of
two steps: (i) we decompose the instantaneous (policy) regret rt in terms
of the instantaneous external regret ρt (Lemma 5.4.2); (ii) we bound the
cumulative expected (policy) regret Rpπ, T q “ Er

řT
t“1 rts in terms of the

expected cumulative external regret ϱpπ, T q “ Er
řT

t“1 ρts (Lemma 5.4.3).
We start with step (i), by recalling that the definition of cumulative ex-

pected (policy) regret Rpπ, T q in Equation (5.4) compares the sequence of
rewards px˚

t qtPJT K when executing the optimal policy π˚ with the sequence
5An empirical analysis of the effect of the misspecification of such a parameter is provided in Section 5.5.3.
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of rewards pxtqtPJT K when executing the learner’s policy π. However, in
our ARB setting, the observed reward xt depends on the past history Ht´1.
Thus, the instantaneous (policy) regret rt :“ x˚

t ´ xt can be decomposed in
two terms: (a) the dissimilarity between the past history H˚

t´1 when execut-
ing the optimal policy and the learner’s observed history Ht´1; (b) the in-
stantaneous external regret (Dekel et al., 2012) ρt :“ xγpa˚

t q ´γpatq, zt´1y

representing the loss of executing the learner action at instead of the op-
timal one a˚

t “ π˚
t pH˚

t´1q assuming that such actions are applied to the
observations vector zt´1 generated by the execution of the learner’s policy.
The following result formalizes the instantaneous regret decomposition.

Lemma 5.4.2 (Policy Regret Decomposition). Let px˚
t qtPJT K be the sequence

of rewards by executing the optimal policy π˚ and let pxtqtPJT K be the se-
quence of rewards by executing the learner’s policy π. Then, for every
t P JT K it holds that:

rt “ x˚
t ´ xt

“

n
ÿ

i“1

γipa
˚
t qpx˚

t´i ´ xt´iq ` xγpa˚
t q ´ γpatq, zt´1y

“

n
ÿ

i“1

γipa
˚
t qrt´i ` ρt, (5.9)

where rt :“ x˚
t ´ xt is the instantaneous policy regret, ρt :“ xγpa˚

t q ´

γpatq, zt´1y is the instantaneous external regret, a˚
t “ π˚

t pH˚
t´1q, and rt´i “

0 if i ě t.

The decomposition in Equation (5.9) comprises two terms. The second
one ρt is the instantaneous external regret discussed above. The first one
defines a recurrence relation of order n on the instantaneous policy regret
rt. We now move to step (ii) with the following result that shows that the
contribution of the recurrence can be reduced to a term depending on Γ and
n that multiplies the cumulative external regret.

Lemma 5.4.3 (External-to-Policy Regret Bound). Let π be the learner’s
policy and T P N be the horizon. Under Assumptions 5.1.a and 5.1.b, it
holds that:

ErRpπ, T qs “ E

«

T
ÿ

t“1

«

n
ÿ

i“1

γipa
˚
t qrt´i ` ρt

ffff

ď

ˆ

Γn

1 ´ Γ
` 1

˙

ϱpπ, T q,

(5.10)

where ϱpπ, T q :“ E
”

řT
t“1 ρt

ı

is the cumulative expected external regret.
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Lemma 5.4.3 provide us a bound on the cumulative expected (policy)
regret Rpπ, T q achieved by AR-UCB (or any algorithm playing in an ARB)
by bounding the cumulative expected external regret ϱpπ, T q. The order
of the regret bound w.r.t. T is governed by the external regret, while the
effect of a weaker history (i.e., the sub-optimal actions of the past) emerges
as an instance-specific constant. Such a constant is 1 whenever n “ 0 or
Γ “ 0, i.e., when the ARB reduces to a standard MAB. In all other cases,
the bigger the value of n or Γ, the more visible the AR effects are, and,
consequently, the more the sub-optimal choices of the past get amplified.
Finally, we point out that the multiplicative factor Γn

1´Γ
` 1 to pass from

external to policy regret is tight since there exists a sequence of external
regrets in which the inequality of Lemma 5.4.3 holds with equality (see
Appendix B).

5.4.3 Regret Bound

In the following, we present a bound on the expected policy regret bound
for AR-UCB.

Theorem 5.4.4. Let δ “ p2T q´1. Under Assumptions 5.1.a, 5.1.b, and 5.1.c,
AR-UCB suffers a cumulative expected (policy) regret bounded by (high-
lighting the dependence on m, σ, n, Γ, k, and T only):

ErRpAR-UCB, T qs ď rO
ˆ

pm ` σqpn ` 1q3{2
?
kT

p1 ´ Γq2

˙

.

Some observations are in order. First, when we set n “ 0 and Γ “ 0,
i.e., we reduce the ARB to a standard MAB, we obtain a regret rate of
rOppm ` σq

?
kT q, which is tight for standard MABs. The quantity m`σ

1´Γ
is

the maximum value that rewards can achieve, as proven in Lemma B.0.1.
As intuition suggests, the ARB learning problem becomes more challeng-
ing as the AR order n increases and when the bound on the sum of the
parameters Γ approaches one. This is witnessed in Theorem 5.4.4 with the
dependence of the regret on pn`1q3{2 and p1´Γq´1. The interplay between
n and p1´Γq´1 is showing that even if two instances have the same sum of
parameters (i.e., Γ), the one with fewer coefficients (i.e., n) is more easily
learnable. This is explained by the fact that our algorithm learns the individ-
ual parameters by means of a regression procedure learning to a

?
n ` 1 in

the regret. Finally, suppose we run AR-UCB with a larger AR order n ą n.
In such a case, the dependence on pn ` 1q3{2 becomes pn ` 1qpn ` 1q1{2,
since the factor due to passing from external to policy regret (Lemma 5.4.3)
will always contain the true n, while n appears because of the estimation
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process. Similarly, if we execute AR-UCB with a value m ą m, the regret
bound still holds by replacing m with m.

5.5 Numerical Simulations

In this section, we first provide (Section 5.5.1) a numerical validation of
AR-UCB compared with other bandit baselines in synthetically-generated
domains. Then, we discuss (Section 5.5.2) the importance of exploiting
the noise in this setting, and, subsequently, we analyze the sensitivity of
AR-UCB to the misspecification of the three most important parameters,
i.e., m (Section 5.5.3), n (Section 5.5.4), and σ (Section 5.5.5). In Sec-
tions 5.5.6 and 5.5.7, we provide experimental results in the particular
case of processes of order 0 (i.e., a standard stochastic MAB) and 1 (i.e.,
AR(1)). Finally, in Section 5.5.8, we conduct validation in a setting gen-
eralized from real-world data. The code containing the AR-UCB algo-
rithm, as well as the environements used in this section, can be found at
https://github.com/marcomussi/ARB.

5.5.1 AR-UCB vs Bandit Baselines

Setting We evaluate AR-UCB in three scenarios that differ in the proper-
ties of the autoregressive processes that govern the rewards. The competing
algorithms are evaluated in terms of cumulative regret w.r.t. the setting-
specific clairvoyant. The three settings have their AR(n) process order
n P t2, 4u, number of actions k P t2, 7u, and scale m P t1, 20, 920u. The
values of γpaq have been sampled from uniform probability distributions
for each action a P A and for each setting. The environments are noisy
with a standard deviation σ P t0.75, 1.5, 10u. We chose to set the hyper-
parameters of AR-UCB as follows: λ “ 1, while m P t10, 100, 1000u, that
is equivalent to chose m of the same magnitude of the true value m, in a
pessimistic fashion. Table 5.1 summarizes the details of the three environ-
ments.

Baselines AR-UCB will compete with several bandit baselines. First, it is
compared with UCB1 (Lai and Robbins, 1985; Auer et al., 2002a), a widely
adopted solution for stochastic MABs. Second, we consider Exp3, de-
signed for adversarial MABs (Auer et al., 1995, 2002b) and its extension to
finite-memory adaptive adversaries B-Exp3 (Dekel et al., 2012). Lastly,
we compare AR-UCB with AR2 (Chen et al., 2023), an algorithm for man-
aging AR(1) processes. The hyper-parameters chosen for the baselines are
the ones proposed in the original papers.
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Parameters
Setting n k m σ

A 2 2 1 0.75
B 4 7 20 1.5
C 4 7 920 10

Table 5.1: Settings description.
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Figure 5.3: Cumulative regret of AR-UCB and multiple baselines (100 runs, mean ˘ std).

Results Figure 5.3 shows the average cumulative regrets for AR-UCB and
the other bandit baselines. We observe that AR-UCB suffers the smallest
cumulative regret in these scenarios, always displaying a sublinear behav-
ior. Both Exp3 and B-Exp3 in two scenarios out of three (B and C)
achieve sublinear regret. On the other hand, both UCB1 and AR2 are not
able to achieve sublinear regret in the presented scenarios. This is not sur-
prising since we require them to learn more complex processes than those
they are designed for (i.e., models with n “ 0 and n “ 1 for UCB1 and
AR2, respectively).

5.5.2 On the Effect of Stochasticity

The optimal policy (Theorem 5.2.1) for the ARB setting exploits the con-
tribution of the noise to increase the collected reward. In this section, we
provide experimental evidence of this phenomenon. We first introduce a
notion of optimal policy without noise. Then, we conduct an experiment to
highlight the variations between the two policies in environments present-
ing different noise magnitudes.

Optimal Policy without Noise The optimal policy, when no noise is in-
volved, is constant and corresponds, for sufficiently large T , to playing the
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σ Stochastic Deterministic

0 19994 (0) 19994 (0)
0.1 20167 (0.20) 19998 (2.04)

0.5 22049 (1.02) 20012 (1.02)

1.0 24504 (2.04) 20030 (2.04)

2.0 29428 (4.09) 20067 (4.08)

Table 5.2: Cumulative reward of the Clairvoyant Stochastic and Deterministic
policies (100 runs, mean (std)).

action a` P A that brings the system to the most profitable steady state.6

Such an action a` is the one maximizing the steady-state reward, namely:

a`
P argmax

aPA

γ0paq

1 ´
řn

i“1 γipaq
. (5.11)

It is worth noting the role of Assumption 5.1.b which guarantees the exis-
tence of the inverse p1´

řn
i“1 γipaqq´1 ě p1´Γq´1 for each action a P A.

The proof can be found in Appendix B.1.

Setting To demonstrate the importance of the noise in this setting, we
consider the two clairvoyant policies defined above. We compare the op-
timal Stochastic policy (Equation 5.5) and the optimal policy for the
Deterministic setting (Equation 5.11). The setting selected is chal-
lenging and made of n “ 2 actions, a1 and a2, that are very close in terms
of expected steady-state reward:

γpa1q “ p1, ρ, 0q
T γpa2q “ p1, 0, ρ ´ ϵqT,

where ρ “ 0.5, ϵ “ 0.02 and the noise is Gaussian considering values of
σ P t0, 0.1, 0.5, 1.0, 2.0u.

Results Table 5.2 shows the performance of the two policies in terms of
cumulative reward. First, with no noise (i.e., σ “ 0), the performances of
the two policies are equivalent. However, when we consider a stochastic
setting (i.e., σ ą 0), the Stochastic policy can exploit the beneficial
effect of the noise in order to increase the average reward. Indeed, the
optimal Deterministic policy retrieves almost the same reward for all

6The request for large T is to make transient effects neglectable.
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the tested values of σ, while Stochastic policy increases its average
reward as much as the system is noisy (since it can exploit it).

5.5.3 On the Knowledge of Parameter m

A fundamental parameter of AR-UCB is the value m “ maxaPA γ0paq. In
this experiment, we empirically show that any choice in the same order
of magnitude as the actual value will let the algorithm achieve a sublinear
regret, while severe underestimation prevents the algorithm from achieving
a sublinear cumulative regret.

Setting We run multiple simulations varying the value of parameter m.
We chose k “ 7, n “ 4 and γ0paq “ 500 for every action a P A (i.e.,
m “ 500). The autoregressive parameters γipaq have been sampled from
a uniform probability distribution with support in r0, 1{4 ´ ϵs, where ϵ ą

0 is an arbitrarily small value. For this experiment, we test values m P

t1, 10, 100, 500, 1000, 2500u.

Results In Figure 5.4, we report the cumulative regrets of AR-UCB under
different choices of m. First, it is worth noting how choosing values of
m ě m always results in a sublinear cumulative regret, with a progressive
increase as m gets larger. This is highlighted when comparing, for instance,
the scenario where m “ 2500 to the one where m P t500, 1000u. When m
is underestimated, we empirically observe two facts. When m is in the same
order of magnitude as the true value m (e.g., m “ 100), we empirically
get a smaller sublinear cumulative regret (even if no theoretical guarantees
are present). Finally, a severe underestimation of the parameter leads to
a linear cumulative regret, as clearly visible for m P t1, 10u, although, in
these settings, the cumulative regret is lower w.r.t. the other settings in the
very first stages of the simulations (due to a more limited exploration).

5.5.4 On the Knowledge of the Autoregressive order n

As stated in Section 5.4, AR-UCB can also run under a misspecified param-
eter n ‰ n. In this section, we provide an empirical analysis of the effect
of misspecifying such a value.

Setting We consider a configuration with k “ 7, n “ 10, γ0paq “ 1
and γipaq for i ě 1 sampled from a uniform distribution having support in
r0, 10´2 ¨ 2iq for every action a P A. AR-UCB is run varying the parameter
n P t1, 2, 4, 8, 10, 16u.

Results Figure 5.5 reports the average cumulative regret for the consid-
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Figure 5.4: Effect of the choice of pa-
rameter m on the AR-UCB cumula-
tive regret (100 runs, mean ˘ std).

0 1 2 3 4 5
·104

0

1,000

2,000

3,000

4,000

5,000

Rounds

C
u
m
u
la
ti
ve

R
eg
re
t

n = 1
n = 2
n = 4
n = 8
n = 10
n = 16

Figure 5.5: Effect of the choice of pa-
rameter n on the AR-UCB cumula-
tive regret (100 runs, mean ˘ std).

ered values of n. On the one hand, an underestimation of parameter n (i.e.,
n P t1, 2, 4u) results in an asymptotically linear cumulative regret. This
effect is justified since AR-UCB is not able to learn the actual AR dynam-
ics due to underfitting, i.e., the considered models are too simple. On the
other hand, AR-UCB achieves sublinear cumulative regret when n ě n
(i.e., n P t10, 16u). In particular, when n ą n, the linear models use more
parameters than required, resulting in slower learning. However, as the
samples increase, the algorithm learns that the exceeding coefficients are
not significant. A particular case is when n is close to n but strictly lower
(i.e., n “ 8). Here, the cumulative regret degenerates to linear, but if the
coefficients γjpaq for j P Jn ` 1, nK are not very large, the performance of
AR-UCB with misspecified n results, in practice, close to the one obtained
with the true n.

5.5.5 On the Knowledge of Parameter σ

Another quantity required in order to execute AR-UCB is the process noise’s
standard deviation σ. In this experiment, we empirically show that our al-
gorithm works in severe misspecification of this quantity. From now on, we
will refer to this input parameter as σ.

Setting We evaluate AR-UCB under different specifications of the value
σ P t10´2, 10´1, 1, 15, 30u, when the true value is set to σ “ 15. The
other relevant experiment parameters are m “ 1200, n “ 10 and k “ 7.
The autoregressive parameters γipaq have been sampled from a uniform
probability distribution.
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Figure 5.6: Cumulative regret of AR-UCB in the case of misspecification of process noise
parameter σ (100 runs, mean ˘ std).

Results In Figure 5.6, we report the cumulative regrets of AR-UCB under
different choices of σ. First, it is worth noting how all the choices of σ
always result in a sublinear cumulative regret, progressively increasing as
σ gets larger. Even if there are no theoretical guarantees of expected sub-
linear regret when σ is misspecified from below, empirically, this type of
misspecification is not so evident in the performance.

5.5.6 Stochastic Bandit Problem

Setting We evaluate AR-UCB in the special case n “ 0. This problem is
equivalent to solving a standard stochastic bandit problem. This experiment
compares the performances of AR-UCB in this setting against well-known
gold standards: UCB1 and Exp3. The competing algorithms are evaluated
in terms of cumulative regret w.r.t. the setting-specific clairvoyant. The
three settings differ in the values of m P t2, 7.5u (i.e., the maximum arms’
expected reward) and the values of σ P t0.9, 1.25, 2u, the noise’s standard
deviation. The number of actions is k “ 7.

Results Figure 5.7 shows the average cumulative regrets for AR-UCB,
UCB1, and Exp3. We immediately observe that all the algorithms suf-
fer sublinear cumulative regret, as expected since they are all able to pro-
vide no-regret theoretical guarantees in this setting. In all the experiments,
UCB1 outperforms all the other algorithms since it is specifically designed
for the scenario under analysis. AR-UCB, as expected, performs properly in
this setting since, as already discussed in Section 5.4.3, its regret is asymp-
totically optimal when n “ 0.
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Figure 5.7: Cumulative regret of AR-UCB, UCB1, and Exp3 in the case of n “ 0 (100
runs, mean ˘ std).

5.5.7 AR(1) Bandit Problem

AR(1) processes are the simplest autoregressive processes. Therefore, we
will present a specific analysis of this setting to show how AR-UCB and
the baselines perform when the complexity given by the dynamic temporal
structure is minimal. Results show how even the minimal autoregressive
contribution can lead all the algorithms (except for AR-UCB) to linear cu-
mulative regret.

Setting We evaluate AR-UCB in the case n “ 1. This is the simplest set-
ting in which an autoregressive component contributes to the reward. This
experiment compares the performances of AR-UCB in this setting against
the same baselines as Section 5.5.1. The competing algorithms are eval-
uated in terms of cumulative regret w.r.t. the setting-specific clairvoyant.
The three settings differ in the values of m P t2, 8, 10u (i.e., the maxi-
mum arms’ expected reward) and the values of σ P t1, 1.25, 2u, the noise’s
standard deviation. The values of the γ1paq parameters have been sampled
from uniform distributions having their sampling ranges inside r0, 1q. The
number of actions is k “ 7.

Results Figure 5.8 shows the average cumulative regrets for all the com-
peting algorithms. We immediately observe that the only algorithms able
to achieve sublinear regret are AR-UCB (in all three settings), B-Exp3
(first and third experiments), and Exp3 (first experiment only). Such a
result is unsurprising since none of the baselines has specific theoretical
guarantees in the Autoregressive Bandit problem, even in the simple sce-
nario when n “ 1. Even though, we decided to adopt these algorithms as
baselines since they represent the gold standard algorithms in the bandit lit-
erature (UCB1, Exp3) and the algorithms that solve problems near to ours
(B-Exp3 , AR2), respectively.
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(c) Setting C.

Figure 5.8: Cumulative regret of AR-UCB and the others bandit baselines in the case of
n “ 1 (100 runs, mean ˘ std).

5.5.8 Real-World Data - Dynamic Pricing

We evaluate AR-UCB over the dynamic pricing task in e-commerce. The
scenario we consider in this experiment is the one presented in Sections 5.1
and 5.2. The problem of sequentially choosing the price while dealing
with exploration-exploitation dilemma is a well-known task in the litera-
ture (Kleinberg and Leighton, 2003). We show that AR-UCB is able to find
the pricing schedule that maximizes the total sales while accounting for loy-
alty dynamics, using a simulation environment generated from real-world
data.

Setting Configuration We have the possibility to access a dataset of trans-
actions generated from a real e-commerce website selling consumables.7

We focused on the top 4 best-selling products. For each product, we have
weekly records of the number of units sold and the related price. We dis-
cretize the prices into k “ 8 price bands (i.e., our actions) and we build the
simulation environment considering a maximum horizon of the effect of
the past prices on the customer of n “ 8 weeks. The choice of n “ 8 (i.e.,
two months) is ruled by business logic that is characteristic of the market in
analysis. For each price band a, we estimated the parameters γpaq through
standard regression techniques. We used the historical sales data as the re-
sponse variable predicted with the observed conversion rates for any group
of customers (grouped using the number of weeks passed since their last
purchase) with respect to any given price band at. In this experiment, we
compare AR-UCB and the other bandit baselines presented in Section 5.5.1.

Results Figure 5.9 shows that only AR-UCB achieves sublinear regret for
all the four products. Exp3 and B-Exp3 achieve sublinear regret for 3
out to 4 products, although their cumulative regret is always larger than

7We cannot share the original dataset due to an NDA.
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(b) Product 2.
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(c) Product 3.
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(d) Product 4.

Figure 5.9: AR-UCB, UCB1, Exp3, B-Exp3 and AR2 in the experiment from real-world
data (100 runs, mean ˘ std).

that of AR-UCB, making the latter the best performing algorithm over the
competitors. Lastly, both UCB1 and AR2 suffer linear regret for all the
products under analysis.

5.6 Related Works

In this section, we discuss and compare the works that share similarities
with the ARBs, focusing on MABs and online learning in non-linear sys-
tems.

Multi-Armed Bandits In the more classical Multi-Armed Bandit (MAB)
setting, the learning problem does not involve temporal dependencies be-
tween successive rewards. The MAB setting has been studied under the
assumptions of both stochastic and adversarial noise models. In the for-
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mer case, UCB1 (Lai and Robbins, 1985; Auer et al., 2002a) represents the
parent algorithm. Instead, when adversarial noise is involved Exp3 (Auer
et al., 1995, 2002b) is usually employed. This algorithm has been extended
by RExp3 (Besbes et al., 2014) to handle with the non-stationary setting.
Differently from both the adversarial and non-stochastic setting, we as-
sume that the rewards are not preselected by an adversary or nature but,
instead, they change as an effect of the actions played. Indeed, the under-
lying autoregressive process (affected by a stochastic noise) is such that the
current action impacts the future rewards. Therefore, importing the adver-
sarial MAB terminology, the ARBs can be reduced to an adversary setting
with an adaptive (or non-oblivious) adversary (Dekel et al., 2012). In par-
ticular, the Op

?
kT q regret guarantees of Exp3 are not achievable in the

ARB setting as Exp3 competes against the best constant policy while the
optimal policy for ARBs is not constant (Theorem 5.2.1). As we shall see
empirically in Section 5.5, a constant policy suffers a linear regret.

Moreover, our setting presents similarities with MABs with delayed
feedback (e.g., Pike-Burke et al., 2018). However, in ARB the effect of the
actions is propagated (not exactly delayed). Markov (Ortner et al., 2012)
and restless (Tekin and Liu, 2012) bandits, instead, consider underlying
processes that influence the rewards. However, these processes are not sup-
posed to be controlled by the action history. In Chen et al. (2023), the
authors study the problem of learning and control in a setting that consid-
ers temporal structure in the feedback, modeled as an AR(1) autoregressive
process.

Online Learning in Non-Linear Systems The ARB setting is a spe-
cific case of a non-linear dynamical system. Although the literature related
to this setting is wide, no work faces all problems that the ARB setting
presents, including learning to control with regret guarantees. Mania et al.
(2022) focus on learning the parameters of a particular class of non-linear
systems. However, the approach is limited to estimation and no control al-
gorithm is proposed. Similarly, Umlauft and Hirche (2017) deal with learn-
ing the system parameters with stability guarantees without the chance to
control it. Several recent works (Kakade et al., 2020; Lale et al., 2021)
focus on the learning and control of non-linear systems with regret guar-
antees. However, these works make use of an oracle to solve a complex
optimization problem to perform optimistic planning (i.e., optimal policy
given an optimistic estimate of the system). This problem in a non-linear
setting, however, is proven to be NP-hard (Sahni, 1974; Dani et al., 2008).
Furthermore, the class of non-linear systems considered in these chapter

67



Chapter 5. Autoregressive Bandits for Temporal Structures in Pricing

does not include the ARB setting. Other works (e.g., Albalawi et al., 2021)
overcome the request for the oracle by searching in the restricted space of
constant policies, leading to the best equilibrium. However, this solution
can be suboptimal in several cases, including ARBs (e.g., Section 5.5.2).

5.7 Discussion and Conclusions

In this chapter, we faced the online sequential decision-making problem
where an autoregressive temporal structure between the observed rewards
is present. First, we formally introduced the ARB setting and defined the
notion of optimal policy, demonstrating that, under certain circumstances,
a myopic policy is optimal also to optimize the total reward, regardless of
the target time horizon, and that the optimal policy is not constant over time
and depends on the most recent observed rewards. Then, we proposed an
optimistic bandit algorithm, AR-UCB, to learn online the parameters of the
underlying process for each action. We demonstrated that the presented
algorithm enjoys sublinear regret, depending on the AR order n and on an
index of the speed at which the system reaches a stable condition. Finally,
we provided an experimental campaign to validate the proposed solution
demonstrating the effectiveness of AR-UCB w.r.t. several bandit baselines
on both synthetic and real-world scenarios, and we analyzed the behavior
of AR-UCB when key parameters are misspecified.
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Advertising
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CHAPTER6
Introduction on Advertising

Whenever we want to sell an item, after having decided the price, a topic
we faced in Part I, we have to understand how we can advertise it properly.
Indeed, a good pricing strategy without adequate advertising is not effective
since no one know us and our products.

Machine Learning can be used to face several aspects of advertising,
e.g., budget and bid optimization, ad generation, and audience discovery.
In this part, we focus on the problem of budget optimization for advertising
campaigns.

In order to advertise a product, we have first of all to create one or more
advertising campaigns. Then, we have to select a provider that makes avail-
able advertising slots. Once we choose a provider, we have to compete
with other advertisers in order to gain the advertising slot. This competi-
tion takes the form of an auction. In these auctions, we compete with all the
other advertisers to get the slot, and every advertiser makes a bid to get the
space. The bids can be referred to the impression, so we pay if we get the
space, to click, so we pay if the user clicks on the ad, or a conversion, so
we pay the amount we bid only in the case the user makes an action, e.g.,
buy something. These bids are then compared in terms of bid per impres-
sion, thanks to conversion coefficients specific to the case. Auctions can be
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first-price or second-price, so we can pay the bid we select (i.e., first-price
auctions) or a few more than the second-highest bid (i.e., second-price auc-
tions).

Nowadays, the bidding strategies are often consigned to real-time bid-
ding platforms (Zhang et al., 2014; Yuan et al., 2014), and the advertiser
focuses more on the definition on the optimal budget. Usually, the manage-
ment provides an overall budget over a time period (e.g., a quarter), and we
are asked to determine how to allocate such a budget over time and among
the advertising campaigns we have.

Before getting into the details of budget optimization, we have to in-
troduce the different kinds of campaigns we can be required to manage.
In order to classify the campaign type, we can look at which level of the
so-called marketing funnel (Colicev et al., 2019) such a campaign is opti-
mizing. The marketing funnel, whose simplified representation is provided
in Figure 6.1, is a structure useful to characterize the different kinds of
campaigns we may face. The structure recalls the one of a funnel since,
at every step, it is likely that the number of users is diminishing. On the
top, we have awareness (i.e., impression) campaigns designed to let people
know that a given product or brand exists. These campaigns are created to
reach great amounts of users, and their scope is only to inform and no ac-
tion is expected from the user, as they are studied to attract attention to their
subject. Then, we have click campaigns in order to let the user be able to
consider us, and create or increase the buy intent. Their scope is to arouse
curiosity and generate a first active interaction from the user. Finally, we
have conversion campaigns that let the user able to convert at the proper
moment. In this last phase of the funnel, we can suppose that a user is al-
ready aware and interested in e.g., buy an item, due to the persuasion made
from the campaigns at the higher level of the funnel.

Given this brief overview of the marketing funnel, we now have two
directions to follow. First, we can suppose that we want to optimize adver-
tising budgets over a set of campaigns of the same type (e.g., impression
campaign, conversion campaign). Second, we can suppose to face different
kinds of campaigns, and we want to optimize the whole process from the
awareness to the purchase, so find the best Marketing Mix Model (MMM).
The first problem is already studied several times and the literature covers
almost all the possible challenges we may face. So, our attention in this
part of the thesis is dedicated to the online optimization of the marketing
mix model.
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Awareness

Consideration

Purchase

Intent

Figure 6.1: A simplified representation of the marketing funnel.

6.1 Foundations of Advertising Budget Optimization

In this section, we present the technical notions needed to understand bud-
get optimization in advertising. This section is structured in two parts. First,
we discuss how to model and optimize the budget for different campaigns
with the same target. Then, we discuss how to optimize the marketing mix
model.

6.1.1 Single Target Optimization

In the case of naive single target optimization, we have to model for each
campaign the relation between an input metric, usually the budget, and a
target metric, e.g., the impressions. The data related to these quantities can
be collected every day/week from the advertising platforms. When we try
to figure out the relation between these two quantities, we can see a distri-
bution like the one of Figure 6.2. In this figure, we can observe how the
model between these quantities can be assumed to be monotonic and con-
cave following the economic principle of the diminishing return (Mesak
and Means, 1998). This is because, by increasing the budget, we aim to
win more auction, and, in stationary market conditions, this will require
an increase in our bid, diminishing our marginal return. An example of a
possible model following the monotonic non-decreasing and concave as-
sumption is provided in Figure 6.3. Usually, the data about the target are
very noisy because the allocation process (i.e., the auction) is influenced
by a huge amount of factors. Given that, these assumptions can be used to
simplify the model and reduce the number of samples required in order to
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it

bt

Figure 6.2: Example of samples pbt, itq drawn from the distribution binding budgets and
impressions.

it

bt

Figure 6.3: Example of a possible model over the samples pbt, itq.

learn a model with a given accuracy (a.k.a. the sample complexity).
Once we have modeled this relation between the budget bt and the target

it, we can, given, e.g., a daily budget constraint Bt over all the campaign,
use an optimization procedure to find the best combination of budgets.

6.1.2 Marketing Mix Model

When we want to optimize a marketing mix model, we are required to un-
derstand how to allocate the budget over all the different types of cam-
paigns. When we design a marketing mix model, our target is usually
to generate conversions. However, to increase the conversion probability
when we show an advertisement to an user, we have to let it know, e.g.,
about us, or our product. This implies that the awareness ads increase the
probability of conversion when we display a conversion ad. The goal of
a good marketing mix model is to find the best mix between the various
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ct

bt

Figure 6.4: Example of possible models over the samples pbt, ctq.

campaigns in order to maximize conversions, given an overall budget Bt.
The goal traduces in creating a model that, given as input the expenses

for all the campaigns, generates a conversion prediction. This cannot be
done as described above, searching for a map only between the budget of
the conversion campaigns and the conversions generated. Indeed, if we
were able to find this direct map, the marketing mix models would not be
required anymore. An example of that is provided in Figure 6.4, where we
can observe how the model between budget and conversion is very chal-
lenging to be defined, due to the external influences of the other campaigns
that will not be visible if we do not consider the other budgets invested and
the related impressions and click generated.
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CHAPTER7
Dynamical Linear Bandits
for Marketing Mix Models

In this chapter, we introduce a novel setting, the Dynamical Linear Bandits
(DLB), an extension of the linear bandits characterized by a hidden state.
When an action is performed, the learner observes a noisy reward whose
mean is a linear function of the hidden state and of the action. Then, the hid-
den state evolves according to linear dynamics, affected by the performed
action too. This setting theoretically formalizes the problem of learning
online in Marketing Mix Models. We start by introducing the setting, dis-
cussing the notion of optimal policy, and deriving an expected regret lower
bound. Then, we provide an optimistic regret minimization algorithm, Dy-
namical Linear Upper Confidence Bound (DynLin-UCB), that suffers an
expected regret of order rO

´

d
?
T

p1´ρq3{2

¯

, where ρ is a measure of the stability
of the system, and d is the dimension of the action vector.

This chapter presents (Mussi et al., 2023a), a joint work with Alberto
Maria Metelli and Marcello Restelli, published at the International Con-
ference on Machine Learning (ICML). A preliminary version of this work
(Mussi et al., 2022b) appeared at the Complex Feedback in Online Learning
Workshop.
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7.1 Introduction

In a large variety of sequential decision-making problems, a learner must
choose an action that, when executed, determines an evolution of the under-
lying system state that is hidden to the learner. In these partially observable
problems, the learner observes a reward (i.e., feedback) representing the
combined effect of multiple actions played in the past.

For instance, in online advertising campaigns, the process that leads to
a conversion, i.e., the marketing funnel (Court et al., 2009), is character-
ized by complex dynamics and comprises several phases, as discussed in
Chapter 6. When heterogeneous campaigns/platforms are involved, a prof-
itable budget investment policy has to account for the interplay between
campaigns/platforms. In this scenario, a conversion (e.g., a user’s purchase
of a promoted product) should be attributed not only to the latest ad the
user was exposed to, but also to previous ones (Berman, 2018). The joint
consideration of each funnel phase is a fundamental step towards an opti-
mal investment solution while considering the advertising campaigns/plat-
forms independently leads to sub-optimal solutions. Consider, for instance,
a simplified version of the funnel with two types of campaigns: aware-
ness (i.e., impression) ads and conversion ads. The first kind of ad aims
at improving brand awareness, while the latter aims at creating the actual
conversion. If we evaluate the performances in terms of conversions only,
we will discover that impression ads are not instantaneously effective in
creating conversions, so we will be tempted to reduce the budget invested
in such a campaign. However, this approach is sub-optimal because im-
pression ads increase the chance to convert when a conversion ad is shown
after the impression (e.g., Hoban and Bucklin, 2015). In addition, the ef-
fect of some ads, especially impression ads delivered via television, may be
delayed. It has been demonstrated (Chapelle, 2014) that users remember
advertising over time in a vanishing way, leading to consequences that non-
dynamical models cannot capture. This kind of interplay comprises more
general scenarios than the simple reward delay, including the case where
the interaction is governed by a dynamics hidden to the observer.

While this scenario can be indubitably modeled as a Partially Observ-
able Markov Decision Process (POMDP, Åström, 1965), the complexity
of the framework and its generality are often not required to capture the
main features of the problem. Indeed, for specific classes of problems,
the Multi-Armed Bandit (MAB, Lattimore and Szepesvári, 2020) literature
has explored the possibility of experiencing delayed reward either assum-
ing that the actual reward will be observed, individually, in the future (e.g.,
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Joulani et al., 2013) or with the more realistic assumption that an aggregated
feedback is available (e.g., Pike-Burke et al., 2018), with also specific ap-
plications to online advertising (Vernade et al., 2017). Although effective
in dealing with delay effects and the possibility of a reward spread in the
future (Cesa-Bianchi et al., 2018), they do not account for the additional,
more complex, dynamical effects, which can be regarded as the evolution
of a hidden state.

In this chapter, we take a different perspective. We propose to model the
non-observable dynamical effects underlying the phenomena as a Linear
Time-Invariant (LTI) system (Hespanha, 2018). In particular, the system
is characterized by a hidden internal state xt (in our case, the awareness)
which evolves via linear dynamics fed by the action ut (in our case, the
amount invested) and affected by noise. At each round, the learner experi-
ences a reward yt (in our case, the conversions), which is a noisy observa-
tion that linearly combines the state xt and the action ut. Our goal consists
in learning an optimal policy so as to maximize the expected cumulative
reward. We call this setting Dynamical Linear Bandits (DLBs) that, as we
shall see, reduces to linear bandits (Abbasi-Yadkori et al., 2011) when no
dynamics are involved. Because of the dynamics, the effect of each action
persists over time indefinitely but, under stability conditions, it vanishes
asymptotically. This allows representing interference and synergy between
platforms, thanks to the dynamic nature of the system.

Contributions In Section 7.2, we introduce the Dynamical Linear Ban-
dit (DLB) setting to represent sequential decision-making problems char-
acterized by a hidden state that evolves linearly according to an unknown
dynamics. We show that, under stability conditions, the optimal policy cor-
responds to playing the constant action that leads the system to the most
profitable steady state. Then, we derive an expected regret lower bound
of order Ω

´

d
?
T

p1´ρq1{2

¯

, being d the dimensionality of the action space and
ρ ă 1 the spectral radius of the dynamical matrix of the system evolution
law.1 In Section 7.3, we propose a novel optimistic regret minimization al-
gorithm, Dynamical Linear Upper Confidence Bound (DynLin-UCB), for
the DLB setting. DynLin-UCB takes inspiration from Lin-UCB but sub-
divides the optimization horizon T into increasing-length epochs. In each
epoch, an action is selected optimistically and kept constant (i.e., persisted)
so that the system approximately reaches the steady state. We provide a re-
gret analysis for DynLin-UCB showing that, under certain assumptions, it

1The smaller ρ, the faster the system reaches its steady state.
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enjoys rO
´

d
?
T

p1´ρq3{2

¯

expected regret. In Section 7.5, we provide a numerical
validation, with both synthetic and real-world data, compared with bandit
baselines. The proofs of all the results are reported in Appendix C.

7.2 Setting

In this section, we introduce the Dynamical Linear Bandits (DLBs), the
learner-environment interaction, assumptions, and regret (Section 7.2.1).
Then, we derive a closed-form expression for the optimal policy for DLBs
(Section 7.2.2). Finally, we derive a lower bound to the regret, highlighting
the intrinsic complexities of the DLB setting (Section 7.2.3).

7.2.1 Problem Formulation

In a Dynamical Linear Bandit (DLB), the environment is characterized by a
hidden state, i.e., a n-dimensional real vector, initialized to x1 P X , where
X Ď Rn is the state space. At each round t P N, the environment is in
the hidden state xt P X , the learner chooses an action, i.e., a d-dimensional
real vector ut P U , where U Ď Rd is the action space. Then, the learner
receives a noisy reward yt “ xω,xty ` xθ,uty ` ηt P Y , where Y Ď R
is the reward space, ω P Rn, θ P Rd are unknown parameters, and ηt is
a zero-mean σ2–subgaussian random noise, conditioned to the past. Then,
the environment evolves to the new state according to the unknown linear
dynamics xt`1 “ Axt `But `ϵt, where A P Rnˆn is the dynamic matrix,
B P Rnˆd is the action-state matrix, and ϵt is a zero-mean σ2–subgaussian
random noise, conditioned to the past, independent of ηt.23

Remark 7.2.1. The setting proposed above is a particular case of POMDP
(Åström, 1965), in which the state xt is non-observable, while the learner
accesses the noisy observation yt that corresponds to the noisy reward too.
Furthermore, the setting can be viewed as a MISO (Multiple Input Single
Output) discrete-time LTI system (Kalman, 1963). Finally, the DLB reduces
to (non-contextual) linear bandit (Abbasi-Yadkori et al., 2011) when the
hidden state does not affect the reward, i.e., when ω “ 0.

DLBs in MMM Scenario The problem of optimal budget allocation in
the marketing mix model can be seen as a DLB problem. In this setting,

2A zero-mean random vector x P Rn is σ2-subgaussian, in the sense of Hsu et al. (2012), if for every vector
ζ P Rn it holds that E rexp pxζ,xyqs ď expp}ζ}22σ

2{2q.
3n is the order of the LTI system (Kalman, 1963). We make no assumption on the value of n and on its

knowledge.
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the budget we can set for the different campaigns are our action ut. The
value of awareness, which is not measurable, is the hidden state xt. The
reward yt is the number of conversion, that we can observe. The saturation
effects discussed in Chapter 6 over the single campaigns (Figure 6.3) can
be considered in DLBs by limiting the action space U when we know there
is a saturation effect.

Markov Parameters We revise a useful representation, that for every
H P JtK allows expressing yt in terms of the sequence of the most recent
H ` 1 actions pusqsPJt´H,tK, reward noise ηt, H state noises pϵsqsPJt´H,t´1K,
and starting state xt´H (Ho and Kalman, 1966; Oymak and Ozay, 2019;
Tsiamis and Pappas, 2019; Sarkar et al., 2021):

yt “

H
ÿ

s“0

xhtsu,ut´sy

looooooomooooooon

action effect

`ωTAHxt´H
looooomooooon

starting state

` ηt `

H
ÿ

s“1

ωTAs´1ϵt´s

looooooooooomooooooooooon

noise

, (7.1)

where the sequence of vectors htsu P Rd for every s P N are called Markov
parameters and are defined as: ht0u “ θ and htsu “ BTpAs´1qTω if s ě 1.
Furthermore, we introduce the cumulative Markov parameters, defined for
every s, s1 P N with s ď s1 as hJs,s1K “

řs1

l“s h
tlu and the corresponding

limit as s1 Ñ `8, i.e., hJs,`8M “
ř`8

l“s h
tlu. Finally, we use the abbrevia-

tion h “ hJ0,`8M “ θ ` BTpIn ´ Aq´Tω.
We will make use of the following standard assumption related to the

stability of the dynamic matrix A, widely employed in discrete–time LTI
literature (Oymak and Ozay, 2019; Lale et al., 2020a,b).

Assumption 7.1 (Stability). The spectral radius of A is strictly smaller
than 1, i.e., ρpAq ă 1, and the maximum spectral norm to spectral radius
ratio of the powers of A is bounded, i.e., ΦpAq ă `8.4

Policies and Performance The learner’s behavior is modeled via a deter-
ministic policy π “ pπtqtPN defined, for every round t P N, as πt : Ht´1 Ñ

U , mapping the history of observations Ht´1 “ pu1, y1, . . . ,ut´1, yt´1q P

Ht´1 to an action ut “ πtpHt´1q P U , where Ht´1 “ pU ˆ Yqt´1 is the set
of histories of length t ´ 1. The performance of a policy π is evaluated in
terms of the (infinite-horizon) expected average reward:

Jpπq :“ lim inf
HÑ`8

E

«

1

H

H
ÿ

t“1

yt

ff

, (7.2)

4The latter is a mild assumption: if A is diagonalizable as A “ QΛQ´1, then ΦpAq ď }Q}2}Q´1}2 and
it is finite. In particular, if A is symmetric then ΦpAq “ 1.
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where

$

’

’

&

’

’

%

xt`1 “ Axt ` But ` ϵt

yt “ xω,xty ` xθ,uty ` ηt

ut “ πtpHt´1q

, @t P N,

where the expectation is taken w.r.t. the randomness of the state noise ϵt
and reward noise ηt. If a policy π is constant, i.e., πtpHt´1q “ u for every
t P N, we abbreviate Jpuq “ Jpπq. A policy π˚ is an optimal policy if it
maximizes the expected average reward, i.e., π˚ P argmaxπ Jpπq, and its
performance is denoted by J˚ :“ Jpπ˚q.

We further introduce the following assumption that requires the bound-
edness of the norms of the relevant quantities.

Assumption 7.2 (Boundedness). There exist Θ,Ω, B, U ă `8 such that
}θ}2 ď Θ, }ω}2 ď Ω, }B}2 ď B, supuPU }u}2 ď U , and supxPX }x}2 ď X ,
supuPU |Jpuq| ď 1.5

Regret The regret suffered by playing a policy π, competing against the
optimal infinite-horizon policy π˚ over a learning horizon T P N is given
by:

Rpπ, T q :“ TJ˚
´

T
ÿ

t“1

yt, (7.3)

where yt is the sequence of rewards collected by playing π as in Equa-
tion (7.2). The goal of the learner consists in minimizing the expected re-
gret ERpπ, T q, where the expectation is taken w.r.t. the randomness of the
reward.

7.2.2 Optimal Policy

In this section, we derive a closed-form expression for the optimal pol-
icy π˚ for the infinite–horizon objective function, as introduced in Equa-
tion (7.2).

Theorem 7.2.1 (Optimal Policy). Under Assumptions 7.1 and 7.2, an op-
timal policy π˚ maximizing the (infinite-horizon) expected average reward
Jpπq (Equation 7.2), for every round t P N and history Ht´1 P Ht´1 is
given by:

π˚
t pHt´1q “ u˚ where u˚

P argmax
uPU

Jpuq “ xh,uy. (7.4)
5The assumption of the bounded state norm }x}2 ď X holds whenever the state noise ϵ is bounded. As

shown by Agarwal et al. (2019), this assumption can be relaxed, for unbounded subgaussian noise, by condi-
tioning to the event that none of the noise vectors are ever large at the cost of an additional log T factor in the
regret.
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Some remarks are in order. The optimal policy plays the constant ac-
tion u˚ P U which brings the system in the “most profitable” steady-state.6

Indeed, the expression xh,uy can be rewritten expanding the cumulative
Markov parameter as pθT `ωTpIn ´Aq´1Bqu˚ and x˚ “ pIn ´Aq´1Bu˚

is the expression of the steady state x˚ “ Ax˚ ` Bu˚, when applying ac-
tion u˚. It is worth noting the role of Assumption 7.1 which guarantees the
existence of the inverse pIn ´ Aq´1. In this sense, our problem shares the
constant nature of the optimal policy with the linear bandit setting (Abbasi-
Yadkori et al., 2011), although ours is characterized by an evolving state,
which introduces a new trade-off in the action selection. From the LTI
system perspective, this implies that we can restrict to open-loop station-
ary policies. The reason why DLBs do not benefit from closed-loop poli-
cies, differently from other classical problems, such as the LQG (Abbasi-
Yadkori and Szepesvári, 2011), lies in the linearity of the reward yt and in
the additive noise ηt and ϵt, making their presence irrelevant (in expecta-
tion) for control purposes. Nonetheless, as we shall see, our problem poses
additional challenges compared to linear bandits since, in order to assess
the quality of an action u P U , instantaneous rewards are not reliable, and
we need to let the system evolve to the steady state and, only then, observe
the reward.

7.2.3 Regret Lower Bound

In this section, we provide a lower bound to the expected regret that any
learning algorithm suffers when addressing the learning problem in a DLB.

Theorem 7.2.2 (Lower Bound). For any policy π (even stochastic), there
exists a DLB fulfilling Assumptions 7.1 and 7.2, such that for sufficiently
large T ě O

´

d2

1´ρpAq

¯

, policy π suffers an expected regret lower bounded
by:

ERpπ, T q ě Ω

˜

d
?
T

p1 ´ ρpAqq
1
2

¸

.

The lower bound highlights the main challenges of the DLB learning
problem. First of all, we observe a dependence on 1{p1 ´ ρpAqq, being
ρpAq the spectral radius of the matrix A. This is in line with the intuition
that, as ρpAq approaches 1, the problem becomes more challenging. Fur-
thermore, we note that when ρpAq “ 0, i.e., the problem has no dynamical
effects, the lower bound matches the one of linear bandits (Lattimore and

6In Appendix C.1, we show that the optimal policy is non–stationary for the finite–horizon case.
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Szepesvári, 2020). It is worth noting that, for technical reasons, the re-
sult of Theorem 7.2.2 is derived under the assumption that, at every round
t P JT K, the agent observes both the state xt and the reward yt (see Ap-
pendix C). Clearly, this represents a simpler setting w.r.t. DLBs (in which
xt is hidden) and, consequently, Theorem 7.2.2 is a viable lower bound for
DLBs too.

7.3 Algorithm

In this section, we present an optimistic regret minimization algorithm for
the Dynamical Linear Bandits setting. Dynamical Linear Upper Confi-
dence Bound (DynLin-UCB), whose pseudocode is reported in Algorithm
7.1, requires the knowledge of an upper-bound ρ ă 1 on the spectral radius
of the dynamic matrix A (i.e., ρpAq ď ρ) and on the maximum spectral
norm to spectral radius ratio Φ ă `8 (i.e., ΦpAq ď Φ), as well as the
bounds on the relevant quantities of Assumption 7.2.7 DynLin-UCB is
based on the following simple observation. To assess the quality of action
u P U , we need to persist in applying it so that the system approximately
reaches the corresponding steady state and, then, observe the reward yt,
representing a reliable estimate of Jpuq “ xh,uy. We shall show that, un-
der Assumption 7.1, the number of rounds needed to approximately reach
such a steady state is logarithmic in the learning horizon T and depends on
the upper bound of the spectral norm ρ. After initializing the Gram matrix
V0 “ λId and the vectors b0 and ph0 both to 0d (line 1), DynLin-UCB
subdivides the learning horizon T in M ď T epochs. Each epoch m P JMK
is composed of Hm ` 1 rounds, where Hm “ tlogm{ logp1{ρqu is loga-
rithmic in the epoch index m. At the beginning of each epoch, m P JMK,
DynLin-UCB computes the upper confidence bound (UCB) index (line 4)
defined for every u P U as:

UCBtpuq :“ xpht´1,uy ` βt´1 }u}V´1
t´1

, (7.5)

where pht´1 “ V´1
t´1bt´1 is the Ridge regression estimator of the cumu-

lative Markov parameter h, as in Equation (7.4) and βt´1 ě 0 is an ex-
ploration coefficient to be defined later. Similar to Lin-UCB (Abbasi-
Yadkori et al., 2011), the index UCBtpuq is designed to be optimistic, i.e.,

7As an alternative, one can consider a more demanding requirement of the knowledge of a bound on the
spectral norm }A}2 of A. Similar assumptions regarding the knowledge of analogous quantities are considered
in the literature, e.g., decay of Markov operator norms (Simchowitz et al., 2020) and strong stability (Plevrakis
and Hazan, 2020), spectral norm bound (Lale et al., 2020a). As a side note, the knowledge of ρ ě ρpAq (or an
equivalent quantity) is proved to be unavoidable by Theorem 7.2.2. Indeed, if no restriction on ρpAq is enforced
(i.e., just ρpAq ă 1), one can always consider the DLB in which ρpAq “ 1´ 1{T ă 1 making the regret lower
bound degenerate to linear.
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Algorithm 7.1: DynLin-UCB.
Input: Regularization parameter λ ą 0, exploration coefficients pβt´1qtPJT K,

spectral radius upper bound 0 ď ρ ă 1

1 Initialize t Ð 1, V0 “ λId, b0 “ 0d, ph0 “ 0d,

2 Define M “ mintM 1 P N :
řM 1

m“1 1 ` t
logm

logp1{ρq
u ą T u ´ 1

3 for m P JMK do
4 Compute ut P argmaxuPU UCBtpuq
5 where UCBtpuq :“ xpht´1,uy ` βt´1 }u}V´1

t´1

6 Play arm ut and observe yt
7 Define Hm “ t

logm
logp1{ρq

u

8 for j P JHmK do
9 Update Vt “ Vt´1, bt “ bt´1

10 t Ð t ` 1
11 Play arm ut “ ut´1 and observe yt
12 end
13 Update Vt “ Vt´1 ` utu

T
t , bt “ bt´1 ` utyt

14 Compute pht “ V´1
t bt

15 t Ð t ` 1

16 end

Jpuq ď UCBtpuq in high-probability for all u P U . Then, the optimistic
action ut P argmaxuPU UCBtpuq is executed (line 6) and persisted for
the next Hm rounds (lines 8-11). The length of the epoch Hm is selected
such that, under Assumption 7.1, the system has approximately reached
the steady state after Hm ` 1 rounds. In this way, at the end of epoch m,
the reward yt is an almost-unbiased sample of the steady-state performance
Jputq. This sample is employed to update the Gram matrix estimate Vt

and the vector bt (line 13), while the samples collected in the previous Hm

rounds are discarded (line 9). It is worth noting that by setting Hm “ 0 for
all m P JMK, DynLin-UCB reduces to Lin-UCB. The following sections
provide the concentration of the estimator pht´1 of h (Section 7.3.1) and the
regret analysis of DynLin-UCB (Section 7.3.2).

7.3.1 Self-Normalized Concentration Inequality for the Cumulative
Markov Parameter

In this section, we provide a self-normalized concentration result for the
estimate pht of the cumulative Markov parameter h. For every epoch m P

JMK, we denote with tm the last round of epoch m: t0 “ 0 and tm “

tm´1 `1`Hm. At the end of each epoch m, we solve the Ridge regression
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problem, defined for every round t P JT K as:

pht “ argmin
rhPRd

ÿ

lPJMK:tlďtm

pytl ´ xrh,utlyq
2

` λ
›

›rh
›

›

2

2
“ V´1

t bt.

We now present the following self-normalized maximal concentration
inequality and, then, we compare it with the existing results in the literature.

Theorem 7.3.1 (Self-Normalized Concentration). Let pphtqtPN be the se-
quence of solutions of the Ridge regression problems of Algorithm 7.1.
Then, under Assumption 7.1 and 7.2, for every λ ě 0 and δ P p0, 1q, with
probability at least 1´ δ, simultaneously for all rounds t P N, it holds that:

›

›

›

pht ´ h
›

›

›

Vt

ď
c1

?
λ
logpept ` 1qq ` c2

?
λ

`

d

2rσ2

ˆ

log

ˆ

1

δ

˙

`
1

2
log

ˆ

det pVtq

λd

˙˙

,

where:

c1 “ UΩΦpAq

ˆ

UB

1 ´ ρpAq
` X

˙

,

c2 “ Θ `
ΩBΦpAq

1 ´ ρpAq
,

rσ2 “ σ2

ˆ

1 `
Ω2ΦpAq2

1 ´ ρpAq2

˙

.

First, we note that when Ω “ 0 (ω “ 0n), i.e., the state does not affect
the reward, the bound perfectly reduces to the self-normalized concentra-
tion used in linear bandits (Abbasi-Yadkori et al., 2011, Theorem 1). In
particular, we recognize the second term due to the regularization parame-
ter λ ą 0 and the third one, which involves the subgaussianity parameter
rσ2, related to the joint contribution of the state and reward noises. Fur-
thermore, the first term is an additional bias that derives from the epochs of
length Hm`1. The choice of the value Hm represents one of the main tech-
nical novelties that, on the one hand, leads to a bias that conveniently grows
logarithmically with t and, on the other hand, can be computed without the
knowledge of T .

It is worth looking at our result from the perspective of learning the LTI
system parameters. We can compare our Theorem 7.3.1 with the concen-
tration presented in (Lale et al., 2020a, Appendix C), which represents, to
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the best of our knowledge, the only result for the closed-loop identification
of LTI systems with non-observable states. First, note that, although we
focus on a MISO system (yt is a scalar, being our reward), extending our
estimator to multiple-outputs (MIMO) is straightforward. Second, the ap-
proach of (Lale et al., 2020a) employs the predictive form of the LTI system
to cope with the correlation introduced by closed-loop control. This choice
allows for convenient analysis of the estimated Markov parameters of the
predictive form. However, recovering the parameters of the original system
requires an application of the Ho-Kalman method (Ho and Kalman, 1966)
which, unfortunately, does not preserve the concentration properties in gen-
eral, but only for persistently exciting actions. Our method, instead, forces
to play an open-loop policy within a single epoch (each with logarithmic
duration), while the overall behavior is closed-loop, as the next action de-
pends on the previous-epoch estimates. In this way, we are able to provide
a concentration guarantee on the parameters of the original system without
assuming additional properties on the action signal.

7.3.2 Regret Analysis

In this section, we provide the analysis of the regret of DynLin-UCB,
when we select the exploration coefficient βt based on the knowledge of
the upper bounds ρ ă 1, Φ ă `8, and those specified in Assumption 7.2,
defined for every round t P JT K as:

βt :“
c1

?
λ
logpept ` 1qq ` c2

?
λ`

d

2σ2

ˆ

log

ˆ

1

δ

˙

`
d

2
log

ˆ

1 `
tU2

dλ

˙̇

,

(7.6)
where c1 “ UΩΦ

´

UB
1´ρ

` X
¯

, c2 “ Θ ` ΩBΦ
1´ρ

, and σ2 “ σ2
´

1 ` Ω2Φ
2

1´ρ2

¯

.
The following result provides the bound on the expected cumulative regret
of DynLin-UCB.

Theorem 7.3.2 (Upper Bound). Under Assumptions 7.1 and 7.2, selecting
βt as in Equation (7.6) and δ “ 1{T , DynLin-UCB suffers an expected
regret bounded as (highlighting the dependencies on T , ρ, d, and σ only):

ErRpπDynLin-UCB,T qs ď

O

˜

dσ
?
T plog T q

3
2

1 ´ ρ
`

?
dT plog T q2

p1 ´ ρq
3
2

`
1

p1 ´ ρpAqq2

¸

.

Proof Sketch. The analysis of DynLin-UCB poses additional challenges
compared to that of Lin-UCB Abbasi-Yadkori et al. (2011) because of
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the dynamic effects of the hidden state. The idea behind the proof is to
first derive a bound on a different notion of regret, i.e., the offline regret:
Roffpπ, T q “ TJ˚ ´

řT
t“1 Jputq, that compares J˚ with the steady-state

performance Jputq of the action ut “ πtpHt´1q (Theorem C.0.2). This
analysis of Roffpπ, T q can be comfortably carried out, by adopting a proof
strategy similar to that of Lin-UCB. However, when applying action ut,
the DLB does not immediately reach the performance Jputq as the ex-
pected reward Eryts experiences a transitional phase before converging to
the steady state. Under stability (Assumption 7.1), it is possible to show
that the expected offline regret and the expected regret differ by a constant:
|ERpπ, T q ´ ERoffpπ, T q| ď Op1{p1 ´ ρpAqq2q (Lemma C.0.1).

Some observations are in order. We first note a dependence on the term
1{p1´ ρq, which, in turn, depends on the upper bound ρ of the spectral gap
ρpAq. If the system does not display a dynamics, i.e., we can set ρ “ 0,
we obtain a regret bound that, apart from logarithmic terms, coincides with
that of Lin-UCB, i.e., rOpdσ

?
T q. Instead, for slow-converging systems,

i.e., ρ « 1, the regret bound enlarges, as expected. Clearly, a value of ρ
too large compared to the optimization horizon T (e.g., ρ “ 1 ´ 1{T 1{3)
makes the regret bound degenerate to linear. This is a case in which the
underlying system is so slow that the whole horizon T is insufficient to
approximately reach the steady state. Third, the regret bound is the sum of
three components: the first one depends on the subgaussian proxy σ and is
due to the noisy estimation of the relevant quantities; the second one is a
bias due to the epoch-based structure of DynLin-UCB; finally, the third
one is constant (does not depend on T ) accounts for the time needed to
reach the steady state.

Remark 7.3.1 (Regret upper bound (Theorem 7.3.2) and lower bound (The-
orem 7.2.2) Comparison). Apart from logarithmic terms, we notice a tight
dependence on d and on T . Instead, concerning the spectral properties of
A, in the upper bound, we experience a dependence on 1{p1 ´ ρq raised to
a higher power (either 1 for the term multiplied by d and 3{2 for the term
multiplied by

?
d) w.r.t. the exponent appearing in the lower bound (i.e.,

1{2). It is currently an open question whether the lower bound is not tight
(which is obtained for a simpler setting in which the state is observable xt)
or whether more efficient algorithms for DLBs can be designed. Further-
more, Theorem 7.3.2 highlights the impact of the upper bound ρ compared
with the true ρpAq.

88



7.4. Related Works

7.4 Related Works

In this section, we survey and compare the literature from the perspective
of the online learning algorithms with similar objectives. In Section 7.4.1,
we compare and map our setting with the ones of bandits with delayed,
aggregated, and composite feedback. In Section 7.4.2, we consider online
control for Linear Time-Invariant (LTI) systems. In Section 7.4.3, we make
a comparison with adversarial bandits. Finally, in Sections 7.4.4 and 7.4.5,
we discuss POMDPs and others settings sharing similarities with DLBs.

7.4.1 Bandits with Delayed/Aggregated/Composite Feedback

The Multi-Armed Bandit setting has been widely employed as a principled
approach to address sequential decision-making problems (Lattimore and
Szepesvári, 2020). The possibility of experiencing delayed rewards has
been introduced by Joulani et al. (2013) and widely exploited in advertis-
ing applications (Chapelle, 2014; Vernade et al., 2017). A large number
of approaches have extended this setting either considering stochastic de-
lays (Vernade et al., 2020), unknown delays (Li et al., 2019; Lancewicki
et al., 2021), arm-dependent delays (Manegueu et al., 2020), non-stochastic
delays (Ito et al., 2020; Thune et al., 2019; Jin et al., 2022). Some methods
relaxed the assumption that the individual reward is revealed after the delay
expires, admitting the possibility of receiving anonymous feedback, which
can be aggregated (Pike-Burke et al., 2018; Zhang et al., 2022) or compos-
ite (Cesa-Bianchi et al., 2018; Garg and Akash, 2019; Wang et al., 2021b).
Most of these approaches are able to achieve rOp

?
T q regret, plus additional

terms depending on the extent of the delay. In our DLBs, the reward is gen-
erated over time as a combined effect of past and present actions through
a hidden state, while these approaches generate the reward instantaneously
and reveal it (individually or in aggregate) to the learner in the future and
no underlying state dynamics is present.

Delayed/Aggregated Feedback with DLBs In what follows, we show
how we can model delayed and composite feedback with DLBs. For the
delayed feedback, we focus on the case in which either the delay is fixed
to the value τ ě 1, i.e., the reward of the pull performed at round t is
experienced at round t ` τ . For the composite feedback, we assume that
the reward of the pull performed at round t is spread over the next τ ě 1
rounds with fixed weights pw1, . . . , wτ q. Denoting with Rt the full reward
(not observed) due to the pull performed at round t, the agent at round t
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observes the weighted sum of the rewards reported below:8

τ
ÿ

l“1

wlRt´l. (7.7)

These two cases can be modeled as DLBs with a suitable encoding of the
arms and choice of matrices. In particular, assuming to have K arms, we
take the arm set U to be the canonical basis of RK , and we denote with µ
the vector of expected rewards. We define θ “ 0 and:

A “

¨

˚

˚

˚

˚

˚

˚

˝

0 0 . . . 0 0

1 0 . . . 0 0

0 1 . . . 0 0
...

... . . . ...
...

0 0 . . . 1 0

˛

‹

‹

‹

‹

‹

‹

‚

P Rτˆτ , B “

¨

˚

˚

˚

˚

˚

˚

˝

µT
K

0T
K

0T
K

...
0T
K

˛

‹

‹

‹

‹

‹

‹

‚

P RτˆK ,

ωdelay “

¨

˚

˚

˚

˚

˚

˚

˝

0

0

0
...
1

˛

‹

‹

‹

‹

‹

‹

‚

P Rτ , ωcomposite “

¨

˚

˚

˚

˚

˚

˚

˝

w1

w2

w3

...
wτ

˛

‹

‹

‹

‹

‹

‹

‚

P Rτ .

However, DLBs cannot model random or adversarial delays. Never-
theless, DLBs can capture scenarios of composite feedback in which the
reward is spread over an infinite number of rounds. Keeping the K-armed
case introduced above, we can consider the simplest example of a reward
that spreads as an autoregressive process AR(1) with parameter γ P p0, 1q,
that cannot be represented using the standard composite feedback. In such
a case, we simply need a system with order n “ 1 with matrices (actually
scalars):

A “ γ, B “ uT , ω “ 1.

Clearly, one can consider AR(m) processes (Bacchiocchi et al., 2024) by
employing systems of order n “ m ą 1.

8It is worth noting that the fixed-delay case is a particular case of composite feedback, where w1 “ ¨ ¨ ¨ “

wτ´1 “ 0 and wτ “ 1.
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7.4.2 Online Control of Linear Time-Invariant Systems

The particular structure imposed by linear dynamics makes our approach
comparable to LTI (Hespanha, 2018) online control for partially observ-
able systems (e.g., Lale et al., 2020b; Simchowitz et al., 2020; Plevrakis
and Hazan, 2020). While the dynamical model is similar, in online con-
trol of LTI systems, the perspective is quite different. Most of the works
either consider the Linear Quadratic Regulator (Mania et al., 2019; Lale
et al., 2020b) or (strongly) convex objective functions (Mania et al., 2019;
Simchowitz et al., 2020; Lale et al., 2020a), achieving, in most of the
cases rOp

?
T q regret for strongly convex functions and rOpT 2{3q for con-

vex functions. Recently, rOp
?
T q regret rate has been obtained for convex

function too, by means of geometric exploration methods (Plevrakis and
Hazan, 2020). Compared to DynLin-UCB, the algorithm of Plevrakis
and Hazan (2020) considers general convex costs but assumes the observ-
ability of the state and limits to the class of disturbance response con-
trollers (Li and Bosch, 1993) that do not include the constant policy. More-
over, the regret bound of Plevrakis and Hazan (2020) differs from Theo-
rem 7.3.2, as it shows a cubic dependence on the system order9 and an
implicit non-trivial dependence on the dynamic matrix A. Instead, our The-
orem 7.3.2 is remarkably independent of the system order n. Furthermore,
Lale et al. (2020a) reach OplogpT qq regret in the case of strongly convex
cost functions competing against the best persistently exciting controller
(i.e., a controller implicitly maintaining a non-null exploration). Some ap-
proaches are designed to deal with adversarial noise (Simchowitz et al.,
2020). All of these solutions, however, look for the best closed-loop con-
troller within a specific class, e.g., disturbance response control (Li and
Bosch, 1993). These controllers, however, do not allow us to easily incor-
porate constraints on the action space, which could be of crucial importance
in practice, e.g., in advertising domains. DynLin-UCBworks with an arbi-
trary action space and, thanks to the linearity of the reward, does not require
complex closed-loop controllers.

7.4.3 Adversarial Bandits

It is worth elaborating on the adaptation of adversarial MAB algorithms
to this setting. First, since the reward distribution in DLBs depends at
every round t on the sequence of actions played by the agent prior to t,
we can reduce the DLB setting to an adversarial bandit with an adaptive

9This holds for known cost functions. Instead, for unknown costs, the exponent becomes 24 (Plevrakis and
Hazan, 2020).
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(or non-oblivious) adversary. Second, such an adversary must have infi-
nite memory in principle. Third, our regret definition of Section 7.2 is a
policy regret (Dekel et al., 2012) that compares the algorithm performance
against playing the optimal policy in hindsight from the beginning, as op-
posed to the external regret often employed for non-adaptive adversaries.
It is well known that for infinite-memory adaptive adversaries, no algo-
rithm can achieve sublinear policy regret. Nevertheless, for DLB setting,
we know that the effect of the past is always vanishing (given Assump-
tion 7.1 enforcing ρpAq ă 1), so we can approximate our setting as a
finite-memory setting, by considering memory length k9r

logM
log 1{ρ

s, where M
is the one defined in Algorithm 7.1 (line 2), with an additional regret term
only logarithmic in the optimization horizon T . Then, given this approxi-
mation, we can make use of an adversarial bandit algorithm (designed for
non-adaptive adversaries) in the framework proposed by Dekel et al. (2012)
to make it effective for the finite-memory adaptive adversary setting. In the
case of an optimal algorithm, such as Exp3 Auer et al. (2002b), suffering
an external regret of order rOp

?
MT q, being M the number of arms, the

version to address this finite-memory adaptive adversary setting suffers a
regret bounded by rOppk ` 1qM1{3T 2{3q, as shown in Theorem 2 of Dekel
et al. (2012).

7.4.4 Partially Observable Markov Decision Processes

As already noted, looking at DLBs in their generality, we realize that our
model is a particular subclass of the Partially Observable Markov Decision
Processes (POMDP, Åström, 1965). However, in the POMDP literature, no
particular structure of the hidden state dynamics is assumed. The specific
linear dynamics are rarely considered, as well as the possibility of a reward
that is a linear combination of the hidden state and the action. Nevertheless,
several works accounted for the presence of constraints (Isom et al., 2008;
Undurti and How, 2010; Kim et al., 2011) without exploiting the linearity
and without regret guarantees.

7.4.5 Other Approaches

Non-stationary bandits (Gur et al., 2014) can be regarded as bandits with
a hidden state that evolves through a (possibly non-linear) dynamics. The
main difference compared with our DLBs is that the hidden state evolves in
an uncontrollable way, i.e., it does not depend on the sequence of actions
performed so far. Russac et al. (2019) extend the linear bandit setting by
considering a non-stationary evolution of the parameter θ˚

t . The notion of
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dynamic bandit is further studied by Chen et al. (2023), where an auto-
regressive process is considered for the evolution of the reward through
time and by Nobari (2019) that propose a practical approach to cope with
this setting.

7.5 Numerical Simulations

In this section, we provide numerical validations of DynLin-UCB in both
a synthetic scenario and a domain obtained from real-world data related
to the optimization of a Marketing Mix Model. The goal of these simu-
lations is to highlight the behavior of DynLin-UCB in comparison with
bandit baselines, describing advantages and disadvantages. The first exper-
iment is a synthetic setting in which we can evaluate the performances of
all the solutions and the sensitivity of DynLin-UCB w.r.t. the ρ parameter
(Section 7.5.1). Then, we show a comparison in a DLB scenario retrieved
from real-world data (Section 7.5.2). Finally, we briefly discuss about the
running time of the DynLin-UCB (Section 7.5.3). The code of the exper-
iments can be found at https://github.com/marcomussi/DLB.

Baselines We consider as main baseline Lin-UCB (Abbasi-Yadkori et al.,
2011), designed for linear bandits. We include Exp3 (Auer et al., 1995)
usually employed in (non-adaptive) adversarial settings, and its extension to
n-length memory (adaptive) adversaries B-Exp3 by Dekel et al. (2012).10

Additionally, we perform a comparison with algorithms for regret mini-
mization in non-stationary environments: D-Lin-UCB (Russac et al., 2019),
an extension of Lin-UCB for non-stationary settings, and AR2 (Chen et al.,
2023), a bandit algorithm for processes presenting temporal structure. Fi-
nally, in the case of real-world data, we compare our solution with a human-
expert policy (Expert). This policy is directly generalized from the origi-
nal dataset by learning via regression the average budget allocation over all
platforms from the available data.

For the baselines which do not support vectorial actions, we perform
a discretization of the action space U that surely contains optimal action.
Concerning the hyperparameters of the baselines, whenever possible, they
are selected as in the respective original papers. The experiments are pre-
sented with a regularization parameter λ P t1, log T u for the algorithms
which require it (i.e., DynLin-UCB, Lin-UCB, and D-Lin-UCB).11 The
bounds used for the exploration in Lin-UCB and D-Lin-UCB are ad-

10In Section 7.4.3 we elaborate on the use of adversarial bandit algorithms for DLBs.
11For DynLin-UCB, log T is a nearly optimal choice for λ as it can be seen by looking at the first two

addenda of the exploration factor in Equation (7.6).
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justed in order to be able to fairly compete in this setting, and are considered
as follows:

βLin-UCBt :“ c2
?
λ `

d

2σ2

ˆ

log

ˆ

1

δ

˙

`
d

2
log

ˆ

1 `
tU2

dλ

˙˙

,

βD-Lin-UCBt :“ c2
?
λ `

d

2σ2

ˆ

log

ˆ

1

δ

˙

`
d

2
log

ˆ

1 `
tU2

dλ

ˆ

1 ´ γ2t

1 ´ γ2

˙̇ ˙

,

where c2 and σ2 are as prescribed in Section 7.3.2, and the hyperparameter
γ (i.e., the forgetting factor) of D-Lin-UCB is tuned. For AR2, the hy-
perparameter α, describing the correlation over time is considered equal to
ρpAq. In the case of Exp3, the rewards are rescaled in order to make them
range in r0, 1s with high probability, as follows:

rt “
rt ` 2ξ

4ξ
, where ξ “

ˆ

Θ `
ΩB

1 ´ ρpAq

˙

U.

Furthermore, in the case of B-Exp3 , the batch dimension k is considered
as:

n “

R

logM

log 1{ρ

V

,

where M is the one defined in Algorithm 7.1 (line 2). This batch size n
ensures that, at each time t, the contribution of actions us is negligible,
with s P Jt ´ n ´ 1K. The rewards collected in the same batch are averaged
and transformed as in Exp3.

7.5.1 Synthetic Data

Setting We consider a DLB defined by the following matrices:

A “diagpp0.2, 0, 0.1qq,

B “diagpp0.25, 0, 0.1qq,

θ “p0, 0.5, 0.1q
T,

ω “p1, 0, 0.1q
T,

and a Gaussian noise with σ “ 0.01 (diagonal covariance matrix for the
state noise).12 This way, the spectral gap of the dynamical matrix is ρpAq “

12It is worth noting that the decision of using diagonal matrices is just for explanation purposes and w.l.o.g. (at
least in the class of diagonalizable dynamic matrices). Indeed, we are just interested in the cumulative Markov
parameter h and we could have obtained the same results with an equivalent (non-diagonal) representation, by
applying an inevitable transformation T as A1 “ TAT´1, ω1 “ T´Tω, and B1 “ TB.
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0.2 and ΦpAq “ 1. Moreover, the cumulative Markov parameter is given by
h “ p0.56, 0.5, 0.11qT. We consider the action space U “ tpu1, u2, u3qT P

r0, 1s3 with u1 ` u2 ` u3 ď 1.5u that simulates a total budget of 1.5 to
be allocated to the three platforms. Thus, a “myopic” agent would simply
look at how the action immediately propagates to the reward through θ,
and will invest the budget in the second component of the action, which
is weighted by 0.5. Instead, a “far-sighted” agent, aware of the system
evolution, will look at the cumulative Markov parameter h, realizing that
the most convenient action is investing in the first component, weighted by
0.56. Therefore, the optimal action is u˚ “ p1, 0.5, 0qT leading to J˚ “

0.81.

Comparison with the bandit baselines Figure 7.1 shows the performance
in terms of cumulative regret of DynLin-UCB, Lin-UCB, D-Lin-UCB,
AR2, Exp3, and B-Exp3 . The experiments are conducted over a time
horizon of 1 million rounds. For DynLin-UCB, we employed, for the sake
of this experiment, the true value of the spectral gap, i.e., ρ “ ρpAq “ 0.2.
First of all, we observe that both Exp3 and B-Exp3 suffers a signif-
icantly large cumulative regret. Similar behavior is displayed by AR2.
Moreover, all the versions of Lin-UCB and D-Lin-UCB suffer linear
regret. The best performance of D-Lin-UCB is obtained when the for-
getting factor γ is close to 1 (the weights take the form wt “ γ´t), and
the behavior is comparable with the one of Lin-UCB. Even for a quite
fast system (ρpAq “ 0.2), ignoring the system dynamics, and the presence
of the hidden state, has made both Lin-UCB and D-Lin-UCB commit
(in their best version, with λ “ log T ) to the sub-optimal (myopic) action
u˝ “ p0.5, 1, 0qT with performance J˝ “ 0.78 ă J˚, with also a relevant
variance. On the other hand, DynLin-UCB is able to maintain a smaller
and stable (variance is negligible) sublinear regret in both its versions, with
a notable advantage when using λ “ log T .

Sensitivity to the Choice of ρ The upper bound ρ of the spectral radius
ρpAq “ 0.2 represents a crucial parameter of DynLin-UCB. While an
overestimation ρ " ρpAq does not compromise the regret rate but tends
to slow down the convergence process, a severe underestimation ρ ! ρpAq

might prevent learning at all. In Figure 7.2, we test DynLin-UCB against a
misspecification of ρ, when λ “ log T . We can see that by considering ρ “

2ρpAq, DynLin-UCB experiences a larger regret but still sublinear and
smaller w.r.t. Lin-UCB with λ “ log T . Even by reducing ρ P t0.1, 0.05u,
DynLin-UCB is able to keep the regret sublinear, showing remarkable
robustness to misspecification. Clearly, setting ρ “ 0 makes the regret
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Figure 7.1: Cumulative regret as a
function of the rounds comparing
DynLin-UCB and the other bandit
baselines (50 runs, mean ˘ std).
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Figure 7.2: Cumulative regret as a
function of the rounds comparing
Lin-UCB, and DynLin-UCB with
λ “ log T , varying the upper bound
on the spectral radius ρ (50 runs,
mean ˘ std).

almost degenerate to linear.

Empirical study on the noise σ We want to analyze the behavior of our
solution and the other baselines at different magnitudes of noise in both the
state transition model and the output. The noise in this simulation is a zero-
mean Gaussian random noise with σ P t0.001, 0.01, 0.1u. Figure 7.3 shows
the results of the experiment for the different values of σ.13 It is clearly
visible how DynLin-UCB performs in almost the same way no matter the
noise to which the system is subject, always leading to sub-linear regret. On
the other hand, the cumulative regret of both Lin-UCB and D-Lin-UCB
is different in every simulation we perform. Indeed, with a low level of
noise (Figure 7.3a) reaches linear regret and does not converge, while for
large values of noise, it converges very quickly (Figure 7.3c). This is due
to the nature of the confidence bound of linear bandits, which is not able
to take into account such a complex scenario and leads to no guarantees in
this setting. Exp3, B-Exp3 , and AR2 are not able to reach the optimum in
this scenario, independently from the noise magnitude σ, and provide large
values of (linear) regret.

7.5.2 Real-world Data - Marketing Mix Model

We present an experimental evaluation based on real-world data coming
from three web advertising platforms (Facebook, Google, and Bing),

13Figure 7.3b is the same as Figure 7.1 and is reported for the sake of simplicity in the comparison.
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Figure 7.3: Performance of DynLin-UCB, Lin-UCB, D-Lin-UCB, AR2, Exp3 and
B-Exp3 at different values of σ (50 runs, mean ˘ std).

related to several campaigns for an invested budget of 5 Million EUR over
2 years. The data are representative of a complex advertising scenario, in
which the advertisers are manually optimizing the Marketing Mix Model.
Starting from such data, considering the budgets as actions, and the con-
versions as target, we learn the best DLB model by means of a specifically
designed variant of the Ho-Kalman algorithm (Ho and Kalman, 1966) de-
scribed in Appendix E. We used the matrices estimated with the Ho-Kalman
method to build up a simulator. The resulting system has ρpAq “ 0.67, and
is characterized as follows:

A “

¨

˚

˝

0.38 0.33 0.6

0.07 0.76 ´0.54

0.18 0.34 0.05

˛

‹

‚

, B “

¨

˚

˝

0.14 0.34 ´0.05

´0.17 0.03 ´0.01

0.04 ´0.09 0.17

˛

‹

‚

,

ω “

¨

˚

˝

´0.61

´0.04

´0.13

˛

‹

‚

, θ “

¨

˚

˝

0.13

0.41

0.02

˛

‹

‚

.

We evaluate DynLin-UCB against the baselines for T “ 106 steps over 50
runs.

Results Figure 7.4 shows the results in terms of cumulative regret. It is
worth noting that no algorithm, except for DynLin-UCB, is able to con-
verge to the optimal choice. Indeed, they immediately commit to a sub-
optimal solution. DynLin-UCB, instead, shows a convergence trend to-
wards the optimal policy over time for both λ “ 1 and λ “ log T , even
if the best-performing version is even in this case the one which employs
λ “ log T . The Expert, which has a preference towards maximizing
the instantaneous effect of the actions only and does not take into account
correlations between platforms, displays a sub-optimal performance.
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Expert in the system generalized from real-world data (50 runs, mean ˘ std).

7.5.3 Computational Time

The code used for the results provided in this section has been run on an
Intel(R) I5 8259U @ 2.30GHz CPU with 8 GB of LPDDR3 system mem-
ory. The operating system was macOS 12.2.1, and the experiments have
been run on Python 3.9.7. A single run of DynLin-UCB takes 110 sec-
onds to run. It is worth noting that the time complexity of DynLin-UCB is
upper-bounded by the one of Lin-UCB.

7.6 Discussion and Conclusions

In this chapter, we introduced the Dynamical Linear Bandits (DLBs), a
novel model to represent sequential decision-making problems in which
the system is characterized by a non-observable hidden state that evolves
according to linear dynamics and by an observable noisy reward that lin-
early combines the hidden state and the action played. This model accounts
for scenarios that cannot be easily represented by existing bandit models
that consider delayed and aggregated feedback, like the one of the Market-
ing Mix Model. We derived a regret lower bound that highlights the main
complexities of the DLB problem. Then, we proposed a novel optimistic
regret minimization approach, DynLin-UCB, that, under stability assump-
tion, is able to achieve sub-linear regret. The numerical simulation in both
synthetic and real-world domains succeeded in showing that, in a setting
where the baselines mostly suffer linear regret, our algorithm consistently
enjoys sublinear regret. Furthermore, DynLin-UCB proved to be robust to
misspecification of its most relevant hyper-parameter ρ. To the best of our
knowledge, in this chapter, we present the first work addressing this family
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of problems, characterized by hidden linear dynamics, with a simple, yet
effective, bandit-like approach.
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Joint Pricing and Advertising
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CHAPTER8
Factored Reward Bandits

for Joint Pricing and Advertising

In this chapter, we introduce the Factored-Reward Bandits (FRBs), a novel
setting able to effectively capture and exploit the structure of this class
of scenarios, where the reward is computed as the product of the action
intermediate observations. We characterize the statistical complexity of
the learning problem in the FRBs, by deriving worst-case and asymptotic
instance-dependent regret lower bounds. Then, we devise and analyze two
regret minimization algorithms. The former, F-UCB, is an anytime opti-
mistic approach matching the worst-case lower bound (up to logarithmic
factors) but fails to perform optimally from the instance-dependent per-
spective. The latter, F-Track, is a bound-tracking approach, that enjoys
optimal asymptotic instance-dependent regret guarantees.

This chapter presents (Mussi et al., 2024), a joint work with Simone
Drago, Alberto Maria Metelli and Marcello Restelli, published at the Inter-
national Conference on Machine Learning (ICML). A preliminary version
of this work (Drago et al., 2024) appeared at the Adaptive and Learning
Agents Workshop.
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8.1 Introduction

In several real-world sequential decision-making problems, the learner is
required to select, at every interaction, different actions, i.e., an action vec-
tor, acting on different portions of the system, each producing an interme-
diate observation. In such scenarios, the reward is often a combination of
these observations. Consider, for instance, the case in which we want to sell
a product on an e-commerce website. Our goal is to maximize the overall
revenue derived from the sales of a given item. In this business process,
we have to choose (i) the price at which to sell the product and (ii) how
much budget to invest in advertising. On the one hand, the price we set
determines the propensity of the users to buy a given item, i.e., the con-
version rate, representing for each price, the fraction of the customers that
will buy the item (Broder and Rusmevichientong, 2012; Den Boer, 2015).
On the other hand, the advertising budget we invest influences the num-
ber of potential customers that will be exposed to such an item, i.e., the
number of impressions we are able to generate with the advertisement cam-
paign (Feldman et al., 2007). Thus, every time we select a price-budget pair
(i.e., action vector), we observe a noisy realization of the conversion rate,
which depends on the price, and a noisy realization of the expected number
of impressions, which depends on the budget we invest in advertising (i.e.,
intermediate observations). Thus, our objective is to maximize the revenue
(i.e., reward) that is computed as the product between the price, the conver-
sion rate, and the impressions (which will give us our income) subtracting
the invested advertising budget.

This scenario can be, in principle, addressed as a standard Multi-Armed
Bandit (MAB, Lattimore and Szepesvári, 2020) by looking at the reward
(i.e., revenue) only and considering price-budget couples as actions. How-
ever, with such an approach, intermediate observations (i.e., the conversion
rate – consequence of the price we set – and the impressions we generate –
a consequence of the adv budget we invest) that could provide useful infor-
mation would be ignored with a possible detrimental effect on the learning
process. Indeed, if we look just at the reward and disregard this factored
structure, the learning problem will: (i) present an unnecessarily large ac-
tion space, including all the possible combinations of action components
(e.g., price and budget pairs), and (ii) suffer a possibly amplified effect of
the noise in the reward due to the product of the noisy intermediate obser-
vations (e.g., impressions times conversion rate).

A notion of factored bandits has been studied in (Zimmert and Seldin,
2018) in which the expected reward is a general function of the action com-
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ponents. No intermediate observations are considered and the noise is ap-
plied to the final reward only. Thus, this setting ultimately fails to model
the real-world scenarios we are interested in, where the intermediate obser-
vations play a crucial role and are combined with a specific function (i.e.,
the product). As we shall see later in the chapter, this specificity, motivated
by the considered real-world scenarios, will allow us to obtain tighter and
more detailed performance guarantees.

Contributions In this chapter, we propose the novel setting of the Factored-
Reward Bandits (FRBs) to model sequential decision-making problems in
which the agent is required to play an action vector a “ pa1, . . . , adqT

consisting of d action components. Each action component ai provides
a noisy intermediate observation xi whose product forms the reward r “

x1x2 ¨ ¨ ¨ xd. We study this setting from computational and statistical per-
spectives and propose two regret minimization algorithms endowed with
theoretical guarantees. The contributions are summarized as follows:

• In Section 8.2, we introduce the FRB setting, describe the feedback
and noise models, and the learning problem.

• In Section 8.3, we study the statistical complexity of the learning prob-
lem in the FRB setting by deriving regret lower bounds. First, in The-
orem 8.3.1, we present the worst-case regret lower bound of order
Ωpσd

?
kT q, being σ the subgaussian proxy, d the number of action

components, k the number of possible choices for each action com-
ponent, and T is the learning horizon.1 This result highlights how
the complexity of the problem scales linearly with d and its deriva-
tion makes use of technical tools from the multitask bandits literature.
In Theorem 8.3.2, we show that dependence on σd (exponential in d)
is unavoidable when intermediate observations are not present, moti-
vating their crucial role. Second, we present the instance-dependent
asymptotic regret lower bound which is first formulated as a linear
program of Opkdq variables (Theorem 8.3.3) and, subsequently, elabo-
rated in a more explicit form (Theorem 8.3.4), whose derivation makes
use of the rearrangement inequalities (Hardy et al., 1952) and that en-
joys a computational complexity of Opdk log kq. Qualitatively, this
result shows how the different action components choices need to co-
ordinate to match the lower bound.

• In Section 8.4, we provide a novel intuitive optimistic anytime regret
1In the following, we provide more general results in which each action component i can have a different

number ki of choices.
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minimization algorithm, Factored Upper Confidence Bound
(F-UCB), in which optimism is applied to every action component in-
dependently. Then, we characterize its worst-case regret which has
order rOpσd

?
kT q, matching the lower bound up to logarithmic factors

(Theorem 8.4.1). Then, we empirically study its instance-dependent
regret, revealing that it does not match the lower bound (Theorem 8.4.3).
This confirms how coordination between action components is neces-
sary.

• In Section 8.5, we design and analyze a novel algorithm, Factored
Track (F-Track). F-Track is based on tracking the bound (Lat-
timore and Szepesvari, 2017), and succeeds in matching the instance-
dependent lower bound in the asymptotic regime (Theorem 8.5.1). Its
analysis reveals, once more, the need for coordinating the action com-
ponents to achieve the optimal performance.

Numerical simulations are provided in Section 8.6. Section 8.7 discusses
the relevant literature for the FRB setting. The proofs of all the statements
are reported in Appendix D.

8.2 Setting

In this section, we introduce the Factored-Reward Bandits (FRBs), the
learner-environment interaction, the assumptions, and we present the learn-
ing problem.

Problem Formulation Let T P N be the learning horizon. In a Factored-
Reward Bandits, at every round t P JT K, the learner chooses an action vec-
tor aptq “ pa1ptq, . . . , adptqqT in the action space A :“ Jk1K ˆ ¨ ¨ ¨ ˆ JkdK,
where for every i P JdK we have that ki P Ně2 is the number of options of
the ith action component aiptq of the vector, and d P Ně1 is the action vector
dimension (i.e., the number of components that the learner must select at
every round t). As an effect of the action, the learner observes a vector of
d intermediate observations xptq “ px1ptq, . . . , xdptqq

T and receives as re-
ward the product of the intermediate observations rptq “

ś

iPJdK xiptq. The
ith component xiptq of the intermediate observation vector xptq is the ef-
fect of the ith action component aiptq in the action vector aptq. Specifically,
every component i P JdK of the intermediate observation vector xptq is in-
dependent of the others and sampled from a distribution xiptq „ νi,aiptq,
so that, xptq „ νaptq :“ biPJdKνi,aiptq. Thus, we will denote an FRB as
ν :“ biPJdK baiPJkiK νi,ai . Furthermore, we can write xiptq “ µi,aiptq ` ϵiptq,
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where µi,aiptq is the expected intermediate observation of the ith action com-
ponent aiptq, and ϵiptq is σ2-subgaussian random noise, independent con-
ditioned to the past and the other noise realizations ϵjptq for j P JdKztiu.
As customary, we assume bounded expected values for the intermediate
observations, i.e., µi,ai P r0, 1s for every i P JdK and ai P JkiK, and all in-
termediate observation components xiptq characterized by the same known
subgaussian proxy σ.2

Learning Problem An optimal action vector is a˚ “ pa˚
1 , . . . , a

˚
dqT P

argmaxa“pa1,...,adqTPA
ś

iPJdK µi,ai and, since all expected intermediate ob-
servations are non-negative, we can factorize the optimization problem ob-
serving that a˚

i P argmaxaiPJkiK µi,ai for every i P JdK. We denote with
µ˚
i “ µi,a˚

i
the expected intermediate observation of the optimal ith ac-

tion component. We define the suboptimality gap related to the ith ac-
tion component as ∆i,ai :“ µ˚

i ´ µi,ai for ai P JkiK, and the suboptimal-
ity gap related to the action vector a “ pa1, . . . , adqT P A as ∆a :“
ś

iPJdK µ
˚
i ´

ś

iPJdK µi,ai .
Let ν be an FRB, A be a learning algorithm, and T P N be the learning

horizon, we define its cumulative regret as:

RT pA,νq :“ T
ź

iPJdK

µ˚
i ´

ÿ

tPJT K

ź

iPJdK

µi,aiptq “
ÿ

tPJT K

∆aptq. (8.1)

The goal of the learner consists in minimizing the expected cumulative re-
gret ErRT pA,νqs, where the expectation is taken w.r.t. the randomness of
the observations and the possible randomness of the algorithm A.

Joint Pricing and Adverising as a FRB We now discuss how the joint
pricing and advertising problem presented in Section 8.1 can be formalized
as a FRB.

Example 8.2.1 (Joint Pricing and Advertising). Consider the case of joint
pricing and advertising described in Section 8.1. In this scenario, at every
round t P JT K, we must select a vector of dimension d “ 2. Suppose
that the first action component is the advertising budget, and the second
action component is the selling price. We have k1 advertising budgets over
which we want to choose and k2 prices at which we can sell our item.
At every round t, we select the budget a1ptq and the price a2ptq. Then, we
observe a realization of the impressions we generate due to the budget a1ptq
we invested: x1ptq “ µ1,a1ptq ` ϵ1ptq, and a realization of the conversion
rate due to the price a2ptq we set: x2ptq “ µ2,a2ptq ` ϵ2ptq. The reward

2The extension with different known subgaussian proxies σi for every component i P JdK is straightforward.
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is equal to rptq “ a2ptqx1ptqx2ptq ´ a1ptq, corresponding to the return
for each sales (the price, considering the turnover as target), multiplied
by the fraction of users willing to buy and by the number of customers
exposed to the price (i.e., the impressions), minus the budget invested in
advertising. Note that the operations of multiplying by the selling price and
subtracting the advertising budget do not increase the statistical complexity
of the learning problem, as after we select an action, such quantities are
deterministic. However, to deal with this more elaborated formulation, we
have to take care of it in the choice of the optimal action a˚:

a˚
P argmax

a“pa1, a2qTPA
a2

ź

iPJ2K

µi,ai ´ a1.

8.3 Regret Lower Bound

In this section, we provide lower bounds to the expected regret that any
learning algorithm suffers when addressing the learning problem in a FRB,
both in the minimax (Section 8.3.1) perspective and in the instance-dependent
(Section 8.3.2) one.

8.3.1 Worst-Case Lower Bound

We present the worst-case lower bound that every algorithm suffers in the
FRB setting and discuss the role of the structure of the FRB.

Theorem 8.3.1 (Worst-Case Lower Bound). For every algorithm A, there
exists an FRB ν such that for:

T ě 2
`

1 ´ 2´ 1
d´1

˘´2
σ2max

iPJdK
ki, (8.2)

A suffers an expected cumulative regret of at least:

E rRT pA,νqs ě
σ

4
?
2

ÿ

iPJdK

a

kiT .

In particular, if ki “: k for every i P JdK, we have:

E rRT pA,νqs ě Ωpσd
?
kT q.

Proof Sketch. The challenge is the structure of the regret in a FRB. We
lower-bound the regret RT pA,νq as a sum of the regrets Rpiq

T pA,νq that an
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algorithm A would have suffered by playing d parallel MABs. Choosing
µ˚
i “ 1:

RT pA,νq “
ÿ

tPJT K

´

1 ´
ź

iPJdK

`

1 ´ ∆i,aiptq

˘

¯

ě
1

2

ÿ

iPJdK

ÿ

tPJT K

∆i,aiptq “:
1

2

ÿ

iPJdK

R
piq
T pA,νq.

This derivation leverages an ad-hoc technical Lemma D.1.2, which holds
for sufficiently small suboptimality gaps, i.e., ∆i,aiptq ď 1 ´ 2´ 1

d´1 . This
condition gives rise to the constraint on the minimum time horizon (Equa-
tion 8.2), since the suboptimality gaps will be chosen 9T´1{2. Indeed, in-
tuitively, if the suboptimality gaps ∆i,ai are too large (depending on d) we
will have 1 ´

ś

iPJdKp1 ´ ∆i,aiq !
ř

iPJdK ∆i,ai making the instances more
distinguishable and, consequently, reducing the regret. The result is ob-
tained by showing that regret component satisfies Rpiq

T pA,νq ě Ωpσ
?
kiT q

redesigning for the subgaussian case the solution designed for Bernoulli
rewards from the multitask bandit literature (Wang et al., 2021c, Theorem
10).

To understand the beneficial effect of: (i) the factored structure and (ii)
the intermediate observations, it is worth comparing the result of Theo-
rem 8.3.1 with the regret lower bounds of common settings. If we re-
move (i), we are in the presence of a MAB with A “ Jk1K ˆ ¨ ¨ ¨ ˆ JkdK
as action space.3 It is worth noting that, even in this case, the reward
rptq “

ś

iPJdK xiptq is the product of d subgaussian random variables which
is not, in general, subgaussian (see Lemma D.2.1). Nevertheless, rptq is
guaranteed to preserve a finite variance of order at least σ2 “ σ2d (see
Lemma D.2.3). Thus, we can look at the setting as a heavy-tailed MAB
with finite variance (Bubeck et al., 2013) with

ś

iPJdK ki actions, leading

to a regret of order Ωpσ
b

ś

iPJdK kiT q, which becomes Ωpσd
?
kdT q when

ki “ k for every i P JdK.
It is natural to wonder if (i) is enough to break the exponential depen-

dence in d (on both σ and k). This setting is similar, but not exactly overlap-
ping, to that of Zimmert and Seldin (2018), in which a general “factored”
structure is considered without intermediate observations and assuming that
the subgaussian noise is applied to the reward directly. Nevertheless, (Zim-
mert and Seldin, 2018) provide neither worst-case lower bound nor worst-

3Note that makes no sense to consider (ii) without (iq.
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case regret analysis of the proposed algorithm. The following result shows
that (i) only is enough to remove the exponential dependence in d on k but
not on σ, which remains unavoidable without (ii).

Theorem 8.3.2 (Worst-Case Lower Bound without Intermediate Observa-
tions). For every algorithm A: that ignores the intermediate observations
xptq and observes the reward rptq only, there exists an FRB ν such that for:

T ě 4pmin
iPJdK

ki ´ 1q{d,

A: suffers an expected cumulative regret of at least:

E
“

RT pA:,νq
‰

ě
σd

8

c

pminiPJdK ki ´ 1qT

d
.

In particular, if ki “: k for every i P JdK, we have:

E
“

RT pA:,νq
‰

ě Ωpσd
a

kT {dq.

Thus, Theorem 8.3.2 shows that the exponential dependence of d on σ is
maintained even with the factored structure. This is particularly significant
when σ ą 1, a regime in which the function σd{

?
d is exponentially in-

creasing in d. This motivates the interest in studying this setting combining
factored structure (i) and intermediate observations (ii).

Remark 8.3.1 (About the independence of the intermediate observations).
The formulation of the FRB in Section 8.2 assumes that the components
xiptq of the observation vector xptq are independent. This is necessary to
treat the problem with appropriate advantages over standard MABs on the
combinatorial action space A. Indeed, if we rule out the independence as-
sumption, we can always define a FRB in which xptq “ pyptq, 1, . . . , 1qT,
where yptq „ ν1,aptq. This corresponds to a standard σ2-subgaussian MAB
with A as action space and arm distributions ν1,a. Nevertheless, it is pos-
sible to relax the independence assumption, by requiring non-correlation
among the intermediate observations.

8.3.2 Instance-Dependent Lower Bound

We present the instance-dependent lower bound that every algorithm suffers
on a specific instance ν of the FRB setting.
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8.3. Regret Lower Bound

Theorem 8.3.3 (Instance-Dependent Lower Bound). For every consistent4

algorithm A and FRB ν with unique optimal arm a˚ P A it holds that:

lim inf
TÑ`8

E rRT pA,νqs

log T
ě Cpνq, (8.3)

where Cpνq is defined as the solution to the following optimization prob-
lem:

min
pLaqaPAzta˚u

ÿ

aPAzta˚u

La∆a (8.4)

s.t. Li,j “
ÿ

aPAzta˚u
ai“j

La, @i P JdK, j P JkiKzta˚
i u (8.5)

Li,j ě
2σ2

∆2
i,j

, @i P JdK, j P JkiKzta˚
i u (8.6)

La ě 0, @a P Azta˚
u. (8.7)

Proof Sketch. Here we provide an informal derivation that captures the in-
tuition, although the formal proof requires some additional technical effort
(see Appendix D.1.1). Thanks to the factored structure, we can show, as
for stochastic bandits, that for every j P JkiKzta˚

i u and i P JdK the expected
number of pulls ErNi,jpT qs is lower bounded by (Constraint 8.6):

Li,j :“
ErNi,jpT qs

log T
ě

2σ2

∆2
i,j

for T Ñ `8

We now want to find the arrangements of the number of pulls of action vec-
tors NapT q, for every a P Azta˚u, to minimize the cumulative regret. Re-
calling that Ni,jpT q “

ř

aPA : ai“j NapT q, we define Li,j “
ř

aPAzta˚u : ai“j La

(Constraint 8.5). Finally, by recalling that ErRT pA,νqs

log T
“
ř

aPA La∆a we get
the objective function in Equation (8.4) to be minimized. Notice that to
make the proof fully formal we need to properly manage the asymptotic
behavior of the sequences ErNi,jpT qs and ErNapT qs when T Ñ `8.

The optimization problem in Theorem 8.3.3 is a Linear Program (LP)
with

ś

iPJdK ki`
ř

iPJdK ki´d´1 variables and
ś

iPJdK ki`2
ř

iPJdK ki´2d´1
constraints. Constraint (8.5) establishes the relation between the number of
pulls of the action vectors La and the number of pulls of the action compo-
nents Li,j . This captures the “information sharing” of the setting in which

4An algorithm A is consistent if for every FRB ν and p ą 0, it holds that
lim supTÑ`8 ErRT pA,νqs{T p “ 0.
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we obtain a sample for the action component pi, jq whenever we pull an
action vector a such that ai “ j. Being a minimization problem, Con-
straint (8.6) will be satisfied with equality allowing the removal of variables
Li,j and the relative constraints. Thus, the LP can be solved in polynomial
time w.r.t.

ś

iPJdK ki (Vaidya, 1989).

Explicit Solution of the LP Program We now illustrate how to solve the
LP program with a smaller time complexity of order Op

ř

iPJdK ki log kiq.
We first provide the intuition and, then, provide the formal argument.

The minimum proportion with which the action component pi, jq is to be
pulled (Constraint 8.6) can be accomplished by pulling different sequences
of action vectors a such that ai “ j. How to “arrange” the pulls of the
action vectors to satisfy Constraint (8.6) and minimize the regret? To start
capturing the intuition, consider the simplest setting with d “ 2, k1 “ k2 “

2, a˚
1 “ a˚

2 “ 1, µ1,1 “ µ2,1 “ 1 and µ1,2 “ µ2,2 “ y P p0, 1q. To
satisfy Constraint (8.6), we have to guarantee L1,2 “ L2,2 “ 2σ2p1 ´ yq´2

(in the solution the constraint is satisfied with equality) and we have at our
disposal 4 action vectors A “ tp1, 1q, p1, 2q, p2, 1q, p2, 2qu. We can satisfy
the constraint in two ways:5

(i) playing action p2, 2q (i.e., with both suboptimal components) for a
proportion of 2σ2p1 ´ yq´2 times, suffering 1 ´ y2 instantaneous
regret;

(ii) playing actions p1, 2q and p2, 1q (i.e., with one suboptimal compo-
nent) for a proportion of 2σ2p1 ´ yq´2 each, suffering 1 ´ y instan-
taneous regret;

It is simple to convince that (i) is the choice that minimizes the cumulative
regret. Indeed, for y P p0, 1q, we have:

2σ2
p1 ´ yq

´2
p1 ´ y2q

loooooooooooomoooooooooooon

case (i)

ď 4σ2
p1 ´ yq

´2
p1 ´ yq

looooooooooomooooooooooon

case (ii)

. (8.8)

This intuitive reasoning can be extended to the general case. To this end,
let us define the sorting functions πi : JkiK Ñ JkiK for every i P JdK as any
bijective function such that:

µi,πip1q ď ¨ ¨ ¨ ď µi,πipki´1q ď µi,πipkiq “ µ˚
i .

We claim that in the optimal arrangement the action components need to
coordinate as illustrated in Figure 8.1. For every dimension i P JdK (row),
we sort the action components in non-decreasing order of µi,j according to
the sorting function πi. To every j P Jki ´ 1K, an interval of length Li,j is

5Any mix between (i) and (ii) is clearly suboptimal.
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associated corresponding to the proportion of pull. Now, we combine the
different rows to obtain the “active action vector” (represented by different
colors) made by the corresponding action components. Each active action
vector will be pulled for a proportion (the colored vertical slices) depending
on the Li,j values of the corresponding components. Notice that we can
have at most

ř

iPJdK ki ´ 1 active action vectors and the total proportion
of the pulls (the width of the full table in Figure 8.1) is given by M :“
maxiPJdK

ř

jPJki´1K Li,j . To formally characterize the solution, we introduce,
for every i P JdK and l P Jki ´ 1K, the variables Mi,l :“

ř

l1PJlK Li,πipl1q and
Mi,ki “ `8 as the cumulative proportion of pulls of the action components
more suboptimal than pi, πiplqq, i.e., fixing a row i, the position of the black
vertical lines in Figure 8.1 sorted from left to right. Let us define the sorting
function π : JKK Ñ

Ť

iPJdKptiu ˆ JkiKq, where K “
ř

iPJdK ki, as any
bijection such that:

Mπp1q ď ¨ ¨ ¨ ď MπpK´dq,

with the convention Mπp0q “ 0, i.e., the position in which we move from
one vertical slice to the next one in Figure 8.1 sorted from left to right. For
every ℓ P JKK, we define the active action vector as αℓ “ pj1,ℓ, . . . , jd,ℓq

T P

A where:

ji,ℓ :“ π´1
i

`

argmaxlPJkiKtMi,l ě Mπpℓqu
˘

.

This allows us to prove the following result.

Theorem 8.3.4 (Instance-Dependent Lower Bound (Explicit)). Let Cpνq

be the solution of the optimization problem of Theorem 8.3.3. It holds that:

Cpνq “

K´d
ÿ

ℓ“1

`

Mπpℓq ´ Mπpℓ´1q

˘

∆αℓ
,

that can be computed in Op
ř

iPJdK ki log kiq.

Proof Sketch. We generalize Equation (8.8) with the rearrangement inequal-
ity for integrals (Luttinger and Friedberg, 1976), the continuous version
of the more known rearrangement inequality for sequences (Hardy et al.,
1952).

8.4 A Worst-Case Optimal Algorithm

In this section, we present an optimistic any-time regret minimization algo-
rithm for the FRB setting. Factored Upper Confidence Bound
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d

L1,π1p1q

Ld,πdp1q

L1,π1p2q

L2,π2p1q L2,π2p2q

Ld,πdp2q

L2,π2pk2´1q

µ1,π1p1q µ1,π1p2q µ˚
1

µ2,π2pk2´1q

µ˚
d

µ2,π2p2qµ2,π2p1q

µd,πdp1q µd,πdp2q

Figure 8.1: Efficient solution to the LP presented in Theorem 8.3.3.

Algorithm 8.1: F-UCB.
Input : Exploration Parameter α, Subgaussian proxy σ,

Action component size ki, @i P JdK
1 Initialize Ni,aip0qÐ0, pµi,aip0qÐ 0 @ai PJkiK, iPJdK
2 for t P JT K do
3 Select aptq P argmax

a“pa1, ... adqTPA

ź

iPJdK

UCBi,aiptq where

UCBi,aiptq“ pµi,aipt ´ 1q ` σ
b

α log t
Ni,ai

pt´1q

4 Play aptq and observe xptq “ px1ptq, . . . , xdptqq
T

5 Update pµi,aiptqptq and Ni,aiptqptq for every i P JdK
6 end

(F-UCB), whose pseudo-code is reported in Algorithm 8.1, is based on the
idea of running a UCB-like exploration (Auer et al., 2002a) independently
for every dimension i P JdK and estimate the expected observation µi,ai for
every action component ai P JkiK.

The algorithm requires as input the number of action components ki for
every i P JdK, the exploration parameter α ą 2, and the subgaussian proxy
σ. After initializing the variables to keep track of the number of pulls
Ni,aiptq and the sample mean pµi,aiptq for all action components (line 1),
the algorithm starts the learner-environment interaction. At every round
t P JT K, F-UCB computes the optimistic action, i.e., the action aptq maxi-
mizing the optimistic index:

aptq P argmax
a“pa1, ..., adqTPA

ź

iPJdK

UCBi,aiptq,
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where pµi,aiptq is the empirical mean of the observations for the ith compo-
nent of the observation vector determined by the action component ai, and
Ni,aiptq is the number of times the corresponding component of the action
vector has been played (line 3). Then, the algorithm plays it and observes
the d-dimensional observation vector xptq “ px1ptq, . . . , xdptqq

T (line 4).
The observation vector is used to incrementally update the sample means of
all action components involved and the related counters (lines 5). Finally,
the algorithm reduces to UCB1 when d “ 1.

F-UCB enjoys a time complexity of OpT
ř

iPJdK kiq and a space complex-
ity of Op

ř

iPJdK kiq. Indeed, at every round t P JT K, we need to recompute
the index UCBi,aiptq for all

ř

iPJdK ki action components (at least the bonus
changes at every round). Note that the computation of the optimistic action
is not combinatorial since the optimization can be performed independently
for every dimension i P JdK.

8.4.1 Worst-Case Regret Analysis

In this section, we provide the worst-case regret analysis of F-UCB as sum-
marized in the following result.

Theorem 8.4.1 (Worst-Case Upper Bound for F-UCB). For any FRB ν,
F-UCB with α ą 2 suffers an expected regret bounded as:

E rRT pF-UCB,νqs ď 4σ
ÿ

iPJdK

a

αkiT log T ` gpαq
ÿ

iPJdK

ki,

where gpαq “ rO ppα ´ 2q´2q.6

In particular, if ki “: k, for every i P JdK, we have:

E rRT pF-UCB,νqs ď rOpσd
?
kT q.

Proof Sketch. Under a suitable “good event”, we have that µi,ai ď UCBi,aiptq
for every i P JdK, ai P JkiK, and t P JT K. Thus, the instantaneous regret is
bounded as:
ź

iPJdK

µ˚
i ´

ź

iPJdK

µi,aiptq “
ÿ

lPJdK

ź

iPJl´1K

µ˚
i

loomoon

Pr0,1s

`

µ˚
l ´ µl,alptq

˘

loooooomoooooon

ďUCBi,aiptqptq´µl,alptq

ź

iPJl`1,dK

µi,aiptq
loomoon

Pr0,1s

ď
ÿ

lPJdK

`

UCBl,alptqptq ´ µl,al

˘

,

6The complete expression is reported in the proof.
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where the first line is obtained by summing and subtracting all mixed terms
ś

iPJlK µ
˚
i

ś

iPJl`1,dK µi,aiptq and the second by optimism µ˚
l ď UCBl,a˚

l
ptq ď

UCBl,alptqptq.

Comparing the upper bound of Theorem 8.4.1 with the lower bound in
Theorem 8.3.1, we realize that the dependence on the learning horizon T
is tight up to logarithmic factors (just like UCB1) and the dependence on
the number of action components ki, the number of dimensions d, and the
subgaussian proxy σ are tight up to constant factors.

It is worth comparing our results with the ones that could be obtained
by applying literature algorithms to our FRB setting. As already men-
tioned in Section 8.3, although each intermediate observation xiptq is σ2-
subgaussian, their product rptq, i.e., the reward, is not in general. This
prevents, for instance, the application of UCB1 which assumes subgaussian
(or bounded) reward. Precisely, for d “ 2, the reward rptq “ x1ptqx2ptq is
a subexponential random variable, a scenario that can be still approached
with the standard sample mean estimator but leveraging the Bernstein’s
concentration bound (Boucheron et al., 2013). However, for d ě 3, as
shown in Lemma D.2.1, the reward rptq does not admit a moment-generating
function and, consequently, displays a heavy-tailed behavior (Bubeck et al.,
2013). Nevertheless, the reward rptq random variable maintains a finite
variance bounded by σ2 “ p1 ` σ2q

d
´ 1 (see Lemma D.2.2). This en-

ables the application of algorithms designed for heavy-tailed bandits, such
as Robust-UCB (Bubeck et al., 2013), able to handle generic distribu-
tions with finite variance, by resorting to estimators other than the sample
mean. It is easy to verify that by considering the Median of Means esti-
mator (Bubeck et al., 2013), we obtain a regret upper bound in the order
of rO

´

σ
b

ś

iPJdK kiT
¯

. This result is in line with the discussion in Sec-
tion 8.3 and, clearly, not optimal. Indeed, the dependence on the prod-
uct

ś

iPJdK ki "
ř

iPJdK ki is because Robust-UCB does not exploit the
factored property of the FRB setting. Furthermore, the dependence on
σ “

a

p1 ` σ2qd ´ 1 ě σ is justified by the fact that the intermediate
observations are ignored. Finally, the analysis of Factored Bandit
TEA (Zimmert and Seldin, 2018) cannot be adapted to our setting since,
as already mentioned, the subgaussian noise is applied to the final reward
only.
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8.4.2 Instance-Dependent Upper Bound

In this section, we provide the analysis of the instance-dependent regret
upper bound for the F-UCB algorithm. The following theorem summarizes
the result.

Theorem 8.4.2 (Instance-Dependent Upper Bound for F-UCB). For a given
FRB ν, F-UCB with α ą 2 suffers an expected regret bounded as:

E rRT pF-UCB,νqs ď CpF-UCB,νq,

where CpF-UCB,νq is defined as the solution to the following optimization
problem (where gpαq “ rOppα ´ 2q´2q):

max
pNaqaPA

ÿ

aPAzta˚u

Na∆a (8.9)

s.t. Ni,j “
ÿ

aPAzta˚u
ai“j

Na, @i P JdK, j P JkiKzta˚
i u (8.10)

Ni,j ď
4ασ2 log T

∆2
i,j

` gpαq, @i P JdK, j P JkiKzta˚
i u (8.11)

ÿ

aPA
Na “ T (8.12)

Na ě 0, @a P A (8.13)

The derivation of the LP in Theorem 8.4.2 follows a similar rationale
as that of the instance-dependent lower bound of Theorem 8.3.3. Since
F-UCB runs an optimistic UCB strategy independent for every action com-
ponent, we can derive an upper bound on the expected number of pulls for
every i P JdK and j P JkiKzta˚

i u (denoted with Ni,j in the LP):

ErNi,jpT qs ď
4ασ2 log T

∆2
i,j

` gpαq,

generating Constraint (8.11), that, since the problem involves a maximiza-
tion, will be satisfied with equality. To relate the expected number of pulls
ErNapT qs of the action vectors a P Azta˚u (denoted with Na in the LP)
with the ones of the action components ErNi,jpT qs, we use the same argu-
ment of Theorem 8.3.3, producing Constraint (8.10). Similarly to the LP in
Theorem 8.3.3, the problem is made of

ś

iPJdK ki `
ř

iPJdK ki ´ d variables
and 1`

ś

iPJdK ki `2
ř

iPJdK ki ´2d constraints. We now provide an explicit
solution to a relaxation of the LP of Theorem 8.4.2.
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Corollary 8.4.3 (Explicit Instance-Dependent Upper Bound for F-UCB).
For a given FRB ν, F-UCB with α ą 2 suffers an expected regret bounded
by:

E rRT pF-UCB,νqs ď CpF-UCB,νq

ď 4ασ2 log T
ÿ

iPJdK

µ˚
´i

ÿ

jPJkiKzta˚
i u

∆´1
i,j ` gpαq

ÿ

iPJdK

ki,

where µ˚
´i “

ś

lPJdKztiu µ
˚
l ď 1 for every i P JdK.

Proof Sketch. The result is based on providing a relaxation of the objective
function of the optimization problem in Theorem 8.4.2, which is based on
the following bound on the suboptimality gaps of the action vector a “

pa1, . . . , adqT in terms of the suboptimality gaps of the action components:

∆a ď
ÿ

iPJdK

∆i,aiµ
˚
´i.

This allows to upper bound the objective function as:
ÿ

aPAzta˚u

Na∆a ď
ÿ

iPJdK

µ˚
´i

ÿ

jPJkiKzta˚
i u

Ni,j∆i,j.

By Constraint (8.11) to upper bound Ni,ai , we get the result. Alternatively,
we can drop the constraint

ř

aPAzta˚u
Na “ T and use a rearrangement

inequality (Hardy et al., 1952) to upper bound the objective function.

It is worth comparing this instance-dependent regret upper bound of
F-UCB with the one achievable with an algorithm for heavy-tailed bandits,
such as Robust-UCB (Bubeck et al., 2013). Our result of Corollary 8.4.3
is of order (neglecting the dependence on α and on constants):

O
ˆ

σ2
ÿ

iPJdK

µ˚
´i

ÿ

jPJkiKzta˚
i u

log T

∆i,j

˙

. (8.14)

Instead, Robust-UCB, for instance with the Median of Means estimator,
is characterized by the following instance-dependent regret of order (ne-
glecting constants):

O
ˆ

σ2
ÿ

aPAzta˚u

log T

∆a

˙

. (8.15)

where σ2 “ p1`σ2qd ´1 ě σ2. It is simple to observe that Equation (8.15)
is larger than Equation (8.14). Indeed, consider the subset of action vectors
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in which exactly one component is not optimal, i.e., A˝ “
Ť

iPJdK A˝
i where

A˝
i :“ ta P A : ai ‰ a˚

i , aj “ a˚
j , j P JdKztiuu. We observe that for every

a P A˝
i , the action vector suboptimality gap is related with equality to that

of the suboptimal component:

∆a “
ź

lPJdK

µ˚
l ´ µi,ai

ź

lPJdKztiu

µ˚
l “ µ˚

´i∆i,ai .

This allows the conclusion of the following as desired:

ÿ

aPAzta˚u

logT

∆a

ě
ÿ

aPA˝

logT

∆a

ě
ÿ

iPJdK

µ˚
´i

ÿ

jPJkiKzta˚
i u

logT

∆i,j

.

Finally, let us compare Corollary 8.4.3 with the instance-dependent re-
gret upper bound of the Factored Bandit TEA algorithm (Zimmert
and Seldin, 2018), although the noise model is different. Theorem 2 of (Zim-
mert and Seldin, 2018) provides a bound of order (neglecting constants):

O

˜

κ
ÿ

iPJdK

ÿ

jPJkiKzta˚
i u

logpT logT q`log logpT logT q

∆2
i,j

∆i,j

¸

,

where κ is such that ∆a ď κ
ř

iPJdK ∆i,ai . Thus, we can set κ “ maxiPJdK µ
˚
´i.

This result is slightly worse than ours because of the presence of the larger
κ and the additional log log T and logp1{∆2

i,jq terms.

Remark 8.4.1 (About Instance-Dependent Optimality of F-UCB). We ar-
gue about the instance-dependent optimality of F-UCB. To this end, we
focus on a specific FRB instance with generic d ą 1 and k1 “ ¨ ¨ ¨ “ kd “

2. We consider Gaussian intermediate observations with expected values
µi,1 “ 1 and µi,2 “ 1 ´ ∆ where ∆ P p0, 1q for every i P JdK. By applying
Theorems 8.3.3 and 8.4.2, we deduce that for T Ñ `8, we have the lower
bound (left) and the F-UCB upper bound (right) on the number of pulls of
each suboptimal action component i P JdK bounded as:

ErNi,2pT qs

log T
ě

2σ2

∆2
and

ErNi,2pT qs

log T
ď

4ασ2

∆2
.

Thanks to Theorem 8.3.4 and Corollary 8.4.3, we can compute Cpνq and
upper bound CpF-UCB,νq:

Cpνq“
2σ2p1´p1´∆qdq

∆2
and

CpF-UCB,νq

logT
ď
4dασ2

∆
.
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Figure 8.2: Ratio between the actual regret of F-UCB and the instance-dependent lower
bound (left) and ratio between the regret upper bound and the instance-dependent
lower bound (Equation 8.16) (right), for different values of d (5 runs, mean ˘ 2std).

It is immediate to realize the following extreme behaviors:

CpF-UCB,νq

CpνqlogT
ď

2dα∆

1´p1´∆qd
Ñ

#

2α ∆Ñ0

2αd ∆Ñ1
. (8.16)

This suggests that for sufficiently large ∆ « 1, F-UCB can perform signif-
icantly worse than the lower bound, introducing an additional dependence
on d. Instead, for sufficiently small ∆ « 0, F-UCB can match the lower
bound up to constant factors.7 Clearly, we conducted this analysis em-
ploying an upper bound to the expected regret of F-UCB, which might, in
principle, be affected by some analysis artifacts, making it not tight. In
Figure 8.2, we compare the ratio between the actual regret obtained by
running F-UCB (5 runs) on the proposed FRB example and the instance-
dependent lower bound (left) with the ratio between the upper bound and
the instance-dependent lower bound computed in Equation (8.16) (right).
We clearly observe that, although the y-scales are different, the behavior
confirms a linear dependence of the actual regret of F-UCB on the number
of dimensions of the action vector d.

8.5 Optimal Asymptotic Instance-Dependent Algorithm

In this section, we provide an algorithm that matches the derived instance-
dependent lower bound (Theorem 8.3.3) in the asymptotic regime. The

7Indeed, when the suboptimality gaps are close to 0, the instantaneous regret
ś

iPJdK µ
˚
i ´

ś

iPJdK µi,aiptq

approaches the sum of the regrets on each action component
ř

iPJdKpµ˚
i ´ µi,aiptqq.
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algorithm, named Factored Track (F-Track), whose pseudocode
is reported in Algorithm 8.2, is based on the idea of tracking the lower
bound (Lattimore and Szepesvari, 2017).

The rationale behind the algorithm is that if we want to match the instance-
dependent lower bound, we need to properly coordinate the choice of the
action vectors a P A, given that we have a lower bound on the minimum
number of pulls for the action components pi, jq (Theorem 8.3.3). To im-
pose such a structure we must plan in advance our sequence of action vec-
tor choices. We devise an algorithm composed of three phases: warm-up,
success, and recovery. In the warm-up phase, the algorithm pulls some
action vectors in such a way that each action component is pulled at least
N0 times, i.e., Ni,j ě N0 (line 3). This can be achieved by round-robing
the action components values j of each component i, leading to a num-
ber of pulls in the warm-up phase equal to Twarm-up “ N0maxiPJdK ki. We
use these samples to estimate the expected values pµi,jpTwarm-upq and de-
fine the confidence interval threshold ϵT . Then, we use these values as
if they were the true ones µi,j to compute the suboptimality gaps p∆i,j :“
maxj1PJkiK pµi,j1pTwarm-upq ´ pµi,jpTwarm-upq (line 7) and, using them, the num-
ber of pulls (line 8):

pNi,j “
2σ2fT p1{T q

p∆2
i,j

, @j P JkiK, i P JdK

where for every δ P p0, 1q:

fT pδq :“

ˆ

1 `
1

log T

˙ˆ

c log log T ` log

ˆ

1

δ

˙˙

,

where c is a universal constant and, with them, we compute the number
of pulls for every action vector pNa by solving the optimization problem
in Theorem 8.3.3 (line 9). It is worth noting that fT p1{T q « log T and
this form is needed for technical reasons to guarantee that the confidence
bounds hold. In the success phase, until we run out of the rounds t ď T , we
track the lower bound by pulling in a round-robin fashion all arms whose
number of pulls Naptq ă pNa (line 11). If we realize that the estimated
expected reward pµi,jpt ´ 1q are too far from the ones estimated at the end
of the warm-up phase pµi,aipTwarm-upq based on the threshold ϵT , we move to
the recovery phase (line 10). In this phase, we play F-UCB until the end of
the rounds discarding all the data collected so far (line 13).

The following result shows that F-Track asymptotically matches the
lower bound for a proper choice of N0 and ϵT .
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Algorithm 8.2: F-Track.
Input : Warm-up sample size N0, Threshold ϵT , Action component size ki, @i P JdK,

1 t Ð 1
2 while miniPJdK minjPJkiK Ni,jptq ă N0 do
3 Pull action vector aptq with aiptq “ pt ´ 1q mod ki ` 1 for all i P JdK,
4 t Ð t ` 1

5 end
6 Twarm-up Ð t ´ 1
7 Estimate the suboptimality gaps @i P JdK, j P JkiK :

p∆i,j :“ maxj1PJkiK pµi,j1 pTwarm-upq ´ pµi,jpTwarm-upq

8 Compute the number of pulls pNi,j “ 2σ2fT p1{T qp∆´2
i,j for every action component

i P JdK and j P JkiK
9 Compute the number of pulls pNa for every action vector a P A by solving the LP in

Theorem 8.3.3
10 while t ď T and maxiPJdK,jPJkiK |pµi,jpTwarm-upq ´ pµi,jpt ´ 1q| ď 2ϵT do
11 Pull action vector aptq P argmintNaptq : a P A and Naptq ď pNau, t Ð t ` 1
12 end
13 Discard all data and play F-UCB until t “ T

Theorem 8.5.1 (Instance-Dependent Upper Bound for F-Track). For any
FRB ν, F-Track run with:

N0 “

Q

a

log T
U

and ϵT “

d

2σ2fT p1{ log T q

N0

,

suffers an expected regret of:

lim sup
TÑ`8

E rRT pF-Track,νqs

log T
“ Cpνq.

8.6 Numerical Simulations

In this section, we provide numerical simulations to validate the proposed
solutions. First, in Section 8.6.1, we validate F-UCB against bandit base-
lines in several scenarios. Then, in Section 8.6.2, we compare the two
algorithms we propose (i.e., F-UCB and F-Track) in different scenarios
to highlight their peculiarities. Finally, in Section 8.6.3, we evaluate the
proposed algorithms’ behavior in the case in which the noise affecting in-
termediate observations is partially correlated. The code used to run the
experiments in this section can be found at https://github.com/
marcomussi/FRB.
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8.6. Numerical Simulations

8.6.1 Comparison of F-UCB against Bandit Baselines

In this part, we show the effectiveness of F-UCB against bandit baselines.

Baselines The first baseline we consider is UCB1 (Auer et al., 2002a),
which is designed for stochastic bandits. We consider the anytime version
of the algorithm, proposed by Bubeck (2010). Due to its characteristics,
we expect it to perform in a comparable manner to F-UCB for d “ 1,
with its performance degrading as the dimensionality grows. As an addi-
tional baseline, we consider a robust version of UCB algorithm designed for
heavy-tail (HT) distributions (Bubeck et al., 2013) considering the Median
of Means estimator (RUCB-MoM). Due to the capability of this algorithm
to handle non-subgaussian noise, we expect it to converge for any problem
dimensionality, although at a slower rate. Finally, we consider the TEA
algorithm, proposed by Zimmert and Seldin (2018). Since this algorithm
provides theoretical guarantees for handling only subgaussian noise applied
to the reward, we expect it to have a performance that degrades when d ą 1.
For all the baselines, we consider the values of the hyperparameters as pre-
scribed in the respective original papers.

Setting For the sake of simplicity in the presentation of the results, we
consider the scenario in which all the problem dimensions present the same
number of actions (i.e., k1 “ ¨ ¨ ¨ “ kd “: k). Moreover, we consider the
setting in which the intermediate observations are drawn from Gaussian
distributions with mean µi,aiptq for every action component aiptq in position
i of the action vector a, formally xiptq „ N pµi,aiptq, σ

2q, @i P JdK. We
consider values of k P J3, 5K, and values of d P J4K. We draw the expected
values µi,j for i P JdK and j P JkK from a uniform distribution in the range
r0.7, 1s. We fix a value of σ “ 0.1. It is worth noting that the results in
the following paragraph are not comparable among the different k and d,
mostly for what concerns the comparison between different values of d.
We evaluate the performances in terms of cumulative regret with T “ 104,
averaged over 50 trials.

Results In Figure 8.3, we present the cumulative regret for the F-UCB
algorithm and the other bandit baselines. The value of k increases with
the columns, and the value of d increases with the rows of the figure. The
following comments are valid for all the considered values of k, as no un-
expected or relevant behaviors are present when we increase the number
of actions for each action component. We observe that for d “ 1, F-UCB
achieves a cumulative regret that matches that of UCB1. This is expected,
as F-UCB collapses to UCB1 for d “ 1. RUCB-MoM achieves a sublinear
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regret, although higher than the previous algorithms, whereas TEA suffers a
cumulative regret that is linear in the considered time horizon. The behavior
changes for d “ 2. F-UCB achieves a low cumulative regret. The cumu-
lative regret of UCB1, instead, constantly increases over the time horizon.
RUCB-MoM continues to achieve a sublinear regret, however it is higher,
due to the increased cardinality of the equivalent action space and the in-
cremented effect of the noise. The behavior of TEA remains the same as
for d “ 1. For d ě 3, we observe a stabilization of the behavior. F-UCB
manages to achieve a cumulative regret that scales well as d and k increase.
UCB1 now suffers a linear regret, RUCB-MoM a sublinear regret worse with
the increase of d, and TEA behaves as in the previous cases.

8.6.2 Comparison of F-UCB and F-Track

In this part, we provide numerical simulations intended to compare F-UCB
and F-Track in different scenarios. As discussed in Remark 8.4.1 and
shown Figure 8.2, the performances of F-UCB decrease when the num-
ber d of dimensions increases and when the suboptimality gaps are large.
The goal of this part is to (i) verify once again this fact and (ii) observe if
F-Track is able to mitigate such a phenomenon.

Setting We consider the scenario in which the number of arms is con-
stant across all dimensions, i.e., ki “ k,@i P JdK. Given our goal to
verify the algorithms’ behavior over the action vector dimensionality d
and the suboptimality gaps dimension, we fixed the other parameters. We
consider a scenario in which we have k “ 2 and observations affected
Gaussian i.i.d. noise with σ “ 0.5. We evaluate the two algorithms for
d P t2, 5, 10, 20, 30u. For what concerns the expected values, for all the di-
mensions, we enforce the first arm to be the best one, with expected value
µi,1 “ µ˚

i “ 1, @i P JdK. The suboptimal arms have all the same expected
values µi,2 “ 1 ´ ∆i,2, @i P JdK. Such a value ∆i,2 has been tested in the
set ∆i,2 P t0.5, 0.7, 0.9u. We evaluate the performances in terms of regret,
averaged over 10 runs with target time horizons T P r104, 105s. We remark
that F-UCB is an anytime algorithm and can be run once to obtain the entire
curve of the cumulative regret. Instead, F-Track requires the knowledge
of the horizon to compute the correct values of N0 and ϵT . As such, we
repeated the experiment for F-Track several times, each with a different
time horizon up to the maximum T .

Results In Figure 8.4, we present the cumulative regret for F-UCB and
F-Track in the above-mentioned setting. First, we observe that for small
values of d (i.e., d P t2, 5u), F-UCB outperforms F-Track for all the
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(l) d “ 4, k “ 5.

Figure 8.3: Performance of F-UCB, UCB1, RUCB-MoM and TEA considering k P J3, 5K
and d P J4K (50 runs, mean ˘ std).

125



Chapter 8. Factored Reward Bandits for Joint Pricing and Advertising

values of ∆i,2. This behavior is less evident when we move to d “ 10,
where the performances become comparable, with an advantage for F-UCB
for smaller values of ∆i,2, while for larger value of the suboptimality gap,
F-Track is better. The results turn in favor of F-Track when d becomes
larger (i.e., d P t20, 30u), and such an advantage further increases when
∆i,2 is large.

8.6.3 Robustness to Correlated Noise

In this part, we provide numerical simulations intended to compare F-UCB
and F-Track when there is a correlation between the noises affecting the
different dimensions. As discussed in Remark 8.3.1, in our setting, we re-
quire that the observations must be non-correlated. Otherwise, the problem
cannot be factored properly given that, in general, if there is a correlation
between the noises, we have that:

E

»

–

ź

iPJdK

xiptq

fi

fl ‰
ź

iPJdK

E rxiptqs . (8.17)

Setting We consider the scenario in which the number of arms is constant
across all dimensions, i.e., ki “ k,@i P JdK. We consider k “ 2 and d “ 10.
For what concerns the expected values, for all the dimensions, we enforce
the first arm to be the best one, with expected value µi,1 “ µ˚

i “ 1, @i P JdK.
The suboptimal arms have all the same expected values µi,2 “ 0.5, @i P

JdK. In order to evaluate the behavior of the algorithms in the presence of
correlation in the noise of intermediate observations, we introduce a term
α P r0, 1s to control the interdependence of the intermediate observations.
The additive noise applied to the observations xiptq is defined as α ηptq `

p1 ´ αqϵiptq, where ηptq, ϵiptq „ N p0, σ2q. The noise term ηptq is applied
to all the dimensions, whereas the ϵiptq terms are individual and applied
to the single dimensions i P JdK. Given this formulation, if α “ 0 the
intermediate observations are independent, while if α “ 1, the intermediate
observations are fully correlated. For values of α P p0, 1q, the noise term
in the intermediate observations will comprise a correlated term and an
independent term. We consider the case in which the Gaussian noise with
σ “ 0.5 (for both the independent and correlated components) affects only
action components ai “ 2 (i.e., those with expected value µi,2 “ 0.5) for
i P JdK. We consider values of α P t0, 0.2, 0.4, 0.6, 0.8, 1u. We evaluate
the performances in terms of cumulative regret averaged over 10 runs with
target time horizons T P r104, 105s.
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(g) d “ 10, ∆i,2 “ 0.5.

0.2 0.4 0.6 0.8 1
¨105

0

50

100

150

Rounds

C
um

ul
at

iv
e

R
eg

re
t F-UCB

F-Track

(h) d “ 10, ∆i,2 “ 0.7.

0.2 0.4 0.6 0.8 1
¨105

0

20

40

60

80

100

Rounds

C
um

ul
at

iv
e

R
eg

re
t F-UCB

F-Track

(i) d “ 10, ∆i,2 “ 0.9.

0.2 0.4 0.6 0.8 1
¨105

0

100

200

300

400

Rounds

C
um

ul
at

iv
e

R
eg

re
t F-UCB

F-Track

(j) d “ 20, ∆i,2 “ 0.5.

0.2 0.4 0.6 0.8 1
¨105

0

50

100

150

200

Rounds

C
um

ul
at

iv
e

R
eg

re
t F-UCB

F-Track

(k) d “ 20, ∆i,2 “ 0.7.
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Figure 8.4: Cumulative regret of F-UCB and F-Track considering k “ 2, σ “ 0.5,
d P t2, 5, 10, 20, 30u, and ∆i,2 P t0.5, 0.7, 0.9u, @i P JdK (10 runs, mean ˘ 2std).
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Figure 8.5: Monte Carlo estimates of the expected values for the tested values of the
correlation parameter α P t0, 0.2, 0.4, 0.6, 0.8, 1u (106 Monte Carlo simulations).

Results Before commenting on the results, we observe that the presence of
correlated noise over action components ai “ 2 has the effect of changing
the optimal vector action depending on the value of α. In Figure 8.5, we
plot the value of the expected reward of the action vectors p1, . . . , 1q and
p2, . . . , 2q estimated using 106 Monte Carlo simulations for the values of
α under analysis. We consider just the two action vectors p1, . . . , 1q and
p2, . . . , 2q, given that all the other combinations of action components will
give intermediate results (and are suboptimal). We first observe that, given
that all the observations of the action vector p1, . . . , 1q are not influenced by
any noise, its expected reward is stable over α. On the other hand, for action
vector p2, . . . , 2q, affected by noise, we see how as the correlation increases,
the expected reward increases itself and overtakes the one of action vector
p1, . . . , 1q.

Moving to the simulations, Figure 8.6 shows a comparison of the per-
formances of F-UCB and F-Track when we vary correlation parameter
α. First, we observe how the two algorithms present a consistent behavior
over the different values of α. They are able to achieve satisfactory perfor-
mances (i.e., sublinear regret) up to α “ 0.6. Then, the regret degenerates
to linear. This is consistent with what we observed in Figure 8.5, as these
algorithms look at the expected values of the single action components,
but in this case, the noise correlation altered the optimal arm, which is no
longer the one with the highest product of the expected observations.

8.7 Related Works

In this section, we discuss the related works from the action structure per-
spective and the works that present a notion of factored structure. Then,
we compare the most significant related algorithms with our work from the
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Figure 8.6: Cumulative regret of F-UCB and F-Track considering k “ 2, σ “ 0.5,
d “ 5, ∆i,2 “ 0.5,@i P JdK, and correlation parameter α P t0, 0.2, 0.4, 0.6, 0.8, 1u
(10 runs, mean ˘ 2std).

theoretical perspective.

Action Structure Originally, multi-armed bandit frameworks focused
on independent arms with no inherent structure (Lai and Robbins, 1985).
However, in recent decades, various bandit models with several kinds of
structure have emerged, such as linear (Dani et al., 2008; Abbasi-Yadkori
et al., 2011), Lipschitz (Agrawal, 1995; Magureanu et al., 2014) and uni-
modal (Yu and Mannor, 2011) bandits. These contributions aim to incor-
porate diverse forms of structure into the arms being considered. Combes
et al. (2017) introduced a generalization of structured bandits, accommo-
dating a wide range of structural concepts among arms. Their work offers
a statistically efficient (at least in the general case) algorithm for handling
generic structures, at the expense of solving a semi-infinite linear program
at each time step. The necessity of choosing several actions at a time in
a structured manner has been widely studied in the field of combinatorial
bandits (Cesa-Bianchi and Lugosi, 2012; Kveton et al., 2015; Combes et al.,
2015).

Notions of Factored Bandits Among the several kinds of structure, Zim-
mert and Seldin (2018) is the most similar to the work we propose from the
point of view of the action structure, although the two works differ from
the feedback perspective. Both works employ an action structure in which
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an action component ai is selected for each problem dimension i P JdK.
The action components are combined with a general function that obeys a
uniform identifiability assumption under which the performance of each ac-
tion vector can only improve when any action component is switched with
the optimal one. However, in the work of Zimmert and Seldin (2018) the
feedback comprises a single observation of the subgaussian reward rpatq

applied to the aggregated expected reward, whereas, in our work, the feed-
back comprises one noisy observation for every action component. This
peculiarity of our work implies that the reward obtained as the product over
all the dimensions is not subgaussian anymore (Lemma D.2.1). (Zimmert
and Seldin, 2018) generalizes (Katariya et al., 2017) to the case of more
than two dimensions.

8.7.1 Comparison of the Theoretical Results

In Table 8.1, we summarize our setting with the one of Heavy-Tails Ban-
dits (Bubeck et al., 2013) and the Factored Bandits (Zimmert and Seldin,
2018). We also analyze and compare both our solutions with Robust-UCB
(Bubeck et al., 2013) and TEA (Zimmert and Seldin, 2018) from the instance-
dependent point of view. Then, in Table 8.2 we compare worst-case lower
and upper bounds from the worst-case perspective.

8.8 Discussion and Conclusions

In this chapter, we introduced the Factored-Reward Bandits, a novel set-
ting to represent decision-making problems in which the learner is required
to perform a set of actions, whose effects can be observed, and the re-
ward is the product of those effects. We characterized the inherent com-
plexity through worst-case and instance-dependent lower bounds, and we
discussed the performances of current solutions. To address the regret min-
imization problem, we proposed two algorithms using the intermediate ob-
servations to reduce the complexity of learning in this setting. The first
F-UCB is an optimistic solution that we proved minimax optimal (up to
logarithmic factors). Such a solution deals with action components inde-
pendently of the others and we have illustrated how, without coordination,
we cannot reach instance-dependent optimality. To overcome this issue,
we propose F-Track, an algorithm able to perform planning on the action
components, and we proved its asymptotically instance-dependent optimal-
ity. As future lines of research, we plan to investigate the possibility of
developing an algorithm able to guarantee both non-asymptotic instance-
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dependent optimality and to consider functions for aggregating intermedi-
ate observations different from the product.
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CHAPTER9
Discussion and Conclusions

In this dissertation, we presented online learning methods for dynamic pric-
ing and advertising budget optimization from both the theoretical and the
applicative perspectives. In Part I, after having introduced the basic no-
tions of dynamic pricing, we presented two novel methods for dynamic
pricing. We first faced the problem of performing dynamic pricing for
an e-commerce website from a practical perspective by designing an al-
gorithm able to price different kinds of products with different dynamics.
Then, with the second proposal, we went through more theoretical aspects
of pricing by proposing a model that allows us to efficiently model tem-
poral dependencies in pricing through the adoption of parametric autore-
gressive processes. In Part II, we faced the problem of advertising items
properly. After having introduced the basic notions of budget optimization
in advertising, we focused our attention on Marketing Mix Models. We
discussed the peculiarities of such models, and we propose an algorithm
for online optimizing such models, under linearity assumptions, in order
to perform exploration-exploitation with theoretical guarantees. In Part III,
we discussed the problem related to the suboptimality we may face when
we perform pricing and advertising separately, and we proposed a method
to perform such a task together in a coherent way using a single agent.
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Chapter 9. Discussion and Conclusions

In this chapter, we revise and highlight the contributions of this disser-
tation, and we discuss possible extensions.

9.1 Dynamic Pricing

The first part of the thesis discussed bandit methods for dynamic pricing.
We first presented (Chapter 4) a MAB solution to optimize the pricing

strategy of an e-commerce with several kinds of products with different
market dynamics and in the presence of scarce data. We conducted an em-
pirical evaluation, first on synthetic and then on real-world data. In the
synthetic scenario, we demonstrated the practical effectiveness of enforc-
ing monotonic demand curves in the presence of scarce data. The empirical
evaluation in the real world gives interesting insights on the long-tail mar-
ket. Our algorithm provided a significant increment in the revenue of the
long-tail products, while the effect on popular products is positive but more
limited due to (i) the higher competition in their market and (ii) the chance
of e-commerce expert to properly define pricing strategy due to the limited
number of products to manage.

Then, we changed our focus on the temporal dependences in pricing
strategies (Chapter 5). We focused on autoregressive processes, as we ob-
served they are an interesting trade-off between the need to impose a tem-
poral structure in our decision-making and the need for avoiding sample
inefficient reinforcement learning solutions. We presented a setting called
Autoregressive Bandits in which the goal is to minimize the regret while
we learn an action-dependent temporal structure. We proposed an opti-
mistic algorithm, and we characterize its performance in terms of expected
cumulative regret. We tested our solution in synthetic scenarios, and we
evaluated our algorithm in a realistic pricing scenario generated using real-
world data.

Possible extensions of this part include the study of the positive and
negative interactions between the products and modeling them in a tractable
way.

9.2 Advertising

In the second part, we changed our focus to consider advertising problems.
This is the other important topic that requires our attention when we want to
sell a product. Among the several problems that artificial intelligence can
help to solve, our focus is on budget optimization. In particular, we found
that an area not yet studied properly is one of the budget optimization for
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marketing mix models.
Given that, we propose (Chapter 7) a theoretical framework, called Dy-

namical Linear Bandits in which the reward is influenced by (i) the action
we perform and (ii) a hidden state that evolves due to our past actions. This
framework is suited to model the problem of the MMM, assuming that
the behavior can be approximated as linear with constraints. We studied
the setting and its intrinsic complexity by providing a regret lower bound.
We proposed an optimistic regret minimization algorithm to learn in this
setting, and we demonstrated its theoretical soundness. After having tested
the algorithm in a synthetic setting, we created a simulator using real-world
data in an MMM scenario, and we verified its behavior in this context.

An interesting direction in this field includes the relaxation of the lin-
earity assumptions, avoiding at the same time considering the problem as a
non-linear system, which is known to be intractable.

9.3 Joint Pricing and Advertising

The last part of this dissertation is dedicated to understanding what hap-
pens when we want to join the two worlds discussed above: dynamic pric-
ing and advertising budget optimization. We define (Chapter 8) the first
general framework for treating bandits with intermediate observations that
generalize the scenario of the joint optimization of pricing and advertising.
We studied the complexity of this setting by presenting both the instance-
dependent and the worst-case lower bounds. We developed two algorithms
for solving the regret minimization task in this setting, and we discussed
their theoretical guarantees.

The problem of jointly optimizing these two aspects is considered by
taking into account a simple advertising scenario and a basic pricing prob-
lem. Future research directions may focus on the integration of complex
dynamics like the one presented in Parts I and II in this joint optimization
algorithm.
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APPENDIXA
Algorithmical Details for Chapter 4

In this chapter, we provide implementation details of the algorithm pre-
sented in Chapter 4.
The implementation of the DynaLT algorithm for the experiments pre-
sented in Section 4.7 has been done using Python 3. More specifically,
the Bayesian Regression Model is implemented using TensorFlow Prob-
ability library (Abadi et al., 2016). In what follows, we provide the im-
plementation details to allow the replicability of the experiments, i.e., the
seasonality estimation (Appendix A.1), the distance estimation procedure
(Appendix A.2), and the synthetic environment creation (Appendix A.3).
Finally, we discuss the algorithm running time (Appendix A.4).

A.1 Seasonality

Figure 4.2 shows that, even if the seasonality effect is relevant, it is stable
across years since the standard deviation bounds provided as semitranspar-
ent areas are small. Therefore, we model it as a multiplicative factor sjτ
for each product j at time τ such that we can compute seasonality adjusted
volumes as v̄jτ :“ vjτ ¨ sjτ .
The seasonality term sjτ is estimated in a data-driven way using data com-
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ing from a set of previous years Y . We denote with vjwy the volume for
product j corresponding to a week of the year w P t1, . . . , 52u and a year
y P Y . At first, let us compute for a product j the proportion of the volumes
sold in a specific week w for a year y, formally:

v̂jwy “
vjwy

ř

iPW vjiy
. (A.1)

The seasonality factor sjpwq for a specific week w is computed as follows:

sjpwq “
1

ř

yPY v̂jwy{Y ` H
, (A.2)

where H is a shrinkage factor, and Y :“ |Y | is the cardinality of the set Y .
Finally, the correction factor sjτ is equal to the sjpwq for the week w of the
year corresponding to time τ .
The same procedure is applicable for meta-product by using the aggregated
volumes of the product therein, i.e., for meta-product K:

vKwy “
ÿ

kPK
vkwy.

In the experiments, the shrinkage factor is selected equal to H “ 0.005
based on empirical evidence.

A.2 Similarity Estimation

In our application, each product j P J has a textual description ρj , which
contains information regarding the product, like its brand, color, and mate-
rial.1 The corpus of strings Π “ tρjujPJ

2 is represented by the descriptions
of all the available products.
With |ρj| we denote the dimension of the string computed as the number
of words it contains. TF-IDF encoding balances the importance tfij of a
word i in a string ρj and the importance idfi of the word i across the whole
textual data set. Formally:

tfij “
υij
|ρj|

,

idfi “ log10
|Π|

|tρ P Π s.t. i P ρu|
,

1For the sake of presentation we focus on the textual description, but one might also concatenate additional
textual information, like the product category or its name.

2Note that |Π| “ |J |.
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Figure A.1: Overall scheme of the TF-IDF algorithm.

where υij is the number of occurrences of the word i in description ρj of
product j, |Π| is the number of string present in the corpus, and |tρ P

Π s.t. i P ρu| is the number of textual descriptions ρ in which the word i is
present among the one of the entire catalog Π. The TF-IDF score for the
word i in the description ρj of product j is computed as follows:

tfidfij “ tfij ¨ idfi.

The result is a vector ηj P r0, 1s|L|, where L is the set of distinct words
(obtained after a stop-word removal procedure) in all the texts. For each
product j, rηjsi “ tfidfij is the TF-IDF score of word i P L for the text
defined by ρj . The distance djl between two products j and l is computed
using a transformation of the cosine similarity, formally:

djl “ 1 ´
ηj ¨ ηl

||ηj||2 ¨ ||ηl||2
.

where ¨ represents the scalar product between vectors and ||η||2 represents
the 2-norm of η. Figure A.1 represents the whole process that goes from
textual data to the computation of a pairwise distance matrix between the
products.3

A.3 Simulation Details

A.3.1 Noisy Environment Simulation

The volumes for the single product pricing experiments in Section 4.7.1 are
generated from the volume function:4

v1pxq “ 2e´px`1.2q
5
2

` ϵ,
3Other ways of vectorization such as embedded-based ones are also viable options in the case the textual

descriptions are succinct.
4Notice that the chosen demand function satisfies the motononicity assumption.
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Figure A.2: Demand curve used in the noisy experiment and corresponding reward func-
tion obtained maximizing profit.

where prices x P r0.32, 1s and ϵ „ N p0, σ2q is a Gaussian zero-mean noise
with variance σ2. The product had a unitary cost c “ 0.3. A graphic repre-
sentation of the volumes curve corresponding to this product is provided in
Figure A.2.
In this, we modified noise’s standard deviation σ and introduced some out-
liers in the data generation process. More specifically, the outliers genera-
tion is obtained through the probability o P p0, 1q that a sample drawn from
a demand curve has noise ϵ1 such that its standard deviation is 10 times the
one of ϵ.

A.3.2 Non-stationary Environment Simulation

In the second experiment, three different volume functions have been used
during the different phases of the non-stationary process. The volume func-
tions were:

v1pxq “
3

10
p1 ´ xq,

v2pxq “ 2e´px`1.2q
5
2 ,

v3pxq “ 7e´px`1.2q3 .

Their corresponding volumes curves are provided in Figure A.3. The first
abrupt change substituted the volume function v1pxq with v2pxq, the second
substituted v2pxq with v3pxq, and the third one v3pxq with v1pxq. In this set
of experiments the noise’s standard deviation is σ “ 0.001, and the outliers’
percentage is o “ 0%.
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Figure A.3: Demand curves used in the non-stationary experiment and corresponding
reward functions.

A.3.3 Algorithm Settings

In the first scenario, the demand curve have been estimated using Bern-
stein’s Polynomial with Z “ 75. The priors for the Lognormal and Gaus-
sian distribution of the BRL model have been set with σh “ 0.75 and
σh “ 0.5, respectively. The values for the hyper-parameters have been cho-
sen basing on an independent data set. The sampling procedure described
in Section 4.5 have been applied to the set of margins M of evenly spaced
values over the domain r0.05, 1.5s, where |M| “ 50.
In the second scenario, we use the same configurations for the Bernstein’s
Polynomial and the sampling procedure. Conversely, the prior parameters
for the Lognormal and Gaussian priors were set to σh “ 0.75 and σh “ 2,
respectively.
Notice that the clairvoyant solution to the problem of maximizing the prof-
its is non-trivial even knowing the real volume functions, due to the fact
that the introduction of noise and outliers do not allow to compute it in a
closed form solution. We estimated the optimal solution using Monte Carlo
approach, i.e., we simulated 10, 000 samples from each one of the margins
used in the experiments and averaged the values of the profit gained with
such a margin. Then we took the maximum over the computed profits as
the optimal solution for the problem. Thanks to this approach, the empir-
ical regret is computed as the difference between this value and the one
obtained using the analyzed algorithms.

A.4 Algorithm Running Time

The algorithm running time can be analyzed by dividing the process into
two phases: first, the distance estimation and the tree structure generation,
then, the proper optimal price estimation.
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A.4.1 Similarity and Tree Structure

This phase is required to be performed only when there are changes in
the catalog of the products. The running time for the distance estimation
algorithm is Op|J |2q for what concerns the operations required to construct
the distance matrix. Building the agglomerative clustering tree structure
requires a running time Op|J |2 log |J |q when using single linkage, and
Op|J |3q in the general case. It is worth noting that adding a new product
to the catalog corresponds to an incremental update of the distance matrix,
i.e., adding a new row and column to the matrix consisting of the distance
of the new products w.r.t. the previous ones.

A.4.2 Optimal Pricing

The proper estimate of the optimal price must be performed at every time
t, as well as the association of a product j with the related meta-product K.
This is because the cluster stopping condition is defined over transactions
data, which changes over time. Given |J | products, we must estimate at
most (worst-case scenario) |J | BLR models.
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APPENDIXB
Omitted Proofs of Chapter 5

Theorem 5.2.1 (Optimal Policy). Under Assumption 5.1.a, for every round
t P N, the optimal policy π˚

t pHt´1q satisfies:

π˚
t pHt´1q P argmax

aPA
xγpaq, zt´1y. (5.5)

Proof. We first prove an intermediate result auxiliary to get to the final
statement. Let us denote with J˚

T pzq the expected cumulative reward when
the initial observations vector is z “ p1, x0, x´1, . . . , x´n`1q. Let us denote
with ľ the element-wise inequality. We show that for every T P N, if
z ľ z, then J˚

T pzq ě J˚
T pzq.

We proceed by induction.
For T “ 1, we have J˚

1 pzq “ maxaPAxγpaq, zy “ xγpa˚
1q, zy, where a˚

1 P

argmaxaPAxγpaq, zy and J˚
1 pzq “ maxaPAxγpaq, zy “ xγpa˚

1q, zy, where
a˚
1 P argmaxaPAxγpaq, zy. Thus, we have:

J˚
1 pzq “ xγpa˚

1q, zy ě xγpa˚
1q, zy

(a)
ě xγpa˚

1q, zy “ J˚
1 pzq,

where inequality (a) follows from Assumption 5.1.a.
Suppose the statement holds for T ´ 1, we prove it for T ą 1. To this end,
we consider the transition operator P : Z ˆAˆR Ñ Z , defined for every
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observations vector zt “ p1, xt´1, xt´2, . . . , xt´nq P Z , action a P A, and
noise ξ P R as follows:

P pzt, a, ξq “ P

¨

˚

˚

˚

˚

˚

˚

˝

¨

˚

˚

˚

˚

˚

˚

˝

1

xt´1

xt´2

...
xt´n

˛

‹

‹

‹

‹

‹

‹

‚

, a, ξ

˛

‹

‹

‹

‹

‹

‹

‚

“

¨

˚

˚

˚

˚

˚

˚

˝

1

xt

xt´1

...
xt´n`1

˛

‹

‹

‹

‹

‹

‹

‚

“ zt`1,

where xt “ xγpaq, zty ` ξ. Thus, we can look at the stochastic process as a
Markov decision process (Puterman, 2014) with zt as state representation.
We immediately observe that if z ľ z, we have that P pz, a, ξq ľ P pz, a, ξq,
for every action a P A and noise ξ P R. By applying the Bellman equation,
we obtain:

J˚
T pzq “ max

aPA

␣

xγpaq, zy ` EξT

“

J˚
T´1pP pz, a, ξT qq

‰(

“ xγpa˚
T q, zy ` EξT

“

J˚
T´1pP pz, a˚

T , ξT qq
‰

,

J˚
T pzq “ max

aPA

␣

xγpaq, zy ` EξT

“

J˚
T´1pP pz, a, ξT qq

‰(

“ xγpa˚
T q, zy ` EξT

“

J˚
T´1pP pz, a˚

T , ξT qq
‰

,

where the actions are defined as:

a˚
T P argmax

aPA

␣

xγpaq, zy ` EξT

“

J˚
T´1pP pz, a, ξT qq

‰(

,

and:
a˚
T P argmax

aPA

␣

xγpaq, zy ` EξT

“

J˚
T´1pP pz, a, ξT qq

‰(

.

Thus, we have:

J˚
T pzq “ xγpa˚

T q, zy ` EξT

“

J˚
T´1pP pz, a˚

T , ξT qq
‰

ě xγpa˚
T q, zy ` EξT

“

J˚
T´1pP pz, a˚

T , ξT qq
‰

pbq

ě xγpa˚
T q, zy ` EξT

“

J˚
T´1pP pz, a˚

T , ξT qq
‰

“ J˚
T pzq,

where (b) follows from Assumption 5.1.a bounding xγpa˚
T q, zy ě xγpa˚

T q, zy

and by observing that P pz, a˚
T , ξ1q ľ P pz, a˚

T , ξT q and, then, exploiting the
inductive hypothesis.
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We conclude that the optimal policy is the myopic one by observing that
both xγpaq, zy and J˚

T´1pP pz, a, ξqq are simultaneously maximized by:

argmax
aPA

xγpaq, zy.

Lemma 5.4.1 (Self-Normalized Concentration). Let a P A be an action,
let ppγtpaqqtPO8paq be the sequence of solutions to the Ridge regression prob-
lems computed by Algorithm 5.1. Then, for every regularization parameter
λ ą 0, confidence δ P p0, 1q, simultaneously for every round t P N and
action a P A, with probability at least 1 ´ δ it holds that:

}pγtpaq ´ γpaq}Vtpaq
ď

?
λ}γpaq}2 ` σ

d

2 log

ˆ

k

δ

˙

` log

ˆ

detVtpaq

λn`1

˙

.

Proof. We consider an action at a time; then, the final result is obtained
with a union bound over A “ JkK. Let a P A. We first observe that the
estimates of action a change only when a is pulled. Let l P N be an index
and let tlpaq P N be the round in which action a is pulled for the l-th time,
i.e., ttlpaq : l P Nu “ O8paq. Thus, we have:

γtl
paq “ V´1

tlpaq
paqb´1

tlpaq
paq

“

˜

λIn`1 `

l
ÿ

j“1

ztjpaq´1z
T
tjpaq´1

¸´1 l
ÿ

j“1

ztjpaq´1xtj

“

˜

λIn`1 `

l
ÿ

j“1

ztjpaq´1z
T
tjpaq´1

¸´1

l
ÿ

j“1

ztjpaq´1

`

xγpaq, ztjpaq´1y ` ξtjpaq

˘

(a)
“ γpaq ´ λ

˜

λIn`1 `

l
ÿ

j“1

ztjpaq´1z
T
tjpaq´1

¸´1

γpaq`

`

˜

λIn`1 `

l
ÿ

j“1

ztjpaq´1z
T
tjpaq´1

¸´1 l
ÿ

j“1

ztjpaq´1ξtjpaq

“ γpaq ´ λV´1
tlpaq

paqγpaq ` V´1
tlpaq

paq

l
ÿ

j“1

ztjpaq´1ξtjpaq

loooooooomoooooooon

stlpaq

,
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where the passage (a) derives from the observation that:

l
ÿ

j“1

ztj´1pxγpaq, ztj´1yq “

l
ÿ

j“1

ztj´1z
T
tj´1γpaq.

Thus, we have:
›

›γtlpaqpaq ´ γpaq
›

›

Vtlpaqpaq
ď

?
λ}γpaq}2 ` }stlpaq}V´1

tlpaq
paq.

Let us denote with Ftlpaq “ σpz0, a1, z1, a2, . . . , ztlpaq´1, atlpaqq be the fil-
tration generated by all events realized at round tlpaq. Let us now con-
sider the stochastic processes pξtlpaqqlPN and pztlpaq´1qlPN. We observe that
ξtlpaq is Ftlpaq-measurable and conditionally σ2-subgaussian and that ztlpaq´1

is Ftlpaq´1-measurable. By applying Theorem 1 of Abbasi-Yadkori et al.
(2011), we have that simultaneously for all l P N, w.p. 1 ´ δ:

}stlpaq}V´1
tlpaq

paq ď σ

c

2 log
1

δ
` log

detVtlpaqpaq

λn`1
.

Clearly, this hold for the rounds t P N in which the action a is not pulled,
since the corresponding estimates do not change.

Lemma 5.4.2 (Policy Regret Decomposition). Let px˚
t qtPJT K be the sequence

of rewards by executing the optimal policy π˚ and let pxtqtPJT K be the se-
quence of rewards by executing the learner’s policy π. Then, for every
t P JT K it holds that:

rt “ x˚
t ´ xt

“

n
ÿ

i“1

γipa
˚
t qpx˚

t´i ´ xt´iq ` xγpa˚
t q ´ γpatq, zt´1y

“

n
ÿ

i“1

γipa
˚
t qrt´i ` ρt, (5.9)

where rt :“ x˚
t ´ xt is the instantaneous policy regret, ρt :“ xγpa˚

t q ´

γpatq, zt´1y is the instantaneous external regret, a˚
t “ π˚

t pH˚
t´1q, and rt´i “

0 if i ě t.

Proof. Let t P JT K and let us denote with z˚
t´1 “ p1, x˚

t´1, . . . , x
˚
t´nqT the

observations vector associated with the execution of the optimal policy and
with zt´1 “ p1, xt´1, . . . , xt´nqT the observations vector associated with
the execution of the learner’s policy. We have:

rt “ x˚
t ´ xt
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“ xγpa˚
t q, z˚

t´1y ´ xγpatq, zt´1y

“ xγpa˚
t q, z˚

t´1y ´ xγpa˚
t q, zt´1y ` xγpa˚

t q, zt´1y ´ xγpatq, zt´1y

“ xγpa˚
t q, z˚

t´1 ´ zt´1y ` xγpa˚
t q ´ γpatq, zt´1y

“

n
ÿ

i“1

γipa
˚
t q px˚

t´i ´ xt´iq
loooooomoooooon

rt´i

` xγpa˚
t q ´ γpatq, zt´1y

loooooooooooomoooooooooooon

ρt

,

where in expanding the inner product we made the summation start from
i “ 1 as the two vectors z˚

t´1 and zt´1 have the same first component equal
to 1.

Lemma 5.4.3 (External-to-Policy Regret Bound). Let π be the learner’s
policy and T P N be the horizon. Under Assumptions 5.1.a and 5.1.b, it
holds that:

ErRpπ, T qs “ E

«

T
ÿ

t“1

«

n
ÿ

i“1

γipa
˚
t qrt´i ` ρt

ffff

ď

ˆ

Γn

1 ´ Γ
` 1

˙

ϱpπ, T q,

(5.10)

where ϱpπ, T q :“ E
”

řT
t“1 ρt

ı

is the cumulative expected external regret.

Proof. We start from the decomposition of Lemma 5.4.2. To prove the
result we employ the so-called “superposition principle”, which allows us
to decompose the linear recurrence as follows:

rt “

n
ÿ

i“1

γipa
˚
t qrt´i ` ρt “

`8
ÿ

τ“0

ρτrrt,τ ,

where if τ ą t we set rrt,τ “ 0 and if τ ď t we have that rrt,τ is given by the
recurrence:

rrt,τ “

n
ÿ

i“1

γipa
˚
t qrrt´i,τ ` δt,τ where δt,τ :“

#

1 t “ τ

0 t ‰ τ
.

This way, we decompose the exogenous term ρτ as a linear combination
of unitary impulses. Then by Assumption 5.1.a and 5.1.b, recalling that
rrt,τ “ 0 if τ ą t and that rrτ,τ “ 1, we have that for every t ą τ it holds
that:

rrt,τ ď Γmax
iPJnK

rrt´i,τ ď Γ2max
iPJnK

max
jPJnK

rrt´i´j,τ ď ¨ ¨ ¨ ď Γrpt´τq{ns,

since we will encounter the 1 “ δτ,τ after rpt ´ τq{ns steps of unfolding.
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Now, we can manipulate this formula to have an expression of the full re-
gret:

T
ÿ

t“1

rt ď

T
ÿ

t“1

˜

ρt `

t´1
ÿ

τ“1

Γrpt´τq{nsρτ

¸

“

T
ÿ

τ“1

˜

1 ` ρτ

T
ÿ

t“τ`1

Γrpt´τq{ns

¸

paq

ď

T
ÿ

τ“1

ρτ

˜

1 `

`8
ÿ

s“1

Γrs{ns

¸

pbq
“

T
ÿ

τ“1

ρτ

˜

1 `

`8
ÿ

l“1

nΓl

¸

“

ˆ

1 `
Γn

1 ´ Γ

˙ T
ÿ

τ“1

ρτ ,

where (a) follows from bounding the summation with the series and chang-
ing the index s “ t ´ τ and (b) is obtained by observing that the exponent
rs{ns changes only when s is divisible by n.

Counterexample to show that this bound is tight There are k arms:

γpa1q :“ rΓ, 0 . . . 0s, γpa2q :“ r0,Γ, 0 . . . 0s, . . . γpakq :“ r0, . . . 0,Γs.

All these arms have non-negative coefficients whose sum is bounded by Γ.
If the sequence of internal regrets is:

ρt “

#

1 t “ 1

0 t ą 1
,

and the sequence of arms is a˚
1 “ 1, and a˚

t “ at´1 pmod kq`1 (which means
a1, a2, . . . , ak, a1, a2, . . . ), we have:

r1 “ 1, r2 “ Γ, r3 “ Γ, . . . , rk`1 “ Γ,

and then, we start again with the same sequence of arms:

rk`2 “ Γ2, rk`3 “ Γ2, . . . , r2k`1 “ Γ2.

Making the sum of these terms for t from one to infinity, we get:
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8
ÿ

t“1

rt “ 1 ` k
8
ÿ

t“1

Γt
“ 1 `

kΓ

1 ´ Γ
,

which is exactly the bound we get.

Lemma B.0.1. Let pztqtPJT K be the sequence of observations vectors ob-
served by executing the learner’s policy. If z0 “ p1, 0, . . . , 0qT, then, for
every δ P p0, 1q, with probability at least 1 ´ δ, simultaneously for all
t P JT K, it holds that:

}zt´1}2 ď

d

1 ` n

ˆ

m ` η

1 ´ Γ

˙2

,

where η “
a

2σ2 logpT {δq.

Proof. Let pξtqtPJT K be the sequence of noises. We consider the event E “
ŞT

t“1

␣

|ξt| ď η
(

prescribing that all noises are smaller than η in absolute
value. By union bound, knowing that all the noises are independent σ2-
subgaussian random variables we, can bound the probability of event E :

PpEq “ P

˜

T
č

t“1

␣

|ξt| ď η
(

¸

ě 1 ´ Te´
η2

2σ2 “ 1 ´ δ,

having set η “
a

2σ2 logpT {δq. Under event E when z0 “ p1, 0, . . . , 0qT,
we prove by induction that all rewards xt are bounded in absolute value by
m`η
1´Γ

, regardless the actions played. For T “ 1, the statement is trivial since
x1 “ γ0pa1q ` η1 and, thus, |x1| ď γ0pa1q ` |η1| ď m` η ď

m`η
1´Γ

. Suppose
the statement holds for all s ă t, we prove it for t. We have:

xt “ γ0patq `

n
ÿ

i“1

γipatqxt´i ` ηt

ùñ |xt| ď γ0patq `

n
ÿ

i“1

γipatq|xt´i| ` |ηt|

ď m ` Γ
m ` Γ

1 ´ Γ
` η “

m ` η

1 ´ Γ
,

where the first inequality uses Assumption 5.1.a, the second inequality fol-
lows from the inductive hypothesis and by Assumptions 5.1.b and 5.1.c.
Passing to the observations vector, we have:

}zt´1}
2
2 “ 1 `

n
ÿ

i“1

x2
t´i ď 1 ` n

ˆ

m ` η

1 ´ Γ

˙2

.
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For deriving the regret bound, we make use of the following result, known
as Elliptic Potential Lemma (Lattimore and Szepesvári, 2020, Lemma 19.4).

Lemma B.0.2 (Elliptic Potential Lemma). Let V0 P Rdˆd be a positive
definite matrix and let a1, . . . , an P Rd be a sequence of vectors such that
}at}2 ď L ă `8 for all t P JkK. Let Vt “ V0 `

řt
s“1 asa

T
s , Then:

k
ÿ

t“1

mint1, }as}Vt´1
´1u ď 2d log

ˆ

trpV0q ` kL2

d detpV0q1{d

˙

.

Theorem 5.4.4. Let δ “ p2T q´1. Under Assumptions 5.1.a, 5.1.b, and 5.1.c,
AR-UCB suffers a cumulative expected (policy) regret bounded by (high-
lighting the dependence on m, σ, n, Γ, k, and T only):

ErRpAR-UCB, T qs ď rO
ˆ

pm ` σqpn ` 1q3{2
?
kT

p1 ´ Γq2

˙

.

Proof. We denote with px˚
t qtPJT K the sequence of rewards generated by play-

ing the optimal policy and with pxtqtPJT K the sequence of rewards generated
by playing AR-UCB. Thanks to Lemma 5.4.3, we have to bound the ex-
ternal regret only. Let δ P p0, 1q, and define for every round t P JT K and
action a P A:

βtpaq :“
a

λpm2 ` 1q ` σ

d

2 log
´n

δ

¯

` log

ˆ

detVtpaq

λn`1

˙

.

Let us define the confidence set:

Ctpaq :“ tγ P Rn`1 : }γ ´ pγt´1paq}Vt´1paq ď βt´1paqu,

and the optimistic estimate of the true parameter vector γpaq:

rγtpaq P argmax
γPCtpaq

xγ, zt´1y.

By Theorem 5.4.1, we have that, for every action a P A and round t P JT K,
the true parameter vector satisfies γpaq P Ctpaq with probability at least
1 ´ δ. Therefore, with the same probability, we have:

xγpa˚
t q ´ γpatq,zt´1y
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“ xγpa˚
t q ´ rγtpatq, zt´1y

loooooooooooomoooooooooooon

ď0

`xrγtpatq ´ γpatq, zt´1y

ď xrγtpatq ´ pγt´1patq, zt´1y ` xpγt´1patq ´ γpatq, zt´1y

ď 2βt´1patq}zt´1}Vt´1paq´1 ,

where the first inequality follows from the optimism and in the last passage
we have used Cauchy-Schwartz inequality, recalling that for every couple
of vectors v,w it holds xv,wy ď }v}Vt´1paq}w}Vt´1paq´1 , and having ob-
served that γpatq, rγtpatq P Ctpatq.
Furthermore, we observe that the external regret:

ρt “ xγpa˚
t q ´ γpatq, zt´1y

ď }zt´1}2 ` m,

since the coefficients γj for j ‰ 0 have a sum bounded by Γ ă 1 and get
multiplied by zt´1, while γ0, which is bounded by m gets multiplied by 1,
then we have ρt ď L ` m “ Opmq. By Lemma B.0.1 with probability of
at least 1 ´ δ we have:

}zt}2 ď

d

1 ` n

ˆ

m ` η

1 ´ Γ

˙2

“: L,

where η “
a

2σ2 logpT {δq and, consequently:

ρt ď m ` L “: C1.

At this point, we proceed as follows:

ρt ď 2mintC1, βt´1patq}zt´1}Vt´1patq´1u

ď 2maxtC1, βt´1patqumint1, }zt´1}Vt´1patq´1u.

Summing over t P JT K, we obtain a bound on the cumulative external re-
gret:

ϱpAR-UCB, T q “

T
ÿ

t“1

ρt

“

T
ÿ

t“1

1 ¨ ρt

ď

g

f

f

eT
T
ÿ

t“1

ρ2t
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ď 2maxtC1, βT´1u

g

f

f

eT
T
ÿ

t“1

mint1, }zt´1}
2
Vt´1patq´1u

where

βT´1 :“ max
aPA

βT´1paq,

where the first inequality follows from an application of Cauchy-Schwartz
inequality and the last passage holds since the sequence βtpatq is non-
decreasing, and so we can bound each of them with their value at t “ T .
Now, we are finally able to use the Elliptic Potential Lemma (Lemma B.0.2):

T
ÿ

t“1

mint1, }zt´1}
2
Vt´1patq´1u “

ÿ

aPA

ÿ

lPOT paq

mint1, }zl´1}
2
Vl´1paq´1u

ď
ÿ

aPA
2pn ` 1q log

ˆ

λpn ` 1q ` |OT paq|L2

λpn ` 1q

˙

ď 2npn ` 1q log

ˆ

1 `
TL2

kλpn ` 1q

˙

,

where the first inequality follows from an application of the elliptic poten-
tial lemma for each action a P A observing that V0 “ λIn`1 and, conse-
quently, trpV0q “ λpn`1q and detpV0q

1{pn`1q “ λ. The second inequality
follows by observing that

ř

aPA |OT paq| “ T and since the log is a concave
function, the worst allocation of pulls is the uniform one. Now that we have
bounded the inner summation, we can state that:

ϱpAR-UCB, T q “

T
ÿ

t“1

ρt

ď 2maxtC1, βT´1u

d

2Tkpn ` 1q log

ˆ

1 `
TL2

kλpn ` 1q

˙

.

To conclude, we bound the term βT´1 as follows:

βT´1 “
a

λpm2 ` 1q ` σmax
aPA

d

2 log

ˆ

k

δ

˙

` log

ˆ

detVT´1paq

λn`1

˙

ď
a

λpm2 ` 1q ` σ

d

2 log

ˆ

k

δ

˙

` pn ` 1q log

ˆ

λpn ` 1q ` TL2

λpn ` 1q

˙

.
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Therefore, by highlighting the dependences on m, n, σ, and Γ, we have:

βT´1 “ rO
`

m ` σ
?
n ` 1

˘

, C1 “ rO
ˆ

1 `
?
n
m ` σ

1 ´ Γ

˙

.

These results hold with probability 1 ´ 2δ. We set δ “ p2T q´1. Putting all
together, we obtain:

ϱpAR-UCB, T q “

T
ÿ

t“1

ρt ď rO

˜

pm ` σq
a

kpn ` 1qT

1 ´ Γ

¸

,

and, applying the previous Lemma 5.4.3, this results in:

RpAR-UCB, T q ď rO
ˆ

pm ` σqpn ` 1q3{2
?
kT

p1 ´ Γq2

˙

.

B.1 Optimal Policy without Noise

In this section, we derive the optimal policy for the deterministic setting.
In the case of no noise, our system writes:

xt “ γ0patq `

n
ÿ

i“1

γipatqxt´i. (B.1)

In this case, the process evolution is deterministic. Therefore, even if it is
still true that the optimal policy is given by Theorem 5.2.1, it is possible
to say that there is a constant policy that is asymptotically optimal, in the
sense that its cumulative regret is bounded by a constant. This policy is
given by:

a`
P argmax

aPA

γ0patq

1 ´
řn

i“1 γipatq
. (B.2)

This result is not surprising. In fact, this action makes the process converge
to the highest possible stationary reward, which is of course

argmax
aPA

γ0patq

1 ´
řn

i“1 γipatq
.

Formally, the following result holds.
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Theorem B.1.1. Let us consider the problem formulation of Equation (B.1).
Define:

a`
P argmax

aPA

γ0patq

1 ´
řn

i“1 γipatq
,

as in Equation (B.2). Then, there exist no policy π (even non-constant)
such that:

lim sup
tÑ`8

xπ
t ´ x˚

t ą 0

(where xπ
t denotes the sequence obtained with policy π, while x˚

t is the one
relative to a`). Moreover, the cumulative regret with respect to the actual
optimal policy is bounded by:

γ0pa
`

q
n

p1 ´ Γq2
.

Proof. If we play always a`, we have:

lim sup
tÑ`8

x˚
t “

γ0pa`q

1 ´
řn

i“1 γipa
`q

,

by imposing the condition of stationarity. For the rest of the proof, let us
denote:

x˚ :“
γ0pa

`q

1 ´
řn

i“1 γipa
`q

.

Now, we prove that, for any policy π, we cannot achieve an xt ą x˚. By
contradiction, if lim suptÑ8 xπ

t ´ x˚
t ą 0, then the set tt P N : xt ą x˚u

is non-empty. Let t0 “ mintt P N : xt ą x˚u. Then, by definition:

xt0 “ γ0pat0q `

n
ÿ

i“1

γipat0qxt0´i.

Recalling that t0 is the first time in which we surpass x˚, we have:

x˚
ă xt0 “ γ0pat0q `

n
ÿ

i“1

γipat0qxt0´i ď γ0pat0q `

n
ÿ

i“1

γipat0qx˚.

This inequality entails that:
´

1 ´

n
ÿ

i“1

γipat0q

¯

x˚
ă γ0pat0q,

and, therefore:

γ0pa
`q

1 ´
řn

i“1 γipa
`q

“ x˚
ă

γ0pat0q

1 ´
řn

i“1 γipat0q
,
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which contradicts the definition of a`.
For the second part, we start considering that the regret obtained by using
constant action a` is bounded by:

`8
ÿ

t“1

x˚
´ xt,

since x˚ is the maximum instantaneous reward that every policy can achieve.
Now, note that γ0pa`q ą 0, otherwise it could not be the optimal action. At
this point, we have for 0 ă t ď n that xt ě γ0pa`q, by simply using the
fact that all the coefficients of the autoregressive model are non-negative.
From this fact we have for n ă t ď 2n that xt ě γ0pa

`qp1 `
řn

i“1 γipa
`qq;

and generalizing:

xt ě γ0pa
`

q

´

j
ÿ

ℓ“0

pΓ`
q
ℓ
¯

, @j ą 0 and jn ´ n ă t ď jn

with:

Γ`
“

n
ÿ

i“1

γipa
`

q.

Therefore, we have xt ě γ0pa`q1´Γtt{nu

1´Γ
, which means:

Rt ď

`8
ÿ

t“1

x˚
´ xt

ď

`8
ÿ

t“1

x˚
´ γ0pa

`
q
1 ´ Γtt{nu

1 ´ Γ

“ γ0pa
`

q

`8
ÿ

t“1

1

1 ´ Γ
´

1 ´ Γtt{nu

1 ´ Γ

“ γ0pa
`

q

`8
ÿ

t“1

Γtt{nu

1 ´ Γ

“ γ0pa
`

q
n

p1 ´ Γq2
.
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APPENDIXC
Omitted Proofs of Chapter 7

In this appendix, we provide the proofs we have omitted in Chapter 7.

C.0.1 Proofs of Section 7.2

Before we proceed, we introduce a different notion of regret useful for anal-
ysis purposes, that we name offline regret. This notion of regret compares
J˚ with the steady-state performance of the action ut “ πtpHt´1q played
at each round t P JT K by the agent:

Roff
pπ, T q :“ TJ˚

´

T
ÿ

t“1

Jputq. (C.1)

We denote with ERoffpπ, T q the expected offline regret, where the expecta-
tion is taken w.r.t. the randomness of the reward. Clearly, the two notions
of regret coincide when the system has no dynamics.
The following result relates the offline and the (online) expected regret.

Lemma C.0.1. Under Assumptions 7.1 and 7.2, for any policy π, it holds
that:

ˇ

ˇERoff
pπ, T q ´ ERpπ, T q

ˇ

ˇ ď
ΩΦpAqBU

p1 ´ ρpAqq2
`

ΩΦpAqX

1 ´ ρpAq
.
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Appendix C. Omitted Proofs of Chapter 7

Proof. First of all, we observe that for any policy, the cumulative effect
of the noise components is zero-mean. Thus, it suffices to consider the
deterministic evolution of the system. For every t P JT K, let us denote
with Eryts the expected reward at time t and with Jputq as the steady-state
performance when executing action ut:

Eryts “

t´1
ÿ

s“0

xhtsu,ut´sy ` ωTAt´1x1

“ θTut ` ωT
t´1
ÿ

s“1

As´1But´s ` ωTAt´1x1,

Jputq “ θTut ` ωT
pId ´ Aq

´1 ut

“ θTut ` ωT
`8
ÿ

s“0

Asut.

We now proceed by summing over t P JT K. First of all, we consider the
following preliminary result involving yt, which is obtained by rearranging
the summations:

T
ÿ

t“1

Eryts “ θT
T
ÿ

t“1

ut ` ωT
T
ÿ

t“1

t´1
ÿ

s“1

As´1But´s ` ωT
T
ÿ

t“1

At´1x1

“ θT
T
ÿ

t“1

ut ` ωT
T´1
ÿ

t“1

˜

T´t´1
ÿ

s“0

As

¸

But ` ωT
T
ÿ

t“1

At´1x1.

Thus, we have:
ˇ

ˇ

ˇ

ˇ

ˇ

T
ÿ

t“1

pJputq ´ Erytsq

ˇ

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

ˇ

ωT
T
ÿ

t“1

˜

`8
ÿ

s“0

As
´

T´t´1
ÿ

s“0

As

¸

But ´ ωT
T
ÿ

t“1

At´1x1

ˇ

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

ˇ

ωT
T
ÿ

t“1

˜

`8
ÿ

s“T´t

As

¸

But ´ ωT
T
ÿ

t“1

At´1x1

ˇ

ˇ

ˇ

ˇ

ˇ

ď ΩΦpAqBU
T
ÿ

t“1

`8
ÿ

s“T´t

ρpAq
s

` ΩΦpAqX
T
ÿ

t“1

ρpAq
t´1

(C.2)

ď
ΩΦpAqBU

1 ´ ρpAq

T
ÿ

t“1

ρpAq
T´t

`
ΩΦpAqX

1 ´ ρpAq
(C.3)

ď
ΩΦpAqBU

p1 ´ ρpAqq2
`

ΩΦpAqX

1 ´ ρpAq
, (C.4)
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where line (C.2) follows from Assumptions 7.1 and 7.2, lines (C.3) and (C.4)
follow from bounding the summations with the series. The result follows
by observing that:

ERoff
pπ, T q ´ ERpπ, T q “

T
ÿ

t“1

pJputq ´ Erytsq .

Theorem 7.2.2 (Lower Bound). For any policy π (even stochastic), there
exists a DLB fulfilling Assumptions 7.1 and 7.2, such that for sufficiently
large T ě O

´

d2

1´ρpAq

¯

, policy π suffers an expected regret lower bounded
by:

ERpπ, T q ě Ω

˜

d
?
T

p1 ´ ρpAqq
1
2

¸

.

Proof. To derive the lower bound, we take inspiration from the construction
of Lattimore and Szepesvári (2020) for linear bandits (Theorem 24.1). We
consider a class of DLBs defined in terms of fixed 0 ď ρ ă 1 and 0 ď ϵ ď ρ

with ω “ 1d, θ “ ´
2p1´ρq`ϵ
2p1´pρ´ϵqq

1d, B “ p1 ´ ρqId and with a diagonal
dynamical matrix A “ diagpaq, defined in terms of the vector a belonging
to the set A “ tρ, ρ ´ ϵud. The available actions are U “ t´1, 1ud. Let
us note that |A| “ |U | “ 2d. Thus, in our set of DLBs, the vector a fully
characterizes the problem. Moreover, we observe that, given the diagonal
a “ diagpAq, we can compute the cumulative Markov parameter ha “

signpaq ϵ
2p1´pρ´ϵqq

.1 As a consequence the optimal action can be defined as
u˚
a “ signpaq, whose performance is given by J˚

a “ xha,u
˚
ay “ ϵd

2p1´pρ´ϵqq
.

Let us consider the probability distribution over the canonical bandit model
induced by executing a policy π in a DLB characterized by the diagonal of
the dynamical matrix a P A and with Gaussian diagonal noise:

Pa “

T
ź

t“1

N pxt`1|Axt`But, σ
2IdqN pyt|xθ,uty`xω,xty, σ

2
qπtput|Ht´1q,

where Ht´1 is the history of observations up to time t ´ 1. We denote with
Ea the expectation induced by the distribution Pa. For every i P JdK, let

1For a vector v P Rd, we denote with signpvq P t´1, 1ud the vector of the signs of the components of v. It
is irrelevant how we convene to define the sign of 0.
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us now consider an alternative DLB instance that differs on the dynamical
matrix only. Specifically:

a1
j “

$

’

’

&

’

’

%

aj if j ‰ i

ρ if j “ i and aj “ ρ ´ ϵ

ρ ´ ϵ if j “ i and aj “ ρ

, @j P JdK.

By relative entropy identities (Lattimore and Szepesvári, 2020), let A “

diagpaq and A1 “ diagpa1q, we have:

DKL pPa,Pa1q

“ Ea

«

T
ÿ

t“1

DKL

`

N p¨|Axt ` But, σ
2Idq,N p¨|A1xt ` But, σ

2Idq
˘

ff

“
1

2σ2

T
ÿ

t“1

Ea

”

}pA ´ A1
qxt}

2
2

ı

“ ϵ2Ea

“

x2
t,i

‰

.

We proceed at properly bounding the KL-divergence, letting ei be the i-th
vector of the canonical basis of Rd and convening that x0 “ 0d:

Ea

“

x2
t,i

‰

“ Ea

»

–

˜

t´1
ÿ

s“1

eTiA
sBut´s `

t´1
ÿ

s“1

eTiA
sϵt´s

¸2
fi

fl

“ Ea

»

–

˜

p1 ´ ρq

t´1
ÿ

s“1

as
iut´s,i `

t´1
ÿ

s“1

as
iϵt´s,i

¸2
fi

fl

“ Ea

»

—

—

—

—

–

p1 ´ ρq
2
t´1
ÿ

s“1

t´1
ÿ

l“1

as`l
i ut´s,iut´l,i

loooooooooooooooooomoooooooooooooooooon

(a)

`

` 2 p1 ´ ρq

t´1
ÿ

s“1

t´1
ÿ

l“1

as`l
i ut´s,iϵt´l,i

looooooooooooooooomooooooooooooooooon

(b)

`

`

t´1
ÿ

s“1

t´1
ÿ

l“1

as`l
i ϵt´s,iϵt´l,i

looooooooooomooooooooooon

(c)

fi

ffi

ffi

ffi

ffi

fl
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Let us start with (a):

p1 ´ ρq
2Ea

«

t´1
ÿ

s“1

t´1
ÿ

l“1

as`l
i ut´s,iut´l,i

ff

ď p1 ´ ρq
2
t´1
ÿ

s“1

t´1
ÿ

l“1

ρs`l
ď 1,

having observed that |ut´s,i|, |ut´l,i| ď 1, that |ai| ď ρ, and bounding the
summations with the series.
Let us move to (b):

p1 ´ ρqEa

«

t´1
ÿ

s“1

t´1
ÿ

l“1

as`l
i ut´s,iϵt´l,i

ff

“ p1 ´ ρqEa

«

t´1
ÿ

s“1

t´1
ÿ

l“s`1

as`l
i ut´s,iϵt´l,i

ff

` p1 ´ ρq

��������������:0

Ea

«

t´1
ÿ

l“1

t´1
ÿ

s“l

as`l
i ut´s,iϵt´l,i

ff

ď p1 ´ ρq

t´1
ÿ

s“1

t´1
ÿ

l“s`1

ρs`lEa r|ϵt´l,i|s

ď
σ

1 ´ ρ

c

2

π
,

having observed that ut´s,i and ϵt´l,i are independent when s ě l and ϵt´l,i

has zero mean, that |ut´s,i| ď 1, that as`l
i ď ρs`l, and that the expectation

of the absolute value of random variable normally distributed is given by

E r|ϵt´l,i|s “ σ
b

2
π

.
Finally, let us consider (c):

Ea

«

t´1
ÿ

s“1

t´1
ÿ

l“1

as`l
i ϵt´s,iϵt´l,i

ff

“ Ea

«

t´1
ÿ

s“1

a2s
i ϵt´s,iϵt´s,i

ff

` 2

���������������:0

Ea

«

t´2
ÿ

s“1

t´1
ÿ

l“s`1

as`l
i ϵt´s,iϵt´l,i

ff

ď σ2
t´1
ÿ

s“1

ρ2s ď
σ2

1 ´ ρ2
ď

σ2

1 ´ ρ
,

having observed that the noise vectors ϵt´l,i and ϵt´s,i are independent
whenever s ‰ l, that Earϵ2t´s,is “ σ2, and having bounded the sum with the
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series.
Coming back to the original bound, we have:

Ea

“

x2
t,i

‰

ď 1 `
1

1 ´ ρ

˜

σ2
` 2σ

c

2

π

¸

.

For i P JdK and a P A, we introduce the symbol:

pa,i “ Pa

˜

T
ÿ

t“1

1tsignput,iq ‰ signpha,iqu ě
T

2

¸

.

Thus, for a and a1 defined as above, by the Bretagnolle-Huber inequal-
ity (Lattimore and Szepesvári, 2020, Theorem 14.2), we have:

pa,i ` pa1,i ě
1

2
exp p´DKL pPa,Pa1qq

“
1

2
exp

˜

´
1

2σ2

T
ÿ

t“1

EP

”

}pA ´ A1
qxt}

2
2

ı

¸

ě
1

2
exp

˜

´
Tϵ2

2

˜

1

σ2
`

1

1 ´ ρ

˜

1 `
2

σ

c

2

π

¸¸¸

ě
1

2
exp

ˆ

´
2Tϵ2

1 ´ ρ

˙

,

having selected σ2 “ 1. We use the notation
ř

a´i
to denote the multiple

summation
ř

a1,...,ai´1,ai`1,...,adPtρ,ρ´ϵud´1:

ÿ

aPA
2´d

d
ÿ

i“1

pa,i “

d
ÿ

i“1

ÿ

a´i

2´d
ÿ

aiPtρ,ρ´ϵu

pa,i

ě

d
ÿ

i“1

ÿ

a´i

2´d
¨
1

2
exp

ˆ

´
2Tϵ2

1 ´ ρ

˙

“
d

4
exp

ˆ

´
2Tϵ2

1 ´ ρ

˙

.

Therefore, with this averaging argument, we can conclude that there exists
a˚ P A such that

řd
i“1 pa˚,i ě d

4
exp

´

´2Tϵ2

1´ρ

¯

. For this choice a˚, we
consider u˚

a˚ “ signpa˚q P U , we can proceed to the lower bound on the
expected offline regret:

ERoff
pπ, T q
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“

T
ÿ

t“1

Ea˚ rxha˚ ,u˚
a˚ ´ utys

“

T
ÿ

t“1

Ea˚

«

d
ÿ

i“1

1tsignput,iq ‰ signpha˚,iqu
ϵ

1 ´ pρ ´ ϵq

ff

“
ϵ

1 ´ pρ ´ ϵq

T
ÿ

t“1

d
ÿ

i“1

Pa˚ psignput,iq ‰ signpha˚,iqq

ě
Tϵ

2p1 ´ pρ ´ ϵqq

d
ÿ

i“1

Pa˚

˜

T
ÿ

t“1

1tsignput,iq ‰ signpha˚,iqu ě
T

2

¸

“
Tϵ

2p1 ´ pρ ´ ϵqq

d
ÿ

i“1

pa˚,i ě
Tdϵ

8p1 ´ pρ ´ ϵqq
exp

ˆ

´
2Tϵ2

1 ´ ρ

˙

.

We now maximize over 0 ď ϵ ă ρ. To this end, we perform the substitution
ϵ “

p1´ρqrϵ
1´rϵ

, with 0 ď rϵ ď ρ:

Tdϵ

8p1 ´ pρ ´ ϵqq
exp

ˆ

´
2Tϵ2

1 ´ ρ

˙

“
Tdrϵ

8
exp

ˆ

´
2rϵ2T p1 ´ ρq

p1 ´ rϵq2

˙

ě
Tdrϵ

8
exp

`

´8rϵ2T p1 ´ ρq
˘

,

where the last inequality holds for rϵ ď 1
2
. We not take rϵ “ 1?

8T p1´ρq
which

is smaller than 1
2

if T ě 1
2p1´ρq

, to get:

ERoff
pπ, T q ě

d
?
T

a

512ep1 ´ ρq
.

Notice that with this choice of rϵ (and, consequently, of ϵ), for sufficiently
large T , we fulfill Assumption 7.2. Indeed:

θ “ ´1 `
1

a

32T p1 ´ ρq
, J˚

a “
d

a

32T p1 ´ ρq
.

Thus, we require T ě O
´

d2

1´ρ

¯

. Finally, to convert this result to the ex-
pected regret, we employ Lemma C.0.1:

ERoff
pπ, T q ě ERoff

pπ, T q ´
d

1 ´ ρ
.
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Under the constraint T ě O
´

d2

1´ρ

¯

, we observe that:

ERoff
pπ, T q ě Ω

˜

d
?
T

p1 ´ ρq
1
2

¸

.

Theorem 7.2.1 (Optimal Policy). Under Assumptions 7.1 and 7.2, an op-
timal policy π˚ maximizing the (infinite-horizon) expected average reward
Jpπq (Equation 7.2), for every round t P N and history Ht´1 P Ht´1 is
given by:

π˚
t pHt´1q “ u˚ where u˚

P argmax
uPU

Jpuq “ xh,uy. (7.4)

Proof. Referring to the notation of Appendix C.1, we first observe that for
every policy π, we have Jpπq “ lim infHÑ`8 JHpπq, where JHpπq “
1
H
Er
řH

t“1 yts, is the H-horizon expected average reward. Let us start with
Equation (C.12), a fixed finite H P N, and considering the sequence of
actions pu1,u2, . . . q generated by policy π:

JHpπq “
1

H

H
ÿ

s“1

xhJ0,H´sK,Erussy `
1

H

H
ÿ

t“1

ωTAt´1 Erx1s

“
1

H

H
ÿ

s“1

xh,Erussy ´
1

H

H
ÿ

s“1

xhJH´s`1,`8M,Erussy

`
1

H

H
ÿ

t“1

ωTAt´1 Erx1s.

Now, we consider two bounds on JHpπq, obtained by an application of
Cauchy-Schwarz inequality on the second addendum:

JHpπq ď
1

H

H
ÿ

s“1

xh,Erussy `
1

H

H
ÿ

s“1

›

›hJH´s`1,`8M
›

›

2
}Eruss}2

`
1

H

H
ÿ

t“1

ωTAt´1 Erx1s “: JÒ

Hpπq,

JHpπq ě
1

H

H
ÿ

s“1

xh,Erussy ´
1

H

H
ÿ

s“1

›

›hJH´s`1,`8M
›

›

2
}Eruss}2
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`
1

H

H
ÿ

t“1

ωTAt´1 Erx1s “: JÓ

Hpπq.

Concerning the term }Eruss}2, we have that }Eruss}2 ď Er}us}2s ď U ,
having used Jensen’s inequality and under Assumption 7.2. Regarding the
second term, using Assumptions 7.1 and 7.2, we obtain:

›

›hJH´s`1,`8M
›

›

2
“

›

›

›

›

›

`8
ÿ

l“H´s`1

BT
pAl´1

q
Tω

›

›

›

›

›

2

ď BΩ
`8
ÿ

l“H´s`1

ΦpAqρpAq
l´1

“ BΩΦpAq
ρpAqH´s

1 ´ ρpAq
. (C.5)

Plugging this result into the summation over s, we obtain:

1

H
¨
BΩΦpAq

1 ´ ρpAq

H
ÿ

s“1

ρpAq
H´s

“
BΩΦpAqp1 ´ ρpAqHq

Hp1 ´ ρpAqq2
.

It is simple to observe that the last term approaches zero as H Ñ `8.
Moreover, with an analogous argument, it can be proved that:

›

›

›

›

›

1

H

H
ÿ

t“1

ωTAt´1 Erx1s

›

›

›

›

›

2

Ñ 0,

as H Ñ `8.
Thus, we have that:

lim inf
HÑ`8

JÓ

Hpπq “ lim inf
HÑ`8

JÒ

Hpπq.

Consequently, by the squeezing theorem of limits, we have:

Jpπq “ lim inf
HÑ`8

JÒ

Hpπq “ lim inf
HÑ`8

JÓ

Hpπq

“ lim inf
HÑ`8

1

H

H
ÿ

s“1

xh,Erussy “ hT

˜

lim inf
HÑ`8

1

H

H
ÿ

s“1

Eruss

¸

.

It follows that an optimal policy is a policy that plays the constant action
u˚ P argmaxuPUxh,uy.
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C.0.2 Proofs of Section 7.3

Theorem 7.3.1 (Self-Normalized Concentration). Let pphtqtPN be the se-
quence of solutions of the Ridge regression problems of Algorithm 7.1.
Then, under Assumption 7.1 and 7.2, for every λ ě 0 and δ P p0, 1q, with
probability at least 1´ δ, simultaneously for all rounds t P N, it holds that:

›

›

›

pht ´ h
›

›

›

Vt

ď
c1

?
λ
logpept ` 1qq ` c2

?
λ

`

d

2rσ2

ˆ

log

ˆ

1

δ

˙

`
1

2
log

ˆ

det pVtq

λd

˙˙

,

where:

c1 “ UΩΦpAq

ˆ

UB

1 ´ ρpAq
` X

˙

,

c2 “ Θ `
ΩBΦpAq

1 ´ ρpAq
,

rσ2 “ σ2

ˆ

1 `
Ω2ΦpAq2

1 ´ ρpAq2

˙

.

Proof. First of all, let us properly relate the round t P JT K and the index of
the epoch m P JMK. For every epoch m P JMK, we denote with tm the last
round of epoch m (i.e., the one in which we update the relevant matrices
Vt and bt):2

t0 “ 0, tm “ tm´1 ` 1 ` Hm.

We now proceed to define suitable filtrations. Let F “ pFtqtPJT K such that
for every t ě 1, the random variables tu1, y1, . . . ,ut´1, yt´1,utu are Ft´1-
measurable, i.e., Ft´1 “ σpu1, y1, . . . ,ut´1, yt´1,utq. Let us also consider
the filtration indexed by m, denoted with rF “ p rFmqmPJMK and defined
for all m P JMK as rFm “ Ftm`1´1. Thus, the random variables rFm´1-
measurable are those realized until the end of epoch m except for ytm .
Since the estimates pht do not change within an epoch, we need to guarantee
the statement for all rounds ttmumPJMK only. For these rounds, we define
the following quantities:

rym “ ytm ,

rum “ utm , (or any ul with l P Jtm´1 ` 1, tmK since they are all equal)
2It is worth noting that the variables tm are deterministic.
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rξm “ ηtm `

Hm`1
ÿ

s“1

ωTAs´1ϵtm´s,

rxm´1 “ xtm´1 ,

rhm “ phtm ,

rVm “ Vtm ,

rbm “ btm .

We prove that prξmqmPJMK is a martingale difference process adapted to
the filtration rF. To this end, we recall that, by construction, pηtqtPJT K and
pϵtqtPJT K are martingale difference processes adapted to the filtration F. It is
clear that rξm is Fm-measurable and, being σ2-subgaussian it is absolutely
integrable. Furthermore, using the tower law of expectation:

E
”

rξm| rFm´1

ı

“ E

«

ηtm `

Hm`1
ÿ

s“1

ωTAs´1ϵtm´s|Ftm´1

ff

“ E rηtm |Ftm´1s

` E

«

Hm`1
ÿ

s“1

ωTAs´1 Erϵtm´s|Ftm´s´1s|Ftm´1

ff

“ 0,

since the system is operating by persisting the action after having decided
it at the beginning of the epoch. Thus, by exploiting the decomposition in
Equation (7.1), we can write:

rym “ ytm

“ xhJ0,Hm`1K, rumy ` ωTAHm`1xtm´1 ` ηtm `

Hm`1
ÿ

s“1

ωTAs´1ϵtm´s

“ xhJ0,Hm`1K, rumy ` ωTAHm`1
rxm´1 ` rξm

“ xh, rumy ´ xhJHm`2,8M, rumy ` ωTAHm`1
rxm´1 ` rξm, (C.6)

where we simply exploit the identity h “ hJ0,Hm`1K ` hJHm`2,8M. We now
introduce the following vectors and matrices:

rUm “

¨

˚

˝

ruT
1

...
ruT
m

˛

‹

‚

P Rmˆd, rym “

¨

˚

˝

ry1
...
rym

˛

‹

‚

P Rm,
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rξm “

¨

˚

˚

˝

rξ1
...
rξm

˛

‹

‹

‚

P Rm, rνm “

¨

˚

˝

ωTAH1`2
rx0

...
ωTAHm`2

rxm´1

˛

‹

‚

P Rm,

rgm “

¨

˚

˝

xhJH1`1,8M, ru1y

...
xhJHm`1,8M, rumy

˛

‹

‚

P Rm.

Using the vectors and matrices above, we observe that rVm “ λI` rUT
m
rUm

and rbm “ rUT
mrym. Furthermore, by exploiting Equation (C.6), we can

write:

rym “ rUmh ´ rgm ` rνm ` rξm.

Let us consider the estimate at m P JMK:

rhm “ rV´1
m
rbm

“

´

λI ` rUT
m
rUm

¯´1
rUT

mrym

“

´

λI ` rUT
m
rUm

¯´1
rUT

m

´

rUmh ´ rgm ` rνm ` rξm

¯

“ h `

´

λI ` rUT
m
rUm

¯´1 ´

´λh ´ rUT
mrgm ` rUT

mrνm ` rUT
m
rξm

¯

.

We now proceed at bounding the } ¨ }
rVm

-norm, and exploit the triangle
inequality:
›

›

›

rhm ´ h
›

›

›

rVm

ď λ
›

›

›

rV´1
m h

›

›

›

rVm

`

›

›

›

rV´1
m

rUT
mrgm

›

›

›

rVm

`

›

›

›

rV´1
m

rUT
mrνm

›

›

›

rVm

`

›

›

›

rV´1
m

rUT
m
rξm

›

›

›

rVm

“ λ }h}
rV´1
m

looomooon

(a)

`

›

›

›

rUT
mrgm

›

›

›

rV´1
m

loooooomoooooon

(b)

`

›

›

›

rUT
mrνm

›

›

›

rV´1
m

loooooomoooooon

(c)

`

›

›

›

rUT
m
rξm

›

›

›

rV´1
m

looooomooooon

(d)

,

where we simply exploited the identity }V´1x}2V “ xTV´1VV´1x “

xTV´1x “ }x}2V´1 . We now bound one term at a time.
Let us start with (a):

(a)2 “ λ2
}h}

2
rV´1
m

“ λ2hT
rV´1

m h

ď λ2
›

›

›

rV´1
m

›

›

›

2
}h}

2
2
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ď λ }h}
2
2

ď λ

ˆ

Θ `
ΩBΦpAq

1 ´ ρpAq

˙2

,

where we observed that
›

›

›

rV´1
m

›

›

›

2
ď

›

›

›

rVm

›

›

›

´1

2
ď λ´1. Finally, we have

bounded the norm of h:

}h}2 “

›

›

›

›

›

`8
ÿ

s“0

htsu

›

›

›

›

›

2

ď

`8
ÿ

s“0

›

›htsu
›

›

2

ď }θ}2 ` }ω}2}B}2

`8
ÿ

s“1

}A}
s´1

ď Θ `
ΩBΦpAq

1 ´ ρpAq
,

where we have exploited Assumptions 7.1 and 7.2.
We now move to term (b):

(b)2 “

›

›

›

rUT
mrgm

›

›

›

2

rV´1
m

“ rgTm
rUm

rV´1
m

rUT
mrgm

ď
1

λ

›

›

›
rgTm

rUm

›

›

›

2

2

“
1

λ

›

›

›

›

›

m
ÿ

l“1

xrul,h
JHl`2,8M

yrul

›

›

›

›

›

2

2

ď
1

λ

˜

m
ÿ

l“1

}rul}
2
2

›

›hJHl`2,8M
›

›

2

¸2

ď
U4Ω2B2ΦpAq2

λp1 ´ ρpAqq2
¨

˜

m
ÿ

l“1

ρpAq
Hl`1

¸2

,

where we have employed the following inequality:

›

›hJHl`2,8M
›

›

2
“

›

›

›

›

›

ωT
`8
ÿ

j“Hl`2

Aj´1B

›

›

›

›

›

2

ď }ω}2 }B}2

`8
ÿ

j“Hl`2

›

›Aj´1
›

›

2
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ď ΩBΦpAq
ρpAqHl`1

1 ´ ρpAq
.

Let us now consider term (c):

(c)2 “

›

›

›

rUT
mrνm

›

›

›

2

rV´1
m

“ rνT
m
rUm

rV´1
m

rUT
mrνm

ď
1

λ

›

›

›

rUT
mrνm

›

›

›

2

2

“
1

λ

›

›

›

›

›

m
ÿ

s“1

ωTAHl`1
rxl´1rul

›

›

›

›

›

2

2

ď
1

λ

˜

m
ÿ

s“1

}ω}2
›

›AHl`1
›

›

2
}rxl´1}2}rul}2

¸2

ď
X2Ω2U2ΦpAq2

λ
¨

˜

m
ÿ

l“1

ρpAq
Hl`1

¸2

.

We now bound the summations, exploiting the inequality ρpAq ď ρ, hold-
ing by assumption:

m
ÿ

l“1

ρpAq
Hl`1

“

m
ÿ

l“1

ρpAq

Y

log l

log 1
ρ

]

`1

ď

m
ÿ

l“1

ρpAq

log l

log 1
ρ

“

m
ÿ

l“1

exp

˜

´
log 1

ρpAq

log 1
ρ

log l

¸

“

m
ÿ

l“1

1

l
ď logpm ` 1q ` 1 ď logpt ` 1q ` 1 “ logpept ` 1qq,

having exploited the fact that m ď t and the bound with the integral to the
harmonic sum.
Finally, we consider term (d). In this case, we apply Theorem 1 of (Abbasi-
Yadkori et al., 2011), observing that the conditions are satisfied. To this
end, we first need to determine the subgaussianity constant for the noise
process rξl. For every l P JmK and ζ P R, and properly using the tower law
of expectation:

E
”

exp
´

ζrξl

¯

| rFl´1

ı
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“ E

«

exp

˜

ζηtl ` ζ
Hm`1
ÿ

s“1

ωTAs´1ϵtl´s

¸

|Ftl´1

ff

“ E rexp pζηtlq |Ftl´1s

Hm`1
ź

s“1

E
“

E
“

exp
`

ζωTAs´1ϵtl´s

˘

|Ftl´1´s

‰

|Ftl´1

‰

ď exp

ˆ

ζ2σ2

2

˙Hm`1
ź

s“1

E
„

exp

ˆ

ζ2}ωTAs´1}22σ
2

2

˙

|Ftl´1

ȷ

ď exp

ˆ

ζ2σ2

2

˙Hm`1
ź

s“1

exp

ˆ

ζ2Ω2ΦpAq2ρpAq2ps´1qσ2

2

˙

ď exp

˜

σ2ζ2

2

˜

1 ` Ω2ΦpAq
2

`8
ÿ

s“1

ρpAq
2ps´1q

¸¸

“ exp

ˆ

σ2ζ2

2

ˆ

1 `
Ω2ΦpAq2

p1 ´ ρpAq2q

˙˙

.

Thus, simultaneously for all m P JMK, with probability at least 1 ´ δ, it
holds that:

(d)2 “

›

›

›

rUT
m
rξm

›

›

›

2

rV´1
m

ď 2σ2

ˆ

1 `
Ω2ΦpAq2

p1 ´ ρpAq2q

˙

¨

˝log

ˆ

1

δ

˙

`
1

2
log

¨

˝

det
´

rVm

¯

λd

˛

‚

˛

‚.

We now proceed at bounding the offline regret Roff and, then, relating the
offline regret Roff with the online regret R, as defined in Chapter 7.

Theorem C.0.2 (Offline Regret Upper Bound). Under Assumptions 7.1
and 7.2, having selected βt as in Equation (7.6), for every δ P p0, 1q,
with probability at least 1 ´ δ, DynLin-UCB suffers an offline regret Roff

bounded as:

Roff
pπDynLin-UCB, T q ď

g

f

f

e8dTβ2
T´1

˜

1 `
log T

log 1
ρ

¸

log

ˆ

1 `
TU2

dλ

˙

.

Moreover, by setting δ “ 1{T , highlighting the dependencies on T , ρ, d,
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and σ only, the expected offline regret ERoff is bounded as:

ERoff
pπDynLin-UCB, T q ď O

˜

dσ
?
T plog T q

3
2

1 ´ ρ
`

?
dT plog T q2

p1 ´ ρq
3
2

¸

.

Proof. For every epoch m P JMK, let us define rβm´1 “ βtm´1 and de-
fine the confidence set Cm´1 “ trh P Rd : }rh ´ rhm´1}

rVm´1
ď rβm´1u.

Let us start by considering the instantaneous offline regret rrm at epoch
m P JMK. Let u˚ P argmaxuPU xh,uy and let rhÒ

m´1 P Cm´1 such that
UCBtm´1`1prumq “ xrhÒ

m´1, rumy. Thus, with probability at least 1 ´ δ, we
have:

rrm “ J˚
´ Jprumq “ xh,u˚

y ´ xh, rumy ˘ xrhÒ

m´1, rumy

ď xrhÒ

m´1 ´ h, rumy (C.7)

ď

›

›

›

rhÒ

m´1 ´ h
›

›

›

rVm´1

}rum}
rV´1
m´1

ď

ˆ

›

›

›

rhÒ

m´1 ´ rhm´1

›

›

›

rVm´1

`

›

›

›

rhm´1 ´ h
›

›

›

rVm´1

˙

}rum}
rV´1
m´1

(C.8)

ď 2rβm´1 }rum}
rV´1
m´1

. (C.9)

where line (C.7) follows from the optimism, line (C.8) derives from tri-
angle inequality, line (C.9) is obtained by observing that h P Cm´1 with
probability at least 1 ´ δ, simultaneously for all m P JMK, thanks to The-
orem 7.3.1, having observed that rβm´1 is larger than the right hand side of
Theorem 7.3.1.
We now move to the cumulative offline regret over the whole horizon T , by
decomposing w.r.t. the epochs and recalling that we pay the same instanta-
neous regret within each epoch:

Roff
pDynLin-UCB, T q “

M
ÿ

m“1

pHm ` 1qrrm ď

g

f

f

e

M
ÿ

m“1

pHm ` 1q2

g

f

f

e

M
ÿ

m“1

rr2m.

Concerning the first summation, we proceed as follows, recalling that M ď

T and Hm ď HM for all m P JMK:

M
ÿ

m“1

pHm ` 1q
2

ď T pHM ` 1q ď T

˜

1 `
log T

log 1
ρ

¸

.
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For the second summation, we follow the usual derivation for linear ban-
dits, recalling that rβM´1 ě maxt1, rβm´1u for all m P JMK and that under
Assumption 7.2 we have that rr2m ď 2. In particular:

rr2m ď min
!

2, 2rβM´1 }rum}
rV´1
m´1

)

ď 2rβM´1min
!

1, }rum}
rV´1
m´1

)

.

Plugging this inequality into the second summation, we obtain:
M
ÿ

m“1

rr2m ď 4rβ2
M´1

M
ÿ

m“1

min
!

1, }rum}
2
rV´1
m´1

)

ď 8drβ2
M´1 log

ˆ

1 `
MU2

dλ

˙

ď 8dβ2
T´1 log

ˆ

1 `
TU2

dλ

˙

,

where the last passage follows from the elliptic potential lemma (Lattimore
and Szepesvári, 2020, Lemma 19.4). Putting all together, we obtain the
inequality holding with probability at least 1 ´ δ:

Roff
pDynLin-UCB, T q ď

g

f

f

e8dTβ2
T´1

˜

1 `
log T

log 1
ρ

¸

log

ˆ

1 `
TU2

dλ

˙

,

having observed that rβM´1 ď βT´1 We can also arrive at a problem-
dependent regret bound, by setting ∆ :“ infuPUxh,uyăxh,u˚y xh,u˚ ´ uy (if
it exists ą 0). Since the instantaneous regret is either 0 or at least ∆, we
have:

Roff
pDynLin-UCB, T q ď

M
ÿ

m“1

pHm ` 1q
rr2m
∆

ď
HM ` 1

∆
8drβ2

M´1 log

ˆ

1 `
MU2

dλ

˙

ď
8d

∆

˜

1 `
log T

log 1
ρ

¸

β2
T´1 log

ˆ

1 `
TU2

dλ

˙

.

By setting δ “ 1{T , replacing the value of βT´1, we obtain the offline regret
in expectation, highlighting the dependence on T , ρ, d, and σ only:

ERoff
pDynLin-UCB, T q ď O

˜

dσ
?
T plog T q

3
2

1 ´ ρ
`

?
dT plog T q2

p1 ´ ρq
3
2

¸

,
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where we used the fact that 1
log 1

ρ

ď 1
1´ρ

and ρpAq ď ρ.

The following lemma relates the expected offline regret with the expected
online regret.

Theorem 7.3.2 (Upper Bound). Under Assumptions 7.1 and 7.2, selecting
βt as in Equation (7.6) and δ “ 1{T , DynLin-UCB suffers an expected
regret bounded as (highlighting the dependencies on T , ρ, d, and σ only):

ErRpπDynLin-UCB,T qs ď

O

˜

dσ
?
T plog T q

3
2

1 ´ ρ
`

?
dT plog T q2

p1 ´ ρq
3
2

`
1

p1 ´ ρpAqq2

¸

.

Proof. The result is simply obtained by exploiting the offline regret bound
of Theorem C.0.2 and by upper bounding the expected regret thanks to
Lemma C.0.1.

C.1 Finite-Horizon Setting

In this section, we compare the finite-horizon setting with the infinite-
horizon one presented in Chapter 7. We shall show that under Assump-
tion 7.1, the two settings tend to coincide when the horizon is sufficiently
large. Let us start by introducing the H–horizon expected average reward,
with H P N being the optimization horizon:

JHpπq :“E

«

1

H

H
ÿ

t“1

yt

ff

where

$

’

’

&

’

’

%

xt`1 “ Axt ` But ` ϵt

yt “ xω,xty ` xθ,uty ` ηt

ut “ πtpHt´1q

, t P rHs, (C.10)

where the expectation is taken w.r.t. the randomness of the state noise ϵt and
reward noise ηt. We now show that the optimal policy for the finite-horizon
setting is a non-stationary open-loop policy.

Theorem C.1.1 (Optimal Policy for the H–Horizon Setting). If H P N,
an optimal policy π˚

H “ pπ˚
H,tqtPJHK maximizing the H-horizon expected

average reward Jpπq as in Equation (C.10) is given by:

@t P JHK, @Ht´1 P Ht´1 : π˚
H,tpHt´1q “ u˚

H,t
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where:

u˚
H,t P argmax

uPU
xhJ0,H´tK,uy.

Proof. We start by expressing for every t P JHK the reward yt as a function
of the sequence of actions u “ pu1, . . . ,uHq produced by a generic policy
π. By exploiting Equation (7.4) instanced with H “ t ´ 1, we have:

yt “

t´1
ÿ

s“0

xhtsu,ut´sy ` ωTAt´1x1 ` ηt `

t´1
ÿ

s“1

ωTAs´1ϵt´s.

By computing the expectation, using linearity, and recalling that the noises
are zero-mean, we obtain:

Eryts “

t´1
ÿ

s“0

xhtsu,Erut´ssy ` ωTAt´1 Erx1s.

By averaging over t P JHK, we get the H-horizon expected average reward:

JHpπq “
1

H

H
ÿ

t“1

Eryts

“
1

H

H
ÿ

t“1

t´1
ÿ

s“0

xhtsu,Erut´ssy `
1

H

H
ÿ

t“1

ωTAt´1 Erx1s

“
1

H

H
ÿ

s“1

˜

H
ÿ

t“s

htt´su

¸T

Eruss `
1

H

H
ÿ

t“1

ωTAt´1 Erx1s (C.11)

“
1

H

H
ÿ

s“1

xhJ0,H´sK,Erussy `
1

H

H
ÿ

t“1

ωTAt´1 Erx1s. (C.12)

where line (C.11) is obtained by renaming the indexes of the summations,
and line (C.12) comes from the definition of cumulative Markov parameter
hJ0,H´sK. It is now simple to see, as no noise is present in the expres-
sion, that the performance JHpπq is maximized by taking at each round
s P N an action u˚

s “ π˚
s pHs´1q such that whose expectation satisfies

Eru˚
s s “ argmaxErussxh

J0,H´sK,Erussy. Clearly, we can take the determin-
istic action such that u˚

s “ Eru˚
s s.

We now show that for sufficiently large H , the H-horizon expected aver-
age reward JH tends to coincide with the infinite-horizon expected average
reward.
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Proposition C.1.2. Let H P N. Then, for every policy π it holds that:

|JHpπq ´ Jpπq| ď
BUΩΦpAqp1 ´ ρpAqHq

Hp1 ´ ρpAqq
.

Proof. Consider two horizons H ă H 1 P N, and let pu1,u2, . . . q be the
sequence of actions played by policy π. Using Equation (C.12), we have:

JHpπq´JH 1pπq (C.13)

“
1

H

H
ÿ

s“1

xhJ0,H´sK,Erussy ´
1

H 1

H 1
ÿ

s“1

xhJ0,H 1´sK,Erussy (C.14)

“
1

H

H
ÿ

s“1

xhJ0,H´sK
´ h,Erussy ´

1

H 1

H 1
ÿ

s“1

xhJ0,H 1´sK
´ h,Erussy

(C.15)

“ ´
1

H

H
ÿ

s“1

xhJH´s`1,`8M,Erussy `
1

H 1

H 1
ÿ

s“1

xhJH 1´s`1,`8M,Erussy.

(C.16)

As shown in Appendix C.0.1, we have that the second addendum vanishes
as H 1 approaches `8:

1

H 1

ˇ

ˇ

ˇ

ˇ

ˇ

H 1
ÿ

s“1

xhJH 1´s`1,`8M,Erussy

ˇ

ˇ

ˇ

ˇ

ˇ

Ñ 0 when H 1
Ñ `8.

Concerning the first addendum, we have:

1

H

ˇ

ˇ

ˇ

ˇ

ˇ

H
ÿ

s“1

xhJH´s`1,`8M,Erussy

ˇ

ˇ

ˇ

ˇ

ˇ

ď
U

H

H
ÿ

s“1

›

›hJH´s`1,`8M
›

›

2

ď
BUΩΦpAq

H

H
ÿ

s“1

ρpAq
H´s

“
BUΩΦpAqp1 ´ ρpAqHq

Hp1 ´ ρpAqq
.
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APPENDIXD
Omitted Proofs of Chapter 8

In this appendix, we provide the proofs we have omitted in Chapter 8.

D.1 Proofs and Derivations

We first provide proofs of the statements discussed in Chapter 8 (Sec-
tion D.1.1), then we provide some technical lemmas needed in order to
prove them (Section D.1.2).

D.1.1 Proofs of the Theorems

Theorem 8.3.1 (Worst-Case Lower Bound). For every algorithm A, there
exists an FRB ν such that for:

T ě 2
`

1 ´ 2´ 1
d´1

˘´2
σ2max

iPJdK
ki, (8.2)

A suffers an expected cumulative regret of at least:

E rRT pA,νqs ě
σ

4
?
2

ÿ

iPJdK

a

kiT .
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In particular, if ki “: k for every i P JdK, we have:

E rRT pA,νqs ě Ωpσd
?
kT q.

Proof. Consider an scenario in which µa˚ “ 1 and ∆i,j ď ∆ “ 1 ´

2´1{pd´1q, @i P JdK, j P JkiK, then Lemma D.1.3 allow us to rewrite the
expected regret as:

E rRT pA,νqs “ E

»

–

ÿ

tPJT K

¨

˝1 ´
ź

iPJdK

`

1 ´ ∆i,aiptq

˘

˛

‚

fi

fl

ě
1

2
E

»

–

ÿ

tPJT K

ÿ

iPJdK

∆i,aiptq

fi

fl

“
1

2

ÿ

iPJdK

E

»

–

ÿ

tPJT K

∆i,aiptq

fi

fl

“
1

2

ÿ

iPJdK

E
”

R
piq
T pA,νq

ı

, (D.1)

where R
piq
T pA,νq is the expected regret generated by pulling suboptimal

arms on the component i P JdK. This fact implies that if we take sufficiently
small ∆i,j ă ∆, @i P JdK, j P JkiK, we can analyze the expected regret
R

piq
T pA,νq we pay for each action component i P JdK independently and

then summing up the regret we pay as shown above. We will see how
the condition of the sufficiently small ∆i,j implies that we have to add a
condition on the minimum time budget T for which this lower bound holds.
We can define a set of

ś

iPJdK ki FRB base instances as follows. Given a
vector ph1, . . . , hdqT P Jk1K ˆ ¨ ¨ ¨ ˆ JkdK identifying an instance, we define
the expected rewards of such an instance as follows, for ∆ P p0, 1{2q:

µi,j “

#

1 if j “ hi

1 ´ ∆ if j P JkiKzthiu
, @i P JdK. (D.2)

We refer as νph1,...,hdq to the instance in which expected values are charac-
terized by the vector ph1, . . . , hdqT P Jk1Kˆ ¨ ¨ ¨ ˆ JkdK as in Equation (D.2).
We now focus on bounding the regret of a single component i P JdK. In
particular, we focus on component i “ 1 for the sake of simplicity in the
presentation. Then, we can extend the same reasoning to all the others. Let
us define a set of helper instances which are needed for the analysis. For
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all the components different from the first, we consider as before a vector
ph2, . . . , hdqT P Jk2Kˆ¨ ¨ ¨ˆJkdK which characterize the instance νp0,h2,...,hdq

defined as follows:

µ1,j “ 1 ´ ∆, @j P Jk1K

µi,j “

#

1 if j “ hi

1 ´ ∆ if j P JkiKzthiu
, @i P J2, dK.

Before continue with the proof, we need to introduce some additional quan-
tities. Given a vector ph1, h2, . . . , hdqT P pt0u Y Jk1Kq ˆ Jk2K ˆ ¨ ¨ ¨ ˆ JkdK,
we call Pph1,h2,...,hdq the distribution induced by the history of the pulls and
the related rewards for the d components over time horizon T in instance
νph1,h2,...,hdq. We denote with Ph for h P t0u Y Jk1K the distribution induced
by the history averaged over the other dimensions, formally:

Ph “
1

ś

iPJ2,dK ki

ÿ

ph2,h3,...,hdqPJk2Kˆ¨¨¨ˆJkdK

Pph,h2,...,hdq,

and with Eh the expectation over Ph.
Coming back to the proof, given the definition of the base instances (Equa-
tion D.2), the expected regret E

”

R
p1q

T pA,νph1,...,hdqq

ı

related to the first
component is given by:

E
”

R
p1q

T pA,νph1,...,hdqq

ı

“ ∆
ÿ

jPJk1Kzth1u

E rN1,jpT qs

“ ∆ pT ´ E rN1,h1pT qsq .

We now want to use Lemma D.1.4 in order to obtain the following condi-
tion:

1

k1

ÿ

hPJk1K

EhrT ´ N1,hpT qs ě
T

4
. (D.3)

To apply Lemma D.1.4, we need an upper bound on the total variation dTV

that we can compute @h P Jk1K as follows:

dTV “
1

2
}P0 ´ Ph}1

“
1

2

›

›

›

›

›

›

›

›

1
ś

iPJ2,dK ki

ÿ

ph2,h3,...,hdq

PJk2Kˆ¨¨¨ˆJkdK

`

Pp0,h2,...,hdq ´ Pph,h2,...,hdq

˘

›

›

›

›

›

›

›

›

1
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ď
1

ś

iPJ2,dK ki

ÿ

ph2,h3,...,hdq

PJk2Kˆ¨¨¨ˆJkdK

1

2

›

›Pp0,h2,...,hdq ´ Pph,h2,...,hdq

›

›

1
(D.4)

ď
1

ś

iPJ2,dK ki

ÿ

ph2,h3,...,hdq

PJk2Kˆ¨¨¨ˆJkdK

c

1

2
DKL

`

Pp0,h2,...,hdq

ˇ

ˇ

ˇ

ˇPph,h2,...,hdq

˘

(D.5)

“
1

ś

iPJ2,dK ki

ÿ

ph2,h3,...,hdq

PJk2Kˆ¨¨¨ˆJkdK

c

1

2
Ep0,h2,...,hdqrN1,hpT qsDKL

`

p0
›

›ph
˘

(D.6)

“
1

ś

iPJ2,dK ki

ÿ

ph2,h3,...,hdq

PJk2Kˆ¨¨¨ˆJkdK

c

1

2
Ep0,h2,...,hdqrN1,hpT qs

∆2

2σ2
(D.7)

ď

g

f

f

f

e

1
ś

iPJ2,dK ki

ÿ

ph2,h3,...,hdq

PJk2Kˆ¨¨¨ˆJkdK

1

2
Ep0,h2,...,hdqrN1,hpT qs

∆2

2σ2
(D.8)

ď
1

4

c

∆2

2σ2
E0rN1,hpT qs, (D.9)

where line (D.4) is the triangle inequality for norms, line (D.5) is due
the Pinsker’s inequality, line (D.6) is due to the divergence decomposition
lemma (Lattimore and Szepesvári, 2020, Lemma 15.1) considering that all
the component different from the first are equal, line (D.7) is derived by the
expression of DKL between Gaussian distributions, line (D.8) is due to the
Jensen’s inequality, and line (D.9) is obtained by marginalizing w.r.t. the
first component.
Given this upper bound to the total variation, we can finally apply Lemma
D.1.4 considering m “ k1 and B “ 2σ2k1

∆2 . What we get is:

1

k1

ÿ

iPJk1K

Eh

„

2σ2k1
∆2

´ N1,hpT q

ȷ

ě
σ2k1
2∆2

. (D.10)

We can now select the value of ∆ in order to have in Equation (D.10) a
bound on T :

T “
2σ2k1
∆2

.
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This implies a choice of ∆ in the form of:

∆ “

c

2σ2k1
T

.

Given such a choice of ∆ and the bound given by Equation (D.3), we get
that the regret of the first action component can be bounded as:

E
”

R
p1q

T pA,νq

ı

ě ∆ pT ´ E rN1,h1pT qsq

ě

c

2σ2k1
T

T

4

“

c

σ2k1T

8

“
1

2
?
2
σ
a

k1T .

The same reasoning can be done for all the others d´ 1 action components
and the bound of Equation (D.1):

E rRT pA,νqs ě
1

2

ÿ

iPJdK

E
”

R
piq
T pA,νq

ı

ě
1

4
?
2
σ
ÿ

iPJdK

a

kiT .

The last point needed is to check that the condition of the choices we
made on the ∆ is compliant for all the dimensions i P JdK with the one
of Lemma D.1.3, i.e., all the ∆s are less than ∆ defined as:

∆ “

c

2σ2maxiPJdK ki
T

.

This implies a lower bound on the T for which this bound holds:
c

2σ2maxiPJdK ki
T

ď 1 ´ 2´1{pd´1q.

Isolating T we get:

T ě
2σ2maxiPJdK ki

p1 ´ 2´1{pd´1qq
2 .

This concludes the proof.

195



Appendix D. Omitted Proofs of Chapter 8

Theorem 8.3.2 (Worst-Case Lower Bound without Intermediate Observa-
tions). For every algorithm A: that ignores the intermediate observations
xptq and observes the reward rptq only, there exists an FRB ν such that for:

T ě 4pmin
iPJdK

ki ´ 1q{d,

A: suffers an expected cumulative regret of at least:

E
“

RT pA:,νq
‰

ě
σd

8

c

pminiPJdK ki ´ 1qT

d
.

In particular, if ki “: k for every i P JdK, we have:

E
“

RT pA:,νq
‰

ě Ωpσd
a

kT {dq.

Proof. For simplicity, we consider d even. We consider the following base
instance ν, parametrized by σ ą 1 and ∆ P r0, 1{4s with ∆ ď σd, defined
for all i P JdK and j P JkiKzt1u:

νi,1 “

#

σ w.p. 1
2

` ∆1{d

2σ

´σ w.p. 1
2

´ ∆1{d

2σ

, νi,j “

#

σ w.p. 1
2

´σ w.p. 1
2

.

It is clear that µi,1 “ ∆1{d and µi,j “ 0. Consequently, the optimal arm is
p1, . . . , 1qJ with performance µ˚ “ ∆ and all the other arms have perfor-
mance 0. Furthermore, the variance of the suboptimal arm components is
given by σ2 which is also the subgaussian proxy, while for the optimal arm
components, the variance is smaller. Consider now for every i P JdK:

j˚
i P argmin

jPJkiKzt1u

E
ν

rNi,jpT qs ùñ E
ν

rNi,j˚
i

pT qs ď
T

ki ´ 1
.

We construct the alternative instance ν which is equal to ν 1 except for the
the components pi, j˚

i q for i P JdK:

νi,j˚
i

“

#

σ w.p. 1
2

`
p2∆q1{d

2σ

´σ w.p. 1
2

´
p2∆q1{d

2σ

,

enforcing ∆ ď σd{2. In this alternative instance, the optimal arm corre-
sponds to pj˚

1 , . . . j
˚
d qJ, with performance pµ˚q1 “ 2∆.

We are considering algorithms that do not observe individual components.
Therefore, the distribution of the product of the individual components has
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to be computed. Since they will be used in the computation of the KL-
divergence, we just consider the two most dissimilar ones:

νb
: “

#

σd w.p. 1
2

` ∆
σd

´σd w.p. 1
2

´ ∆
σd

, νb
; “

#

σd w.p. 1
2

´σd w.p. 1
2

,

where the probability of the first case in which we play, for instance, the
arm p1, . . . , 1qJ in the base instance is obtained by the following reasoning:
we get σd if the number of σ realizations is even (being d even). Thus, we
have:

Pptσd
uq “

d
ÿ

l“0

1tl is evenu

ˆ

d

j

˙ˆ

1

2
`

p2∆q1{d

2σd

˙j ˆ
1

2
´

p2∆q1{d

2σd

˙d´j

“
1

2
`

∆

σd
.

The KL divergence becomes, using reverse Pinsker’s inequality:

DKLpνb
: , ν

b
; q ď

1
1
2

´ ∆
σd

DTVpνb
: , ν

b
; q

“ 4

ˆ

∆

σd

˙2

“
4∆2

σ2d
.

requiring ∆ ď σd{4.
Let us now lower bound the regret with Bretagnolle-Huber’s inequality:

maxtErRT pA,νqs,ErRT pA,ν 1
qsu

ě
∆T

4
exp

˜

´E
ν

«

T
ÿ

t“1

1tDi P JdK : aiptq “ j˚
i uDKLpνb

aptq}pν 1
q

b

aptqq

ff¸

ě
∆T

4
exp

¨

˝´
ÿ

iPJdK

E
ν

rNi,j˚
i

pT qs
4∆2

σ2d

˛

‚

ě
∆T

4
exp

ˆ

´
4dT∆2

σ2dpk˚ ´ 1q

˙

,

being k˚ “ miniPJdK ki. We set ∆ “

b

σ2dpk˚´1q

4dT
with T ě 4pk˚ ´1q{d.
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Theorem 8.3.3 (Instance-Dependent Lower Bound). For every consistent1

algorithm A and FRB ν with unique optimal arm a˚ P A it holds that:

lim inf
TÑ`8

E rRT pA,νqs

log T
ě Cpνq, (8.3)

where Cpνq is defined as the solution to the following optimization prob-
lem:

min
pLaqaPAzta˚u

ÿ

aPAzta˚u

La∆a (8.4)

s.t. Li,j “
ÿ

aPAzta˚u
ai“j

La, @i P JdK, j P JkiKzta˚
i u (8.5)

Li,j ě
2σ2

∆2
i,j

, @i P JdK, j P JkiKzta˚
i u (8.6)

La ě 0, @a P Azta˚
u. (8.7)

Proof. The proof of this statement is divided into two parts. Part one is ded-
icated to finding a lower bound on the expected number of pulls of every ac-
tion component Ni,jpT q for each action component i P JdK, j P JkiKzta˚

i u.
Part two is dedicated to understanding how these pulls of the action com-
ponents can be combined in action vectors in the best way possible.
Part 1: Lower bounding the expected number of pulls for each action
component
The proof of the expected number of pulls of a sub-optimal action j P

JkiKzta˚
i u of action component i P JdK is inspired by the proof of the

asymptotic number of pulls of sub-optimal arms presented in Theorem 16.2
of (Lattimore and Szepesvári, 2020).
We call Mmn the set of distributions referring to the mth component (m P

JdK) and the nth arm (n P JkmK). Then, consider Pmn as a specific dis-
tribution taken from Mmn to model the reward observations of arm n of
component m in a given instance of the setting.
Let ν be an instance of the FRB setting with d components and ki actions
for every i P JdK. We start by selecting a component i and a sub-optimal
arm j. Let ε ą 0 P R be arbitrary constant. We define a new instance of
the FRB setting ν 1 such that P 1

ij “ Pij, @i P JdKztiu, @j P JkiK, and P 1
ij “

Pij, @j P JkiKztju, and P 1
i,j P Mi,j be such that DKLpPi,j, P

1
i,jq ď di,j ` ε

and µ1
i,j ą µ˚

i . dmn represents the KL divergence between Pmn and P ˚
m.

1An algorithm A is consistent if for every FRB ν and p ą 0, it holds that
lim supTÑ`8 ErRT pA,νqs{T p “ 0.
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The newly defined instance ν 1 is then identical to ν for every arm of every
component different from i, and in the ith component every arm is identical
except for arm j, which is sub-optimal in ν and is optimal in ν 1. Following
the original proof, we can define, for any event E :

PνpEi,jq ` Pν1pE A
i,jq ě

1

2
exp

´

´Eν

”

Ni,jpT q

ı ´

di,j ` ε
¯¯

.

Now, let Ei,j “ tNi,jpT q ą T {2u, and let RT “ RT pA,νq and R1
T “

RT pA,ν 1q. Then:

RT ` R1
T ě

T

2

´

PνpEi,jqfipµq∆i,j ` Pν1pE A
i,jqfipµqpµ1

i,j ´ µ˚
i q

¯

,

where fipµq is obtained by the following observation. Since at every round
t P JT K, in which we pull pi, jq we suffer the instantaneous regret in the
base instance:

ź

iPJdK

µ˚
i ´ µi,j

ź

iPJdKztiu

µi,jptq ě pµ˚
i ´ µi,jq

ź

iPJdKztiu

µ˚
i “ ∆i,j

ź

iPJdKztiu

µ˚
i

and in the alternative instance:

µ1
i,j

ź

iPJdKztiu

µ˚
i ´

ź

iPJdK

µi,jptq ě pµ1
i,j ´ µ˚

i q
ź

iPJdKztiu

µ˚
i ,

we define:

fipµq :“
ź

iPJdK‰tiu

µ˚
i .

Since the term fipµq multiplies both ∆i,j and pµ1
i,j ´ µ˚

i q, it is straightfor-
ward to continue the original proof and write:

RT ` R1
T ě

T

4
fipµqmint∆i,j, pµ1

i,j ´ µ˚
i qu exp

´

´Eν

”

Ni,jpT q

ı ´

di,j ` ε
¯̄

.

Rearranging and dividing by log T , we obtain:

EνrNi,jpT qs

logpT q

ě

logpT q ` log
´

fipµq

4
mint∆i,j, pµ1

i,j ´ µ˚
i qu

¯

´ logpRT ` R1
T q

pdi,j ` εq logpT q
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“
1

di,j ` ε
`

log
´

fipµq

4
mint∆i,j, pµ1

i,j ´ µ˚
i qu

¯

´ logpRT ` R1
T q

pdi,j ` εq logpT q

ě
2σ2

∆2
i,j

´ hi,jpT q,

by letting ε Ñ 0, having exploited the expression of KL-divergence be-
tween Gaussians and having set:

hi,jpT q :“ max

$

&

%

0,
log

´

fipµq

4
mint∆i,j, pµ1

i,j ´ µ˚
i qu

¯

´ logpRT ` R1
T q

di,j log T

,

.

-

.

Notice that lim supTÑ`8 hi,jpT q “ 0 under consistency.
Now, iterating this reasoning over i P JdK and over j P JkiK, we get the
lower bound on the expected number of pulls for all the arms of all the
action components.
Part 2: Understanding how the pulls we have to perform on the action
components can be combined
From Part 1 of this proof, we have a result on the expectation of the mini-
mum number of pulls. We can now define the quantity:

Li,jpT q :“
ErNi,jpT qs

log T
, @i P JdK, j P JkiK.

This quantity can be lower bounded as:

Li,jpT q ě
2σ2

∆2
ij

´ hi,jpT q, @i P JdK, j P JkiKzta˚
i u.

Now, we want to understand how these pulls of the action’s suboptimal
components influence the regret. We chose to look at the asymptotic ex-
pected regret, defined as follows:

E rRT pA,νqs

log T
“

ÿ

aPA

E rNapT qs

log T
∆a,

and we denote:

LapT q :“
ErNapT qs

log T
, @a P A.

The regret becomes defined as:

E rRT pA,νqs

log T
“

ÿ

aPA
LapT q∆a,
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Now, we want to look at how the pulls of the action vectors La and the
ones of the action components are related. We can easily observe that the
following relation occurs:

Li,jpT q “
ÿ

aPA:ai“j

LapT q, @i P JdK, j P JkiK.

Given that, we can write an optimization problem in which we search for
the best combination of pulls of the action vector satisfying the constraints
on the minimum number of pulls of the action components.

min
LapT q,Li,jpT q

ÿ

aPAzta˚u

LapT q∆a (D.11)

s.t. Li,jpT q “
ÿ

aPA:ai“j

LapT q, @i P JdK, j P JkiKzta˚
i u (D.12)

Li,jpT q ě
2σ2

∆2
i,j

´ hi,jpT q, @i P JdK, j P JkiKzta˚
i u (D.13)

LapT q ě 0, @a P Azta˚
u. (D.14)

Now, to simplify notation, we define xpaq “ LapT q, remove the variables
Li,j since constraint (D.13) will be satisfied with equality, and reformulate
in the unconstrained form using the following indicator function:

IX pxq “

#

0 if x P X
`8 otherwise

,

as follows:

inf
xpaq

fT pxq :“
ÿ

aPAzta˚u

xpaq∆a`

`
ÿ

iPJdK

ÿ

jPJkiKzta˚
i u

IRě0

˜

ÿ

aPA : ai“j

xpaq ´
2σ2

∆2
i,j

` hi,jpT q

¸

`

`
ÿ

aPA
IRě0pxpaqq.

With this notation, we want to characterize the value of the optimization
problem as the horizon T grows to infinity, i.e., lim infTÑ`8 infxpaq fT pxq.
Notice that this is exactly what we need to obtain a lower bound to:

lim inf
TÑ`8

E rRT pA,νqs

log T
.
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In the following, we show that:

lim inf
TÑ`8

inf
xpaq

fT pxq “ inf
xpaq

f8pxq,

where f8 is defined as follows:

f8pxq :“
ÿ

aPA
xpaq∆a `

ÿ

iPJdK

ÿ

jPJkiKzta˚
i u

IRě0

˜

ÿ

aPA : ai“j

xpaq ´
2σ2

∆2
i,j

¸

`

`
ÿ

aPA
IRě0pxpaqq,

corresponding to the optimization problem in which we remove the hi,jpT q

function from the right-hand side of the constraint.
First of all, we observe that for every x and T , we have that fT pxq ď

f8pxq. It follows that infxpaq fT pxq ď infxpaq f8pxq and, consequently,
lim infTÑ`8 infxpaq fT pxq ď infxpaq f8pxq. Thus, it remains to prove that
lim infTÑ`8 infxpaq fT pxq ě infxpaq f8pxq. Since the optimization prob-
lem is linear and feasible (for sufficiently large T ), there must exist x˚

T such
that infxpaq fT pxq “ fT px˚

T q for every finite T , but also for T “ 8. Now,
consider for a fixed x:

lim inf
TÑ`8

fT pxq“
ÿ

aPA
xpaq∆a `

ÿ

aPA
IRě0pxpaqq`

` lim inf
TÑ`8

ÿ

iPJdK

ÿ

jPJkiKzta˚
i u

IRě0

˜

ÿ

aPA : ai“j

xpaq ´
2σ2

∆2
i,j

` hi,jpT q

¸

ě
ÿ

aPA
xpaq∆a `

ÿ

aPA
IRě0pxpaqq`

`
ÿ

iPJdK

ÿ

jPJkiKzta˚
i u

lim inf
TÑ`8

IRě0

˜

ÿ

aPA : ai“j

xpaq ´
2σ2

∆2
i,j

` hi,jpT q

¸

“ f8pxq,

uniformly since lim supTÑ`8 hi,jpT q “ 0 and IRě0 is a decreasing function
in its argument, having also exploited that lim infnpan`bnq ě lim infn an`

lim infn bn. Indeed, let c “
ř

aPA : ai“j xpaq ´ 2σ2

∆2
i,j

and yT “ hi,jpT q, we

have to compute lim infTÑ`8 IRě0pc ` yT q.
Since 0 ď yT and lim supTÑ`8 yT “ 0, we have limTÑ`8 yT “ 0. If
c ‰ 0, there exists T pcq such that for T ě T pcq, we have that yT ď |c|{2.
Consequently, lim infTÑ`8 IRě0pc ` yT q “ IRě0pcq. If, instead, c “ 0,
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we have to compute limTÑ`8 IRě0pyT q; being IRě0 right continuous and
yT ě 0 we have that limTÑ`8 IRě0pyT q “ 0.
This, combined with the fact fT pxq ď f8pxq leads to lim infTÑ`8 fT pxq “

f8pxq, uniformly. Thus, we have that for every ε ą 0 there exists T pεq ą 0
such that for every T ě T0pεq we have uniformly:

ˇ

ˇ

ˇ

ˇ

inf
T 1ěT

fT 1pxq ´ f8pxq

ˇ

ˇ

ˇ

ˇ

ď ε.

Consequently, we have:

inf
T 1ěT

inf
xpaq

fT 1pxq “ inf
T 1ěT

fT 1px˚
T 1q

ě f8px˚
T 1q ´ ε

ě f8px˚
8q ´ ε

“ inf
xpaq

f8pxpaqq ´ ε.

This concludes the proof.

Theorem 8.3.4 (Instance-Dependent Lower Bound (Explicit)). Let Cpνq

be the solution of the optimization problem of Theorem 8.3.3. It holds that:

Cpνq “

K´d
ÿ

ℓ“1

`

Mπpℓq ´ Mπpℓ´1q

˘

∆αℓ
,

that can be computed in Op
ř

iPJdK ki log kiq.

Proof. Let M “ maxiPJdK Mi,ki´1. For every i P JdK, let us define a non-
negative function function fi : R Ñ tµi,jujPJkiK Y t0u such that:

ż

R
1tfipxq “ µi,judx “ Li,j @j P JkiKzta˚

i u,
ż

R
1tfipxq “ µi,a˚

i
udx “ M ´ Mi,ki´1.

Clearly, fi is not uniquely defined. Indeed, any function fi satisfying these
conditions is measurable (by definition, since the pre-image of any Y Ď

tµi,jujPJkiKYt0u is measurable) and correspond to a possible arrangement of
a proportion of pulls of the arm components of dimension i. Specifically, all
functions satisfying these conditions are called “equimesurable” meaning
that for every fi, gi fulfilling the conditions, we have that tx : fipxq ě

yu “ tx : gipxq ě yu for every y P R. We call this set of functions Fi.
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A possible arrangement of the proportion of the pulls for component i P

JdK, corresponds to a function fi P Fi such that fipxq “ 0 for x ă 0 or
x ą M . Thus, to minimize the regret as in the optimization problem of
Theorem 8.3.3, we maximize the reward as follows:

sup
fiPFi, fipxq “ 0 for x ă 0 or x ą M, iPJdK

ż

Rd

ź

iPJdK

fipxiqdxi

ď sup
fiPFi, iPJdK

ż

Rd

ź

iPJdK

fipxiqdxi.

Let f˚
i be the symmetric decreasing rearrangement of fi for every i P JdK,

which, in our specific case, is a piecewise constant symmetric function.
Define x0 “ 0, xi,1 “ pM ´ Mi,ki´1q{2, xi,l`1 “ xi,l ` Li,πipki´lq{2 for
l P JkiK, we have:

f˚
i pxq “

ÿ

lPJkiK

µi,πipki´l`1q1t|x| P rxi,l´1, xi,lqu.

From the rearrangement inequality for multiple integrals (Luttinger and
Friedberg, 1976), we have:

sup
fiPFi, iPJdK

ż

Rd

ź

iPJdK

fipxiqdxi “

ż

Rd

ź

iPJdK

f˚
i pxiqdxi.

Let us observe that the product of
ş

Rd

ś

iPJdK f
˚
i pxiqdxi actually leads to the

solution depicted in the statement of the theorem.
Concerning the computational complexity, we observe that it is dominated
by the sorting in each dimension i P JdK.

Theorem 8.4.1 (Worst-Case Upper Bound for F-UCB). For any FRB ν,
F-UCB with α ą 2 suffers an expected regret bounded as:

E rRT pF-UCB,νqs ď 4σ
ÿ

iPJdK

a

αkiT log T ` gpαq
ÿ

iPJdK

ki,

where gpαq “ rO ppα ´ 2q´2q.2

In particular, if ki “: k, for every i P JdK, we have:

E rRT pF-UCB,νqs ď rOpσd
?
kT q.

2The complete expression is reported in the proof.
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Proof. The proof is composed of two parts. In the first part, we define the
probability, given the chosen confidence bounds, that the good event holds,
i.e., the probability that all the confidence bounds are valid. The goal is to
find an upper bound on the probability that the good event does not hold
along the whole time horizon T . In the second part, we aim to characterize
the regret under the good event for a specific round t P JT K. Finally, we
join the two parts to find an upper bound on the expected cumulative regret.
Part 1: Upper bounding the bad event over time horizon T
We start by defining our good event Et at round t P JT K, which implies
that all the confidence bounds of interest hold, i.e., we are not making a
severe underestimate of the expected value of the optimal action compo-
nents, and severely overestimating the expected values of the suboptimal
ones. Formally:

Et :“

#

@i P JdK, @ai P JkiKzta˚
i u : pµi,aiptq ´ µi,ai ď σ

d

α log t

Ni,aiptq

+

X

#

@i P JdK : µi,a˚
i

´ pµi,a˚
i
ptq ď σ

d

α log t

Ni,a˚
i
ptq

+

.

We now want to find an upper bound of the probability of the bad event E A
t :

P
`

E A
t

˘

ď P

˜

Di P JdK, Dai P JkiKzta˚
i u : pµi,aiptq ´ µi,ai ą σ

d

α log t

Ni,aiptq

¸

`

` P

˜

Di P JdK : µi,a˚
i

´ pµi,a˚
i
ptq ą σ

d

α log t

Ni,a˚
i
ptq

¸

ď P

¨

˚

˚

˝

Di P JdK, Dai P JkiKzta˚
i u, Ds P JtK : pµi,airss´µi,aiptq ąσ

c

α log t

s
loooooooooooooooooooooooooooooooooooooooomoooooooooooooooooooooooooooooooooooooooon

(A)

˛

‹

‹

‚

` P

¨

˚

˚

˝

Di P JdK, Ds P JtK : µi,a˚
i

´ pµi,a˚
i
rss ą σ

c

α log t

s
loooooooooooooooooooooooooooooomoooooooooooooooooooooooooooooon

(B)

˛

‹

‹

‚

, (D.15)

having highlighted with the symbols pµi,airss and pµi,a˚
i
rss the dependence

of the estimators on the number of pulls s. We now bound (A) and (B)
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separately. Similar to the proof of Theorem 2.2 proposed by Bubeck (2010),
we use a peeling argument together with Hoeffding’s maximal inequality.
We apply the peeling argument with a geometric grid over the time interval
r1, ts to bound the probability of term (A). Given β P p0, 1q, we note that if
s P t1, . . . , tu, then Dj P

!

0, . . . , log t
log 1{β

)

: βj`1t ă s ď βjt. As such, we
obtain:

P p(A)q “ P

˜

Di P JdK, Dai P JkiKzta˚
i u, Ds P JtK :

pµi,airss ´ µi,ai ą σ

c

α log t

s

¸

“ P

˜

Di P JdK, Dai P JkiKzta˚
i u, Ds P JtK :

s
ÿ

l“1

`

xi,airls ´ µi,aiptq

˘

ą σ
a

αs log t

¸

ď

log t
log 1{β
ÿ

j“0

P

˜

Di P JdK, Dai P JkiKzta˚
i u, Ds : βj`1t ă s ď βjt,

s
ÿ

l“1

`

xi,airls ´ µi,aiptq

˘

ą σ
a

αs log t

¸

ď

log t
log 1{β
ÿ

j“0

P

˜

Di P JdK, Dai P JkiKzta˚
i u, Ds : βj`1t ă s ď βjt,

s
ÿ

l“1

`

xi,airls ´ µi,aiptq

˘

ą σ
a

αβj`1t log t

¸

,

having denoted with xi,airls the l-sample used to compute the sample mean
pµi,airss. Applying a union bound on the summations on i and ai, and Ho-
effding’s maximal inequality, we obtain:

P p(A)q ď
ÿ

iPJdK

ÿ

aiPJkiKzta˚
i u

log t
log 1{β
ÿ

j“0

exp

¨

˚

˝

´

´

a

σ2αβj`1t log t
¯2

2σ2βjt

˛

‹

‚
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“
ÿ

iPJdK

ÿ

aiPJkiKzta˚
i u

log t
log 1{β
ÿ

j“0

exp

ˆ

´
αβ log t

2

˙

“
ÿ

iPJdK

ÿ

aiPJkiKzta˚
i u

log t
log 1{β
ÿ

j“0

t´
αβ
2

ď
ÿ

iPJdK

ÿ

aiPJkiKzta˚
i u

˜

log t

log 1
β

` 1

¸

t´
αβ
2 .

Applying the same procedure, we can bound the probability of term (B) in
Equation (D.15) to obtain:

P p(B)q ď
ÿ

iPJdK

˜

log t

log 1
β

` 1

¸

t´
αβ
2 .

As such, we can write the upper bound of the probability of the bad event
as:

P
`

E A
t

˘

“ P p(A)q ` P p(B)q ď
ÿ

iPJdK

ki

˜

log t

log 1
β

` 1

¸

t´
αβ
2 .

Let us now bound the sum of the probabilities of the bad event over the
horizon T :

ÿ

tPJT K

P
`

E A
t

˘

ď
ÿ

iPJdK

ki
ÿ

tPJT K

˜

log t

log 1
β

` 1

¸

t´
αβ
2

ď
ÿ

iPJdK

ki

ż T

1

˜

log t

log 1
β

` 1

¸

t´
αβ
2 dt (D.16)

“
ÿ

iPJdK

ki

˜

„ˆ

log t

log 1{β
` 1

˙ˆ

2

2 ´ αβ
t1´

αβ
2

˙ȷ`8

1

`

´
4

p2 ´ αβq log 1{β

ż `8

1

t´
αβ
2 dt

¸

(D.17)

“
ÿ

iPJdK

ki

ˆ

´
2

2 ´ αβ
´

4

p2 ´ αβq2 logp1{βq

”

t1´
αβ
2

ı`8

1

˙

(D.18)
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“
ÿ

iPJdK

ki

ˆ

´
2

2 ´ αβ
`

4

p2 ´ αβq2 logp1{βq

˙

, (D.19)

where line (D.16) is obtained by bounding the summation with the inte-
gral, line (D.17) is obtained via integration by parts, and the first term of
line (D.18) is obtained by imposing αβ ą 2. Substituting now β “ 4

α`2
,

which verifies β P p0, 1q if α ą 2, we obtain:

ÿ

tPJT K

P
`

E A
t

˘

ď

˜

α ` 2

α ´ 2
`

pα ` 2q2

pα ´ 2q2

1

log
`

α`2
4

˘

¸

ÿ

iPJdK

ki

“ rO
`

pα ´ 2q
2
˘

ÿ

iPJdK

ki.

Part 2: Upper bounding the instantaneous regret at time t under the
good event
We can now bound the instantaneous regret at time t supposing the good
event holds. We define the regret Rt at time t as the difference in expec-
tation between the optimal action and the one performed by F-UCB, for-
mally:

Rt “
ź

iPJdK

µ˚
i ´

ź

iPJdK

µi,aiptq (D.20)

“
ÿ

lPJdK

ź

iPJl´1K

µ˚
l

looomooon

Pr0,1s

`

µ˚
l ´ µl,alptq

˘

ź

iPJl`1,dK

µi,aiptq

loooooomoooooon

Pr0,1s

(D.21)

ď
ÿ

lPJdK

`

µ˚
l ´ µl,alptq

˘

(D.22)

“
ÿ

lPJdK

`

µ˚
l ´ µl,alptq ˘ UCBl,alptqptq

˘

(D.23)

ď
ÿ

lPJdK

`

UCBl,alptqptq ´ µl,alptq

˘

(D.24)

“
ÿ

lPJdK

`

pµl,alptqptq ` βl,alptqptq ´ µl,alptq

˘

(D.25)

ď 2
ÿ

lPJdK

βl,alptqptq, (D.26)

where line (D.21) is obtained by summing and subtracting all mixed terms,
line (D.22) follows from bounding the left and right products with 1 be-
ing all factors (including the middle one) made of non-negative terms,
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line (D.24) comes from the optimism under the good event, having denoted
with βl,alptq the exploration bonus.
Upper bound of the expected cumulative regret RpF-UCB, T q

Recalling that we call Rt the instantaneous regret under the good event, can
now compute an upper bound on the expected cumulative regret as:

E rRT pF-UCB,νqs

ď
ÿ

tPJT K

´

1 ¨ P
`

E A
t

˘

` Rt ¨ P
´

Ẽt
¯¯

ď
ÿ

tPJT K

P
`

E A
t

˘

`
ÿ

tPJT K

Rt ¨ P
´

ẼT
¯

ď
ÿ

tPJT K

P
`

E A
t

˘

`
ÿ

tPJT K

Rt

ď
ÿ

tPJT K

P
`

E A
t

˘

`
ÿ

tPJT K

2
ÿ

iPJdK

βi,aiptqptq

“
ÿ

tPJT K

P
`

E A
t

˘

` 2
ÿ

tPJT K

ÿ

iPJdK

σ

d

α log t

Ni,aiptq

ď
ÿ

tPJT K

P
`

E A
t

˘

` 2σ
a

α log T
ÿ

tPJT K

ÿ

iPJdK

d

1

Ni,aiptq

“
ÿ

tPJT K

P
`

E A
t

˘

` 2σ
a

α log T
ÿ

iPJdK

ÿ

aiPJkiK

ÿ

jPJNi,ai
pT qK

c

1

j
(D.27)

ď
ÿ

tPJT K

P
`

E A
t

˘

` 2σ
a

α log T
ÿ

iPJdK

ÿ

aiPJkiK

ÿ

jPJT {kiK

c

1

j
(D.28)

ď
ÿ

tPJT K

P
`

E A
t

˘

` 2σ
a

α log T
ÿ

iPJdK

ÿ

aiPJkiK

ż T {ki

1

c

1

j
dj (D.29)

ď
ÿ

tPJT K

P
`

E A
t

˘

` 2σ
a

α log T
ÿ

iPJdK

ÿ

aiPJkiK

ˆ

1 ` 2

c

T

ki
´ 2

˙

ď
ÿ

tPJT K

P
`

E A
t

˘

` 2σ
a

α log T
ÿ

iPJdK

ÿ

aiPJkiK

2

c

T

ki

“
ÿ

tPJT K

P
`

E A
t

˘

` 4σ
a

α log T
ÿ

iPJdK

a

kiT
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ď

˜

α ` 2

α ´ 2
`

pα ` 2q2

pα ´ 2q2

1

log
`

α`2
4

˘

¸

ÿ

iPJdK

ki ` 4σ
a

αT log T
ÿ

iPJdK

a

ki.

where line (D.27) is obtained by rewriting the series over the arms and
the number of pulls for each arm, line (D.28) is derived by considering
the worst case, i.e., when all the arms are pulled equally (this is the worst
case because we are looking at a concave function), and line (D.29) is ob-
tained by bounding the summation with the corresponding integral. This
concludes the proof.

Theorem 8.4.2 (Instance-Dependent Upper Bound for F-UCB). For a given
FRB ν, F-UCB with α ą 2 suffers an expected regret bounded as:

E rRT pF-UCB,νqs ď CpF-UCB,νq,

where CpF-UCB,νq is defined as the solution to the following optimization
problem (where gpαq “ rOppα ´ 2q´2q):

max
pNaqaPA

ÿ

aPAzta˚u

Na∆a (8.9)

s.t. Ni,j “
ÿ

aPAzta˚u
ai“j

Na, @i P JdK, j P JkiKzta˚
i u (8.10)

Ni,j ď
4ασ2 log T

∆2
i,j

` gpαq, @i P JdK, j P JkiKzta˚
i u (8.11)

ÿ

aPA
Na “ T (8.12)

Na ě 0, @a P A (8.13)

Proof. The proof of this statement is divided into two parts. The first part
is dedicated to finding an upper bound on the expected number of pulls for
each action component Nij . The second part is dedicated to understanding
how these pulls can be combined to find an upper bound on the regret.
Part 1: Upper bounding the expected number of pulls for each action
component
The proof of the expected number of pulls for σ2-subgaussian variables
comprises three parts, extending and following the proof of Theorem 2.2
proposed by Bubeck (2010).
Given an instance ν of FRB, consider a component i P JdK, and a subop-
timal action ai P JkiKzta˚

i u, which suffers a suboptimality gap of ∆i,ai . In
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this part, we show that if Ii,t “ ai (i.e., the action selected for component i
at time t is ai), then one of the three following equations is true:

UCBi,a˚
i
ptq ď µ˚

i , (D.30)

or

µ̂i,aipt ´ 1q ą µi,ai ` σ

d

α log t

Ni,aipt ´ 1q
, (D.31)

or

Ni,aipt ´ 1q ă
4σ2α log T

∆2
i,ai

, (D.32)

where: UCBi,a˚
i
ptq is the confidence bound of the optimal arm for compo-

nent i at time t, having pulled such an arm for Ni,a˚
i
pt ´ 1q times in the

previous rounds, and µ̂i,ai,Ni,ai
pt´1q is the estimated value of the mean of

arm ai of component i after Ni,aipt ´ 1q pulls. For absurd, if we assume
that the three equations are false, then we have:

UCBi,a˚
i
ptq ą µ˚

i

“ µi,ai ` ∆i,ai

ě µi,ai ` 2

d

σ2α log t

Ni,aipt ´ 1q

ě µ̂i,ai,Ni,ai
pt´1q `

d

σ2α log t

Ni,aipt ´ 1q

“ UCBi,aipt ´ 1q,

which implies that aiptq ‰ ai. Now, we bound the probability that Equa-
tion (D.30) or Equation (D.31) hold true. Similar to the original proof,
we use a peeling argument together with Hoeffding’s maximal inequality,
which is a consequence of Azuma-Hoeffding inequality. Note that:

PpEq. (D.30) is trueq

ď P

˜

Ds P t1, . . . , tu : µ̂i,a˚
i
rss `

c

σ2α log t

s
ď µ˚

i

¸

“ P

˜

Ds P t1, . . . , tu :
s
ÿ

l“1

pxi,a˚
i
rls ´ µ˚

i q ď ´
a

σ2αs log t

¸
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We now apply the peeling argument with a geometric grid over the time in-
terval r1, ts. More precisely, given β P p0, 1q, we note that if s P t1, . . . , tu,
then Dj P

!

0, . . . , log t
log 1{β

)

: βj`1t ă s ď βjt.
As such, we get:

PpEq. (D.30) is trueq

ď

log t
log 1{β
ÿ

j“0

P

˜

Ds : βj`1t ă s ď βjt,
s
ÿ

l“1

pxi,a˚
i
rls ´ µ˚

i qď´
a

σ2αs log t

¸

ď

log t
log 1{β
ÿ

j“0

P

˜

Ds : βj`1t ă s ď βjt,
s
ÿ

l“1

pxi,a˚
i
rls ´ µ˚

i qď´
a

σ2αβj`1t log t

¸

We now bound this last term using Hoeffding’s maximal inequality, which
gives:

PpEq. (D.30) is trueq ď

log t
log 1{β
ÿ

j“0

exp

¨

˚

˝

´

´

a

σ2αβj`1t log t
¯2

2σ2βjt

˛

‹

‚

ď

log t
log 1{β
ÿ

j“0

exp

ˆ

´
αβ log t

2

˙

ď

ˆ

log t

log 1{β
` 1

˙

1

t
βα
2

.

Using the same arguments, it can be proven that:

PpEq. (D.31) is trueq ď

ˆ

log t

log 1{β
` 1

˙

1

t
βα
2

.

We can now write:

E rNi,aipT qs “ E

«

T
ÿ

t“1

1tIi,t“aiu

ff

ď u ` E

«

T
ÿ

t“u`1

1tIi,t“ai and Eq. (D.32) is falseu

ff

212



D.1. Proofs and Derivations

“ u ` E

«

T
ÿ

t“u`1

1tEq. (D.30) or Eq. (D.31) is trueu

ff

ď u `

T
ÿ

t“u`1

pPpEq. (D.30) is trueq ` PpEq. (D.31) is trueqq ,

where u “ r
4σ2α log T

∆2
i,ai

s.

We can now upper bound the probability of Equations (D.30) and (D.31)
holds:

T
ÿ

t“u`1

pPpEq. (D.30) is trueq ` PpEq. (D.31) is trueqq

ď 2
T
ÿ

t“u`1

ˆ

log t

log 1{β
` 1

˙

1

t
βα
2

ď 2

ż `8

1

ˆ

log t

log 1{β
` 1

˙

1

t
βα
2

dt

“ 2

„ˆ

log t

log 1{β
` 1

˙ˆ

2

2 ´ αβ
t1´

αβ
2

˙ȷ`8

1

`

´
4

p2 ´ αβq log 1{β

ż `8

1

t´
αβ
2 dt (D.33)

“ ´
4

2 ´ αβ
´

8

p2 ´ αβq2 log 1{β

”

t1´
αβ
2

ı`8

1
(D.34)

“ ´
4

2 ´ αβ
`

8

p2 ´ αβq2 log 1{β
,

where line (D.33) is obtained via integration by parts and the first term of
line (D.34) is obtained imposing αβ ą 2. Substituting now β “ 4

α`2
, which

verifies β P p0, 1q if α ą 2, we obtain:

T
ÿ

t“u`1

pPpEq. (D.30) is trueq ` PpEq. (D.31) is trueqq

ď ´
4

2 ´ 4α
α`2

`
8

`

2 ´ 4α
α`2

˘2

1

log
`

α`2
4

˘

“ ´
2pα ` 2q

2 ´ α
`

2pα ` 2q2

p2 ´ αq2

1

log
`

α`2
4

˘
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“
2pα ` 2q

α ´ 2
`

2

log
`

α`2
4

˘

ˆ

α ` 2

α ´ 2

˙2

.

Rearranging the upper bound on the expected number of pulls given the
three cases presented above, we get:

ErNi,jpT qs ď
4ασ2 log T

∆2
i,j

`
2pα ` 2q

α ´ 2
`

2

log
`

α`2
4

˘

ˆ

α ` 2

α ´ 2

˙2

.

We set gpαq “
2pα`2q

α´2
` 2

logpα`2
4 q

`

α`2
α´2

˘2
“ rO ppα ´ 2q´2q .

Part 2: Upper bounding the expected cumulative regret
We now have to understand how the pulls defined in part 1 can be com-
bined. We want to look at the worst combination in which we can pull the
suboptimal action components.
We recall that regret can be defined by highlighting the dependence on the
pulls of the action vectors:

ErRT pF-UCB,νqs “
ÿ

aPA
Na∆a.

As before, we can bind the pulls of the action components Nij and the
action vectors Na as follows:

ErNi,jpT qs “
ÿ

aPA:ai“j

Na, @i P JdK, j P JkiK.

We know that the pulls cannot be negative, and that the total number of pulls
of the action vectors sums to T , so we impose these additional constraints.
Now, acting on the number of pulls Na, @a P A we want to find the worst-
case in which we can combine action components in action vectors. So,
we solve a maximization problem on the regret defined as a function of
the number of pulls, given the constraints defined above, and the upper
bound on the expected number of pulls of the action components Nij, @i P

JdK, j P JkiKzta˚
i u defined in Part 1 of this proof.

Corollary 8.4.3 (Explicit Instance-Dependent Upper Bound for F-UCB).
For a given FRB ν, F-UCB with α ą 2 suffers an expected regret bounded
by:

E rRT pF-UCB,νqs ď CpF-UCB,νq

ď 4ασ2 log T
ÿ

iPJdK

µ˚
´i

ÿ

jPJkiKzta˚
i u

∆´1
i,j ` gpαq

ÿ

iPJdK

ki,

where µ˚
´i “

ś

lPJdKztiu µ
˚
l ď 1 for every i P JdK.
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Proof. In order to obtain a relaxed solution of the optimization problem in
Theorem 8.4.2, we first derive the following upper bound to the subopti-
mality gaps of the action vector a “ pa1, . . . , adqT:

∆a “
ź

iPJdK

µ˚
i ´

ź

iPJdK

µi,ai “
ź

iPJdK

µ˚
i

¨

˝1 ´
ź

iPJdK

µi,ai

µ˚
i

˛

‚ (D.35)

ď
ź

iPJdK

µ˚
i

ˆ

1 ´ min
iPJdK

µi,ai

µ˚
i

˙

(D.36)

“
ź

iPJdK

µ˚
i max

iPJdK

ˆ

1 ´
µi,ai

µ˚
i

˙

(D.37)

ď
ź

iPJdK

µ˚
i

ÿ

iPJdK

ˆ

1 ´
µi,ai

µ˚
i

˙

(D.38)

“
ÿ

iPJdK

pµ˚
i ´ µi,aiq

ź

jPJdKztju

µ˚
j (D.39)

“
ÿ

iPJdK

∆i,aiµ
˚
´i, (D.40)

where line (D.36) follows from observing that
ś

iPJdK
µi,ai

µ˚
i

ď miniPJdK
µi,ai

µ˚
i

since µi,ai

µ˚
i

P r0, 1q, line (D.39) comes from defining µ˚
´i :“

ś

jPJdKztju
µ˚
j ď

1. Thus, by considering the objective function in the optimization problem
of Theorem 8.4.2, we have:

ÿ

aPAzta˚u

Na∆a ď
ÿ

aPAzta˚u

Na

ÿ

iPJdK

∆i,aiµ
˚
´i

“
ÿ

iPJdK

µ˚
´i

ÿ

jPJkiK

ÿ

aPA : ai“j

Na∆i,ai

“
ÿ

iPJdK

µ˚
´i

ÿ

aiPJkiKzta˚
i u

Ni,ai∆i,ai .

By using the Constraint (8.11) to upper bound Ni,ai and recalling that ∆i,j ď

1, we get the result.

Theorem 8.5.1 (Instance-Dependent Upper Bound for F-Track). For any
FRB ν, F-Track run with:

N0 “

Q

a

log T
U

and ϵT “

d

2σ2fT p1{ log T q

N0

,
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suffers an expected regret of:

lim sup
TÑ`8

E rRT pF-Track,νqs

log T
“ Cpνq.

Proof. Preliminary Results Let us introduce the symbol:

ϵi,jpt, δq :“

d

2σ2fT pδq

Ni,jptq
.

Consider the event Epδq :“ tDi P JdK, Dj P JkiK, Dt P JTwarm-up, T K ě 1 :
|pµi,jptq ´ µi,j| ą ϵi,jpt, δqu and let us bound its probability:

PpEpδqq ď
ÿ

iPJdK

ÿ

jPJkiK

P pDt P JTwarm-up, T K : |pµi,jptq ´ µi,j| ą ϵi,jpt, δqq

(D.41)

“
ÿ

iPJdK

ÿ

jPJkiK

P

˜

Ds P JT K : |pµi,jrss ´ µi,j| ą

c

2σ2fT pδq

s

¸

(D.42)

ď
ÿ

iPJdK

ÿ

jPJkiK

δ “ kδ, (D.43)

where line (D.41) follows from a union bound over the values of i and j,
line (D.42) follows by rewriting the probability by highlighting the depen-
dence of the estimator on the number of samples s, and line (D.43) follows
from Lemma D.1.1, recalling that sppµi,jrss´µi,jq is a martingale difference
sequence and it is σ2-subgaussian.
We will make use of the following two instantiations of event Epδq:

E1 :“ Ep1{ log T q and E2 :“ Ep1{T q.

Clearly, from the previous result, we have that PpE1q ď k{ log T and PpE2q ď

k{T .
We start decomposing the regret over the phases of the algorithm:

E
ν

rRpF-Track, T qs

“ E
ν

«

ÿ

tPwarm-up

∆aptq

ff

looooooooomooooooooon

“:Eν rRwarm-uppT qs

`E
ν

«

ÿ

tPsuccess

∆aptq

ff

looooooooomooooooooon

“:Eν rRsuccesspT qs

`E
ν

«

ÿ

tPrecovery

∆aptq

ff

looooooooomooooooooon

“:Eν rRrecoverypT qs

,

216



D.1. Proofs and Derivations

where, with little abuse of notation, we denoted with t P phase denotes the
rounds in which phase phase is active. We proceed to analyze the three
components separately.
Part 1: Regret in Warm-Up Phase EνrRwarm-uppT qs We start by analyzing
the regret in the warm-up phase, whose duration is given by Twarm-up “

N0maxiPJdK ki “ r
?
log T smaxiPJdK ki. Thus, the corresponding expected

cumulative regret can be bounded as follows:

E
ν

rRwarm-uppT qs ď ∆max

Q

a

log T
U

max
iPJdK

ki “ O
´

a

log T
¯

,

where ∆max “ maxaPA∆a and the Big-O notation retains the dependence
on T only. Thus, its contribution to the regret is asymptotically negligible:

lim sup
TÑ`8

EνrRwarm-uppT qs

log T
“ 0.

Part 2: Regret in the Recovery Phase EνrRrecoverypT qs We move to the
analysis of the regret in the recovery phase. We start by showing that if
event E1 does not hold, then, the recovery phase never activates. Indeed,
under E A

1 simultaneously for all i P JdK, j P JkiK, and t P JTwarm-up, T K we
have that:

|pµi,jptq ´ µi,j| ď ϵi,jpt, 1{ log T q,

which implies simultaneously for all i P JdK, j P JkiK, and t P JTwarm-up, T K
that:

|pµi,jpTwarm-upq ´ pµi,jpt ´ 1q| ď |pµi,jpTwarm-upq ´ µi,j| ` |pµi,jpt ´ 1q ´ µi,j|

ď ϵi,jpTwarm-up, 1{ log T q ` ϵi,jpt ´ 1, 1{ log T q

ď 2ϵi,jpTwarm-up, 1{ log T q,

being ϵi,jpt, 1{ log T q a decreasing in t. Recalling that Ni,jpTwarm-upq ě N0,
we have:

2ϵi,jpTwarm-up, 1{ log T q “ 2

d

2σ2fT p1{ log T q

Ni,jpTwarm-upq

ď 2

d

2σ2fT p1{ log T q

N0

“ 2ϵT .
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Thus, we conclude that the termination condition of the while loop never
activates and, consequently, the recovery phase activates only when E1
holds, i.e., with probability at most 1{ log T .
In the recovery phase, our F-Track algorithm plays F-UCB that, from
Corollary 8.4.3, is proved to suffer logarithmic regret of the form:

ρpT q :“ 4ασ2 log T
ÿ

iPJdK

µ˚
´i

ÿ

jPJkiKzta˚
i u

∆´1
i,j ` gpαq

ÿ

iPJdK

ki “ Oplog T q.

Thus, we have that the cumulative regret of the recovery phase is bounded
by:

E
ν

rRrecoverypT qs “ E
ν

rRrecoverypT q|E A
1sPpE A

1q ` E
ν

rRrecoverypT q|E1sPpE1q

ď 0 `
ρpT q

log T

“ Op1q.

Consequently, its contribution to the expected cumulative regret is asymp-
totically negligible. Indeed:

lim sup
TÑ`8

EνrRrecoverypT qs

log T
“ 0.

Part 3: Regret in the Success Phase EνrRsuccesspT qs We conclude with
the most challenging part consisting of bounding the regret in the success
phase. The cumulative regret in the success phase needs to be further de-
composed as follows:

E
ν

rRsuccesspT qs “E
ν

«

1tE A
1u

ÿ

tPsuccess

∆aptq

ff

`

` E
ν

«

1tE1 ^ E A
2u

ÿ

tPsuccess

∆aptq

ff

`

` E
ν

«

1tE2u
ÿ

tPsuccess

∆aptq

ff

We analyze each term separately.
Part 3.1: Regret under E A

1 In what follows, all estimated quantities are es-
timated with the samples available at the end of the warm-up phase and,
thus, we will omit the dependence on Twarm-up. We show that asymptoti-
cally, during the success phase and under event E A

1, the algorithm suffers
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the optimal regret. To this end, we need to introduce some auxiliary tools.
For every i P JdK, let us define a sorting function as any bijective function
πi : JkiK Ñ JkiK such that:

µi,πip1q ď ¨ ¨ ¨ ď µi,πipkiq.

If all µi,j are different, the sorting function is unique. Furthermore, for
every i P JdK and j P JkiKztπipkiqu (i.e., excluding the action component
with maximum expected reward), let us denote:

Ni,j “
2σ2fT p1{T q

∆2
i,j

,

where ∆i,j “ µi,πipkiq ´ µi,j . Let us notice that Ni,j corresponds approxi-
mately to the minimum number of pulls of component pi, jq prescribed by
the lower bound in Theorem 8.3.3 and denoted with Li,j “

2σ2 log T
∆2

i,j
. Given

the definition of fT p1{T q, we have that Li,j{Ni,j Ñ 1 as T Ñ `8. Given
the sorting function, it is clear that also:

Ni,πip1q ď ¨ ¨ ¨ ď Ni,πipkiq.

Let us define:

βi :“ fT p1{T q
´1 min

l,l1PJkiK :Ni,πiplq‰Ni,πipl1q

ˇ

ˇNi,πiplq ´ Ni,πipl1q

ˇ

ˇ .

It is clear that if for every i P JbK and j P JkiK we have we have | pNi,j ´

Ni,j| ď βifT p1{T q{4, then, for any sorting function pπi of the estimated
quantities N i,j , there exist a sorting function πi of the true quantities Ni,j

such that pπi “ πi.
Let us define for every i P JdK and j P JkiK:

Mi,j :“
j
ÿ

l“1

Ni,πiplq.

We define now a sorting function π : JkK Ñ
Ť

iPJdKptiu ˆ JkiKq as any
bijection such that:

Mπp1q ď ¨ ¨ ¨ ď Mπpkq,

and convene (with a little abuse of notation) that Mπp0q “ 0. It is clear that
Mπpkq “ Mπpk´1q “ ¨ ¨ ¨ “ Mπpk´d`1q “ T . Let l P JkK, we define the
active action as:

αplq :“ pj1, . . . , jdq,
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where:

ji s.t. πpl1q “ pi, jiq and l1 “ mintl2 ě l and πpl2q “ pi, ¨qu with i P JdK.

We can now rewrite the regret with this notation:

ÿ

a‰a˚

Na∆a “

k´d
ÿ

l“1

`

Mπplq ´ Mπpl´1q

˘

∆αplq,

having observed that for the k´d` 1 terms we play the optimal action and
the successive ones are zero. Furthermore, given the relation between Li,j

and Ni,j , we have that:
ř

a‰a˚ Na

fT p1{T q
“ C and lim sup

TÑ`8

ř

a‰a˚ Na

log T
“ C.

Let us now define:

β :“ fT p1{T q
´1 min

l,l1PJkK :Mπplq‰Mπpl1q

ˇ

ˇMπplq ´ Mπpl1q

ˇ

ˇ .

It is clear that if for every i P JbK and j P JkiK we have |xMi,j ´ Mi,j| ď

βfT p1{T q{4, for every sorting function pπ of the estimated quantities xMi,j ,
there exist a sorting function π of the true quantities Mi,j such that pπ “ π.
If this is the case, then, the active action pαplq induced by pπ must be the
same as αplq since the active action depends on the sorting function only.
We now show that we can always guarantee | pNi,j ´ Ni,j| ď pβifT p1{T qq{4

and |xMi,j ´ Mi,j| ď pβfT p1{T qq{4 for sufficiently large T . First of all, let
us ensure that we identify the optimal component for every i P JdK. This is
guaranteed whenever for every j P JkiK we have:

|pµi,j ´ µi,j| ď ϵi,jpTwarm-up, 1{ log T q ď ϵT ď ∆min{4,

where ∆min “ miniPJdK minjPJkiKztπipkiqu µi,πipkiq ´ µi,j . The inequality is
satisfied for sufficiently large T since:

ϵT “

d

2σ2fT p1{ log T q
P?

log T
T “ O

˜

d

σ2 log log T
?
log T

¸

Ñ 0 as T Ñ `8.

Under this condition, we have that πipkiq “ pπipkiq and, consequently:

p∆i,j “ pµi,πpkiq ´ pµi,j and ∆i,j “ µi,πpkiq ´ µi,j.
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Thus, under event E A
1, we have |p∆i,j ´ ∆i,j| ď 2ϵT . Let us now consider

i P JkK and j P JkiKztπipkiqu, we have:
ˇ

ˇ

ˇ

pNi,j ´ Ni,j

ˇ

ˇ

ˇ
“

ˇ

ˇ

ˇ

ˇ

ˇ

2σ2fT p1{T q

p∆2
i,j

´
2σ2fT p1{T q

∆2
i,j

ˇ

ˇ

ˇ

ˇ

ˇ

“ 2σ2fT p1{T q
p∆i,j ` p∆i,jq|∆i,j ´ p∆i,j|

∆2
i,j
p∆2

i,j

ď 8σ2fT p1{T q
p2∆max ` ∆min{2q

∆4
min

ϵT ,

where ∆max “ maxiPJdK maxj,j1PJkiK |µi,j ´ µi,j1 | and having observed that
p∆i,j ě ∆i,j ´ 2ϵT ě ∆min ´ ∆min{2 “ ∆min{2 and p∆i,j ď ∆i,j ` 2ϵT ď

∆max`∆min{2 “ ∆min{2. Thus, the difference can go below βifT p1{T q for
sufficiently large T . Let us now move to the Mi,j variables. For sufficiently
large T such that the sorting function πi coincide with their estimated coun-
terparts pπi, we have that for i P JdK and j P JkiK:

ˇ

ˇ

ˇ
Mi,j ´ xMi,j

ˇ

ˇ

ˇ
“

ˇ

ˇ

ˇ

ˇ

ˇ

j
ÿ

l“1

Ni,πiplq ´

j
ÿ

l“1

pNi,pπiplq

ˇ

ˇ

ˇ

ˇ

ˇ

(D.44)

ď

j
ÿ

l“1

ˇ

ˇ

ˇ
N i,πiplq

´ pNi,πiplq

ˇ

ˇ

ˇ
(D.45)

ď 8σ2jfT p1{T q
p2∆max ` ∆min{2q

∆4
min

ϵT . (D.46)

Similarly, as before, we can conclude that this difference can be made
smaller than β for sufficiently large T , and, consequently, make the esti-
mated sorting function pπ equal the true counterpart π.
Under these conditions, we can bound the cumulative regret under E A

1:
ÿ

tPsuccess

∆aptq “
ÿ

a‰a˚

pNa∆a

“

k´d
ÿ

l“1

´

xM
pπplq ´ xM

pπpl´1q

¯

∆
pαplq

“

k´d
ÿ

l“1

´

xMπplq ´ xMπpl´1q

¯

∆αplq

“

k´d
ÿ

l“1

´

xMπplq ´ Mπplq ` Mπpl´1q ´ xMπpl´1q

¯

∆αplq`
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`

k´d
ÿ

l“1

`

Mπplq ´ Mπpl´1q

˘

∆αplq

ď 2∆max

k´d
ÿ

l“1

ˇ

ˇ

ˇ

xMπplq ´ Mπplq

ˇ

ˇ

ˇ
` CfT p1{T q

ď 8σ2
pk ´ dqmax

iPJdK
kifT p1{T q

p2∆max ` ∆min{2q

∆4
min

ϵT

` CfT p1{T q

“ OpϵTfT p1{T qq ` CfT p1{T q,

where we used Equation (D.46). Thus, recalling that ϵT Ñ 0 for T Ñ `8,
we have:

lim sup
TÑ`8

E
“

1tE A
1u
ř

tPsuccess ∆aptq

‰

log T
“ C.

Consequently, its contribution to the asymptotic regret is exactly C.
Part 3.2: Regret under E1 ^ E A

2 In this case, we have to prove that the regret
remains logarithmic. We consider two cases:
Case 1 We perform the analysis in the first case under the following con-
ditions:

@i P JdK : πipkiq “ pπipkiq and @j P JkiKztπipkiqu : p∆i,j ě ∆min{4.
(D.47)

In such a case, it is simple to show that the regret is at most logarithmic.
Indeed, being the optimal arm correctly identified (πipkiq “ pπipkiq) we
have:

ÿ

a‰a˚

pNa∆a ď 2∆max

k´d
ÿ

l“1

xM
pπplq

ď 2∆max

ÿ

iPJdK

ÿ

jPJkiKztπipkiqu

pNi,πipjq

ď 4σ2fT p1{T q∆max

ÿ

iPJdK

ÿ

jPJkiKztπipkiqu

p∆´2
i,πipjq

ď 64kσ2fT p1{T q∆max∆
´2
min “ Oplog T q,

where we observed that since the optimal arm is correctly identified, the
following inequality holds:

řk´d
l“1

xM
pπplq ď

ř

iPJdK
ř

jPJkiKztπipkiqu
pNi,πipjq.
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Case 2 If the condition in Equation (D.47) is violated, we show that the
success phase stops after a logarithmic number of rounds. Consider the
smallest round ti,j in which for a given i P JkK and j P JkiKztpπipkiqu, it
holds that:

Ni,jpti,jq ě min

#

2σ2fT p1{T q

p∆2
i,j

,
128σ2fT p1{T q

∆2
min

+

. (D.48)

Since the F-Track algorithm in the success phase proceeds with the round
robin of at most k arms, we have that:

ti,j ď kmin

#

2σ2fT p1{T q

p∆2
i,j

,
128σ2fT p1{T q

∆2
min

+

(D.49)

ď
128kσ2fT p1{T q

∆2
min

(D.50)

“: t˚
“ Oplog T q. (D.51)

Now, we consider two sub-cases.
Case 2.1 In the first sub-case, we deal with the case in which some optimal
components are not correctly identified:

Di P JdK : πipkiq ‰ pπipkiq

In such a case, at most at round t˚, we have that:

pµi,πipkiqptq ě µi,πipkiqptq ´

d

2σ2fT p1{T q

Ni,πipkiqptq
(D.52)

ě µi,πipkiqptq ´ max
!

p∆i,πipkiq,∆min{8
)

(D.53)

ě µi,πipkiqptq ´ p∆i,πipkiq ´ ∆min{8 (D.54)

ě µi,pπipkiqptq ` ∆i,pπipkiq ´ ∆min{8 ´ p∆i,πipkiq (D.55)

ě pµi,pπipkiqptq ´

d

2σ2fT p1{T q

Ni,pπipkiqptq
` ∆i,pπipkiq ´ ∆min{8 ´ p∆i,πipkiq

(D.56)

ě pµi,pπipkiqptq ´ maxt0,∆min{8u ` ∆i,pπipkiq ´ ∆min{8 ´ p∆i,πipkiq

(D.57)
ě pµi,pπipkiqptq ´ 3{4∆min ` pµi,πipkiqpTwarm-upq ´ pµi,pπipkiqpTwarm-upq.

(D.58)
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where line (D.52) follows from the fact that event E2 does not hold, line
(D.53) follows from Equation (D.48) with j “ πipkiq, line (D.54) is ob-
tained with max a, b ď a ` b for a, b ě 0, line (D.55) is obtained from the
definition of ∆i,pπipkiq, line (D.56) follows from the fact that event E2 does
not hold, line (D.57) follows from Equation (D.48) with j “ pπipkiq (whose
estimated p∆i,pπipkiq “ 0, and line (D.58) is obtained from the definition of
p∆i,πipkiq and from ∆i,pπipkiq ě ∆min.
This implies that at this round:

pµi,πipkiqptq ´ pµi,πipkiqpTwarm-upq ` pµi,pπipkiqpTwarm-upq ´ pµi,pπipkiqptq ě 3{4∆min

ě 4ϵT ,

where the latter holds for sufficiently large T . Thus, we have that the suc-
cess phase stops after at most t˚ rounds, leading to a regret of:

ÿ

tPsuccess

∆aptq ď ∆max
32kσ2fT p1{T q

∆2
min

“ Oplog T q.

Case 2.2 In the first sub-case, we deal with the case holding under the
condition:

@i P JdK : πipkiq “ pπipkiq,

and:

Di P JdK : Dj P JkiKztπipkiqu : p∆i,j ă ∆min{4.

At round t˚, for the pi, jq fulfilling the second part of the condition:

pµi,πipkiqptq ´ pµi,πipkiqpTwarm-upq ` pµi,jpTwarm-upq ´ pµi,jptq

ě pµi,πipkiqptq ´ pµi,jptq ´ p∆i,j

ě µi,πipkiqptq ´

d

2σ2fT p1{T q

Ni,πipkiqptq
´ µi,jptq ´

d

2σ2fT p1{T q

Ni,jptq
´ p∆i,j

ě ´maxt0,∆min{8u ´ maxtp∆i,j,∆min{8u ` ∆i,j ´ p∆i,j

ě ∆min{4,

having exploited p∆i,j ď ∆min{4 and ∆i,j ě ∆min. Thus, for sufficiently
large T , we have that 4ϵT ď ∆min{4 and, consequently, the success phase
ends.
Part 3.3: Regret under E2 We conclude by bounding the regret under event
E2, In this case, we proceed with the following trivial bound, recalling that
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PrpE2q ď 1{T .

E

«

1tE2u
ÿ

tPsuccess

∆aptq

ff

ď ∆maxT PpE2q ď ∆max “ Op1q.

Consequently, its contribution to the asymptotic regret is negligible.

D.1.2 Technical Lemmas

Lemma D.1.1. Let T P N, ϵ ą 0. Let X1, . . . , XT be a martingale dif-
ference sequence adapted to the filtration F0,F1, . . . , such that for every
t P JT K, it holds that EreλXts ď epσ2λ2q{2 a.s. for every λ P R. Then, for
every δ P p0, 1q it holds that:

P

˜

Dt P JT K :
t
ÿ

s“1

Xs ě

d

2 p1`plog T q´1qmax tϵ, tσ2u

ˆ

log

ˆ

1`

R

logpTσ2{ϵq

logp1 ` plog T q´1q

V˙

`log

ˆ

1

δ

˙̇

¸

ď δ.

Furthermore, for sufficiently large T , it holds that:

P

˜

Dt P JT K :
t
ÿ

s“1

Xs ě
a

2σ2tfT pδq

¸

ď δ,

where:

fT pδq :“

ˆ

1 `
1

log T

˙ˆ

c log log T ` log

ˆ

1

δ

˙˙

,

and c ą 0 is a universal constant.

Proof. The first statement is obtained from Lemma 14 of (Lattimore and
Szepesvari, 2017) considering that the inequality employed in Equation
(19) of that proof applies for σ2-subgaussian random variables and not for
Gaussian variables only. The second statement is obtained by setting ϵ “ σ2

and bounding 1
logp1`plog T q´1q

ď log T and logp1 ` rplog T q2sq ď c log log T

for some universal constant c (« 2).

Lemma D.1.2. Let x P r0, 1q, d P N, then if xi P r0, xq , @i P JdK, it holds:

1 ´
ź

iPJdK

p1 ´ xiq ě p1 ´ xq
d´1

ÿ

iPJdK

xi.
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Proof. We prove this statement by induction.
First, we can observe how for d “ 1 this result trivially holds:

1 ´ p1 ´ x1q “ x1.

We can now make the inductive step on d:

1 ´
ź

iPJdK

p1 ´ xiq “ 1 ´ p1 ´ xdq
ź

iPJd´1K

p1 ´ xiq

“ 1 ´ p1 ´ xdq
ź

iPJd´1K

p1 ´ xiq ˘ xd

“ p1 ´ xdq

¨

˝1 ´
ź

iPJd´1K

p1 ´ xiq

˛

‚` xd (D.59)

ě p1 ´ xdq

¨

˝p1 ´ xq
d´2

ÿ

iPJd´1K

xi

˛

‚` xd

ě p1 ´ xq
d´1

ÿ

iPJdK

xi,

where line (D.59) is the inductive step on d.

Lemma D.1.3. In a FRB, considering µa˚ “ 1, if ∆i,j ď ∆ “ 1 ´
1

21{pd´1q , @i P JdK, j P JkiK, the regret can be bounded as:

RT pA,νq “
ÿ

tPJT K

¨

˝1 ´
ź

iPJdK

`

1 ´ ∆i,aiptq

˘

˛

‚ě
1

2

ÿ

tPJT K

ÿ

iPJdK

∆i,aiptq.

Proof. We prove this statement by looking at a single time t. We can rewrite
Lemma D.1.2 as:

1 ´
ź

iPJdK

p1 ´ ∆i,aiptqq ě p1 ´ ∆q
d´1

ÿ

iPJdK

∆i,aiptq,

if ∆i,j ď ∆ P r0, 1q, @i P JdK, j P JkiK.
We make a choice we want to transform this result in order to have:

1 ´
ź

iPJdK

p1 ´ ∆i,aiptqq ě
1

2

ÿ

iPJdK

∆i,aiptq.

This can be done by imposing:

1

2
ď p1 ´ ∆q

d´1
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1

21{pd´1q
ď p1 ´ ∆q

∆ ď 1 ´
1

21{pd´1q
.

Lemma D.1.4 (Wang et al. 2021c). Suppose m, B are positive integers
and m ě 2; there are m ` 1 probability distributions P0,P1, . . .Pm, and
m random variables N1, . . . , Nm, such that: (i) Under any of the Pi’s,
N1, . . . , Nm are non-negative and

ř

iPJmK Ni ď B with probability 1; (ii)
@i P JmK, dTV ď 1

4

a

m
B
E0rNis. Then:

1

m

ÿ

iPJmK

EirB ´ Nis ě
B

4
.

Proof. For the proof of this Lemma, we refer the reader to Lemma 24
of (Wang et al., 2021c).

D.2 Additional Theorems and Lemmas

In this section, we provide additional Theorems and Lemmas useful in the
discussion of the work.

Lemma D.2.1. The product X1X2 ¨ ¨ ¨Xn of n ě 3 independent random
variables σ2-subgaussian is not subgaussian anymore.

Proof. The proof follows the one proposed by (Pinelis, 2021).
The proof of this statement can be done by verifying that the moment-
generating function of the product of n independent Gaussian distributions
with unit variance (Xi „ N p0, 1q, @i P JnK) is unbounded:

E

»

–exp

¨

˝c
ź

iPJnK

Xi

˛

‚

fi

fl “ 8, @c ą 0.

Given our random variables X1, X2, . . . , Xn, let us call X the vector com-
posed of our random variables (X :“ pX1, X2, . . . , Xnq) and let the vector
pU1, U2, . . . Unq be a uniformly distributed unit random vector. For some
real Cn ą 0:

E

»

–exp

¨

˝c
ź

iPJnK

Xi

˛

‚

fi

fl
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ě E

»

–exp

¨

˝c
ź

iPJnK

Xi

˛

‚1

"

Xi ą
||X||2

2
?
n
, @i P JnK

*

fi

fl (D.60)

“ Cn

ż 8

0

exp

¨

˚

˚

˚

˝

c
1

p2
?
nqn

rn

loooomoooon

(A)

˛

‹

‹

‹

‚

rn´1 exp

ˆ

´
r2

2

˙

looooooooomooooooooon

(B)

dr¨

¨ P
ˆ

Ui ą
1

2
?
n
, @i P JnK

˙

loooooooooooooomoooooooooooooon

(C)

(D.61)

“ Cn
p2

?
nqn

cn

ż 8

0

exp

ˆ

c
1

p2
?
nqn

rn
˙

cn

p2
?
nqn

rn´1

looooooooooooooooooomooooooooooooooooooon

g1prq

exp

ˆ

´
r2

2

˙

looooomooooon

fprq

dr¨

¨ P
ˆ

Ui ą
1

2
?
n
, @i P JnK

˙

“ Cn
p2

?
nqn

cn
¨

¨

¨

˚

˚

˚

˝

„

exp

ˆ

c
1

p2
?
nqn

rn
˙

exp

ˆ

´
r2

2

ȷ̇8

0

`

ż 8

0

exp

¨

˚

˚

˚

˝

c
1

p2
?
nqn

rn

looooomooooon

pDq

´
r2

2

˛

‹

‹

‹

‚

r dr

˛

‹

‹

‹

‚

¨ P
ˆ

Ui ą
1

2
?
n
, @i P JnK

˙

(D.62)

ě Cn
p2

?
nqn

cn

ˆ

r8 ´ 0s `

ż 8

0

exp

ˆ

´
r2

2

˙

r dr

˙

¨

¨ P
ˆ

Ui ą
1

2
?
n
, @i P JnK

˙

(D.63)

“ Cn
p2

?
nqn

cn

ˆ

r8 ´ 0s ´

„

exp

ˆ

´
r2

2

˙ȷ8

0

˙

¨

¨ P
ˆ

Ui ą
1

2
?
n
, @i P JnK

˙

Cną0
ně3
cą0
“ 8.
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The inequality in Equation (D.60) follows from the fact that the event inside
the indicator function happens with a probability ď 1. Equation (D.61)
is a rewriting of the previous line under the assumption that the indicator
function evaluates to 1. We can rewrite the expected value as an integral
over the positive real numbers since, according to the indicator function,
every random variable Xi must be greater than ||X||2

2
?
n

, which is a positive
quantity.
Term (A) is a substitution of

ś

iPJnK Xi with r
2

?
n

repeated n times, which
comes from the indicator function. r is the integration variable and repre-
sents the Euclidean norm of vector X .
Term (B) represents the probability density of the Euclidean norm of a
Gaussian vector X „ N p0, Inq.
Finally, term (C) represents the probability of the indicator function evalu-
ating to 1. Considering the vector Y whose elements are Yi “ Xi{||X||2,
then ||Y ||2 “ 1. The probability that Yi ą 1

2
?
n
, @i P JnK can be thought of

as the probability that the point defined by Y in the n-dimensional space is
located on the surface of the n-dimensional hyper-sphere of radius 1 in the
region induced by the condition Yi ą 1

2
?
n

.
Equation (D.62) is an integration by parts of the two functions fprq and
g1prq identified in the line above.
Equation (D.63) holds under the assumption that n ě 3 and c ą 0. First,
the term:

„

exp

ˆ

c
1

p2
?
nqn

rn
˙

exp

ˆ

´
r2

2

˙ȷ8

0

ně3
cą0
“ 8 ´ 0

under such an assumption. Second, we can write:

exp

ˆ

c
1

p2
?
nqn

rn ´
r2

2

˙

ě exp

ˆ

´
r2

2

˙

ñ

ż 8

0

exp

ˆ

c
1

p2
?
nqn

rn ´
r2

2

˙

dr ě

ż 8

0

exp

ˆ

´
r2

2

˙

dr

The final result then holds under the further assumption that Cn ą 0.

Lemma D.2.2 (Variance of the product of independent random variables).
Let X1, X2, . . . Xn independent random variables. The variance of their
product is:

VarrX1X2 ¨ ¨ ¨Xns “
ź

iPJnK

`

VarrXis ` pErXisq
2
˘

´
ź

iPJnK

pErXisq
2
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Proof.

VarrX1X2 ¨ ¨ ¨Xns

“ ErpX1X2 ¨ ¨ ¨Xnq
2
s ´ pErX1X2 ¨ ¨ ¨Xnsq

2

“ ErX2
1X

2
2 ¨ ¨ ¨X2

ns ´ pErX1sq
2
pErX2sq

2
¨ ¨ ¨ pErXnsq

2

“ ErX2
1 sErX2

2 s ¨ ¨ ¨ErX2
ns ´ pErX1sq

2
pErX2sq

2
¨ ¨ ¨ pErXnsq

2

“
ź

iPJnK

`

VarrXis ` pErXisq
2
˘

´
ź

iPJnK

pErXisq
2

Lemma D.2.3. Let X1, X2, . . . , Xn independent subgaussian random vari-
ables with expected value µi P r0, 1s and subgaussianity parameter σi P

r0,`8q. The variance of the product X1X2 ¨ ¨ ¨Xn is bounded by:
ź

iPJdK

σ2
i ď VarrX1X2 ¨ ¨ ¨Xns ď

ź

iPJnK

`

1 ` σ2
i

˘

´ 1

Proof. Now, we want to find the worst combination of µi, i P JnK, i.e.,
the combination of expected values which maximizes the variance of the
product of such random variables. To do so, we can consider a single i P

JnK, and look at the behavior of the first derivative when we change µi P

r0, 1s. We recall from Lemma D.2.2 that:

VarrX1X2 ¨ ¨ ¨Xns

“
ź

iPJnK

`

VarrXis ` pErXisq
2
˘

´
ź

iPJnK

pErXisq
2

“
ź

iPJnK

`

σ2
i ` µ2

i

˘

´
ź

iPJnK

µ2
i

“
`

σ2
i

` µ2
i

˘

ź

iPJnKztiu

`

σ2
i ` µ2

i

˘

´ µ2
i

ź

iPJnKztiu

µ2
i , (D.64)

“ µ2
i

ź

iPJnKztiu

`

σ2
i ` µ2

i

˘

´ µ2
i

ź

iPJnKztiu

µ2
i ` σ2

i

ź

iPJnKztiu

`

σ2
i ` µ2

i

˘

(D.65)

“ µ2
i

¨

˚

˚

˚

˚

˝

ź

iPJnKztiu

`

σ2
i ` µ2

i

˘

looooooooomooooooooon

A

´
ź

iPJnKztiu

µ2
i

loooomoooon

B

˛

‹

‹

‹

‹

‚

` σ2
i

ź

iPJnKztiu

`

σ2
i ` µ2

i

˘

looooooooooomooooooooooon

C

(D.66)
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where lines (D.64), (D.65) and (D.66) are no other than an algebraic step to
make explicit in the product the dependence on µi. Now we want to look at
the worst case scenario for the variance, i.e., the value of µi that maximize
it.
Recalling the constraints on µi which is assumed to be bounded in r0, 1s and
σ2
i that is defined over r0,`8s, it trivial to see that term A is predominant

over term B and so the worst case for element i is to consider µi “ 1, no
matter the other values of µi, i P JnKztiu. The term C is not relevant as
µi does not appear. This reasoning applies for all the possible values of
i P JnK, and so the worst case variance is when all the µi are equal to 1, for
all the components i P JnK.
Given that, the variance of the product of independent random variables
with expected values in µi P r0, 1s and variance σ2

i can be bounded as:

VarrX1X2 ¨ ¨ ¨Xns ď
ź

iPJnK

`

1 ` σ2
i

˘

´ 1.

A symmetric reasoning leads to the lower bound.
This concludes the proof.
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APPENDIXE
System Identification

This appendix presents a solution to perform system identification in the
standard LTI system starting from a singler trajectory. Given a system de-
fined as:

xt`1 “ Axt ` But ` ϵt,

yt “ Cxt ` Dut ` zt,

the goal is to identify matrices A, B, C, and D, in the case in which the
state xt cannot be observed.

E.1 Proposed Solution

In order to identify such matrices, we adopt a variant of the Ho-Kalman (Ho
and Kalman, 1966) algorithm. We start from the identification method pro-
posed by Lale et al. (2020a, Section 3), where authors consider a system of
the type (strictly proper):

xt`1 “ Axt ` But ` ϵt,

ryt “ Cxt ` zt.
(E.1)
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Our target setting can be seen as (not strictly proper):

xt`1 “ Axt ` But ` ϵt,

yt “ Cxt ` Dut ` zt,
(E.2)

with xt, ϵt P Rn, ut P Rp, and yt, zt P Rm. The noise over state transition
model ϵt and output zt are σ2-subgaussian random vectors. We consider
in this part the standard control problem notation adopted for LTI systems.
The mapping to our problem presented in Chapter 7 is straightforward by
considering C “ ωT and D “ θT. In predictive form, the system described
in Equation (E.1) is:

pxt`1 “ Āpxt ` But ` Fryt,

ryt “ Cpxt ` et,

where:

Ā “ A ´ FC,

F “ AΣCT
pCΣCT

` σ2Iq´1,

and Σ is the solution to the following DARE (Discrete Algebraic Riccati
Equation):

Σ “ AΣAT
´ AΣCT

pCΣCT
` σ2Iq´1CΣAT

` σ2I.

In order to identify this LTI system, we want to detect a matrix rGy:

rGy “
“

CF CĀF . . . CĀH´1F CB CĀB . . .CĀH´1B
‰

.

To identify through least squares method matrix rGy, we construct for each
t, a vector rϕt:

rϕt “
“

yTt´1 . . . yTt´H uT
t´1 . . . uT

t´H

‰T
P Rpm`pqH .

The system output ryt can be rewritten as:

ryt “ rGy
rϕt ` et ` CAHxt´H .

The output of the system under analysis (Equation E.2) is:

yptq “ ryt ` Dut “ rGy
rϕt ` Dut ` et ` CAHxt´H

We can incorporate the contribution of Dut in rGy obtaining Gy:

Gy “
“

CF CĀF . . . CĀH´1F D CB CĀB . . .CĀH´1B
‰

.
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The related vector ϕt is:

ϕt “
“

yTt´1 . . . yTt´H uT
t uT

t´1 . . . uT
t´H

‰T
P Rpm`pqH`p.

The best value of Gy can be found through regularized least squares as
in Lale et al. (2020a, Equation 10):

pGy “ argmin
X

λ}X}
2
F `

t
ÿ

τ“t´H

}yτ ´ Xϕτ}
2
2,

where } ¨ }F represents the Frobenius norm. The matrix D can be directly
retrieved from pGy. In order to get matrices A, B, and C, we remove the
values related to D from pGy and we retrieve rGy. From now on, we refer to
the algorithm proposed in Lale et al. (2020a, Appendix B).
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