
ar
X

iv
:2

50
7.

00
25

7v
1 

 [
cs

.L
G

] 
 3

0 
Ju

n 
20

25

Gym4ReaL: A Suite for Benchmarking
Real-World Reinforcement Learning

Davide Salaorni1 Vincenzo De Paola1 Samuele Delpero1 Giovanni Dispoto1
Paolo Bonetti1 Alessio Russo1 Giuseppe Calcagno1 Francesco Trovò1

Matteo Papini1 Alberto Maria Metelli1 Marco Mussi1 Marcello Restelli1
1 Politecnico di Milano

mail to: davide.salaorni@polimi.it

Abstract

In recent years, Reinforcement Learning (RL) has made remarkable progress,
achieving superhuman performance in a wide range of simulated environments.
As research moves toward deploying RL in real-world applications, the field
faces a new set of challenges inherent to real-world settings, such as large state-
action spaces, non-stationarity, and partial observability. Despite their importance,
these challenges are often underexplored in current benchmarks, which tend to
focus on idealized, fully observable, and stationary environments, often neglecting
to incorporate real-world complexities explicitly. In this paper, we introduce
Gym4ReaL, a comprehensive suite of realistic environments designed to support
the development and evaluation of RL algorithms that can operate in real-world
scenarios. The suite includes a diverse set of tasks that expose algorithms to
a variety of practical challenges. Our experimental results show that, in these
settings, standard RL algorithms confirm their competitiveness against rule-based
benchmarks, motivating the development of new methods to fully exploit the
potential of RL to tackle the complexities of real-world tasks.

1 Introduction

In the past few years, Reinforcement Learning (RL) [27] has demonstrated above-human performance
across different challenges, ranging from playing Atari games [13] to beating world champions of
Chess and Go [24, 25], achieving impressive results also in the field of robotic control [10]. However,
despite these promising advances, RL still struggles to gain traction in many real-world applications,
where systems are often subject to uncertainties and unpredictable factors that complicate accurate
physical modeling. An additional limitation lies in the fact that RL algorithms are typically validated
on idealized environments, such as those provided by Gymnasium [29] and MuJoCo [28]. Despite
their great contribution to RL research, such libraries provide artificial playgrounds able to generate
infinite samples, adapt to any desired configuration, and grant harmless exploration. However,
learning and overfitting these environments does not necessarily reflect skillfulness in real-world
tasks, where data is limited, dynamics change, and exploration does not come for free.

As a step towards bridging the gap between simulated and real-world settings and promoting the
deployment of RL in practical applications, we present Gym4ReaL1, a benchmarking suite designed
to realistically model several real-world environments specifically tailored for RL algorithms. The
selected tasks span multiple application domains. In particular, the suite includes:

• DamEnv, which models a dam control system responsible for releasing the appropriate amount of
water to meet residential demand;

1Codebase available here: https://github.com/Daveonwave/gym4ReaL

Preprint.

https://github.com/Daveonwave/gym4ReaL
https://arxiv.org/abs/2507.00257v1


Table 1: Characteristics and RL paradigms covered by each environment provided by Gym4ReaL.
Characteristics RL Paradigms

C
on

t.
St

at
es

C
on

t.
A

ct
io

ns

Pa
rt

.O
bs

er
va

bl
e

Pa
rt

.C
on

tr
ol

la
bl

e

N
on

-S
ta

tio
na

ry

V
is

ua
lI

np
ut

Fr
eq

.A
da

pt
at

io
n

H
ie

ra
rc

hi
ca

lR
L

R
is

k-
A

ve
rs

e

Im
ita

tio
n

L
ea

rn
in

g

Pr
ov

ab
ly

E
ffi

ci
en

t

M
ul

ti-
O

bj
ec

tiv
e

R
L

DamEnv ✓ ✓ ✓ ✓ ✓
ElevatorEnv ✓ ✓
MicrogridEnv ✓ ✓ ✓ ✓ ✓
RoboFeederEnv ✓ ✓ ✓ ✓
TradingEnv ✓ ✓ ✓ ✓ ✓ ✓
WDSEnv ✓ ✓ ✓ ✓

• ElevatorEnv, which addresses a simplified version of the elevator dispatching problem under
dynamic request patterns;

• MicrogridEnv, which focuses on optimal energy management within a local microgrid, balancing
supply, demand, and storage;

• RoboFeederEnv, which simulates a robotic work cell tasked with isolating and picking small
objects, including both picking and planning challenges;

• TradingEnv, which aims to develop optimized trading strategies for the foreign exchange (Forex)
market;

• WDSEnv, which models a municipal water distribution system, where the objective is to ensure a
consistent supply to meet fluctuating residential demand.

While the tasks of these environments can be modeled in various ways, Gym4ReaL provides their
standardized implementation compatible with Gymnasium [29] interfaces. Our selection of real-world
environments allows for training agents that specifically address such practical problems. However,
Gym4ReaL is also designed to serve as a methodologically agnostic suite, enabling RL researchers to
evaluate and benchmark algorithms regardless of any specific domain knowledge.

The primary goal of Gym4ReaL is not merely to supply environments for solving specific domain
tasks, but to offer a curated suite of environments that encapsulates the fundamental challenges
inherent to these real-world environments. A comprehensive summary of the suite’s features is
presented in Table 1. In particular, we distinguish between two key aspects: characteristics, which
refer to modeling properties specific to each environment, and RL paradigms, which denote the
classes of RL techniques that can be effectively tested and benchmarked within these environments
beyond the classical RL approaches. Furthermore, Gym4ReaL offers a high degree of configurability.
Users can customize input parameters and environmental dynamics to better reflect domain-specific
requirements, thus extending the suite’s usability to researchers from the respective application
domains. Through this combination of realism, diversity, and flexibility, Gym4ReaL supports a wide
spectrum of research efforts, from benchmarking general-purpose RL algorithms under realistic
conditions to developing domain-specific controllers.

Related works. Several prior works have introduced benchmarking suites aimed at evaluating RL
algorithms in realistic or application-specific scenarios. For example, SustainGym [31] provides
a suite of energy system simulations focused on sustainability and grid optimization, designed to
assess RL agents under real-world constraints such as energy storage dynamics and carbon emissions.
Similarly, SustainDC [16] targets sustainable control in data centers, offering environments that
capture the complexity of workload scheduling and energy-efficient operations. In the domain of
autonomous driving, MetaDrive [11] offers a customizable simulator for training RL agents in diverse
driving scenarios, testing generalization and robustness capabilities by supporting procedurally
generated environments. Regarding financial problems, FinRL [12] proposes a framework that
reduces the complexity of training RL agents to perform different financial tasks (e.g., trading and
portfolio allocation) on different markets. In contrast to the aforementioned libraries, which focus

2



on domain-specific tasks, Gym4ReaL is designed as a comprehensive benchmarking suite spanning
multiple domains and aiming to serve as a reference point for RL research in real-world scenarios.

Beyond domain-specific suites, several other platforms aim to expose RL algorithms to broader
real-world challenges. Real-World RL (RWRL) Suite [5] focuses on incorporating key aspects of
real-world deployment such as partial observability, delayed rewards, and non-stationarity. Robust
RL Suite (RRLS) [34] introduces environmental uncertainty to evaluate the robustness of RL methods
in continuous control tasks. POPGym [14] presents a set of environments centered on partially
observable Markov decision processes (POMDPs), making it useful for studying memory and
inference in RL. Finally, Safe-Control-Gym [33] provides environments tailored for the safe RL
paradigm in robotics and control, incorporating constraints and safety-aware objectives. Unlike
Gym4ReaL, such suites do not aim to address real-world problems directly. Instead, they leverage
virtual environments from Gymnasium and Mujoco to simulate some of the challenges of real-world
tasks.

2 Environments and Benchmarking

This section introduces Gym4ReaL environments, describing the state space, the action space, and the
reward function. Test results associated with each task are included, comparing rule-based expert
policies with RL-based agents. Further details on environments and results are in the Appendix.

2.1 DamEnv

DamEnv is designed to model the operation of a dam connected to a water reservoir. By providing the
amount of water to be released as an action, the environment simulates changes in the water level,
considering inflows, outflows, and other physical dynamics. The agent controlling the dam aims to
plan the water release in order to satisfy the daily water demand while preventing the reservoir from
exceeding its maximum capacity and causing overflows. Formally, the objective is:

max

T∑
t=1

[rd(at) + rof(at) + rst(at)], (1)

where rd favors actions that meet daily demand, rof actions that prevent water overflows, and rst those
that avoid starvation effects along the time horizon T . The daily control frequency adopted depends
on the data granularity. Moreover, the available historical data derived from human-expert decisions
allows for the development of imitation learning studies.

Observation Space. The observation space is composed as follows:
st =

(
lt, d̄t, cos(φy

t ), sin(φy
t )
)
, (2)

where lt is the water level at time t, d̄t is the moving average of past water demands, and φy
t ∈ [0, 2π]

represents the angular position of the current time over the entire year, given by φy =
2πτy
Ty

, where
τy ∈ [0, Ty] is the current time in seconds and Ty is the total number of seconds in a year.

Action Space. The action is a continuous variable at ∈ R+, representing the amount of water to
release per unit of time.

Reward Function. The reward at time t is rt = [rd(at) + rof(at) + rst(at)] + λ1rclip(at) +
λ2rw(at), where rd(at), rof(at) and rst(at) are the quantities in Equation 1, while rclip(at) and rw(at)
are two terms designed to discourage actions beyond the physical constraints of the environment and
to discourage water releases that are higher than the daily demand, respectively. The two positive
hyperparameters λ1 and λ2 regulate the importance of these two additional penalty terms. The
presence of multiple contrastive components enables the development of MORL paradigms.

Benchmarking. We employed an off-the-shelf implementation of the Proximal-Policy Optimization
(PPO) [22] algorithm as a benchmark state-of-the-art RL approach for the DamEnv task. We evaluated
the trained agent against four rule-based baselines: the Random policy, which selects actions uniformly
at random; the Mean policy, which selects the mean value of the action space; the Max policy, which
selects the maximum value of the action space; and the EAD policy, which sets actions based on an
exponential moving average of previous demands. The experiments conducted on 13 test episodes
highlight the capability of the PPO agent to perform better than rule-based strategies. In particular,

3



0 100 200 300
Time (days)

4

3

2

1

0

To
ta

l o
bj

ec
tiv

e 
re

w
ar

d

1e4

Random
Mean
Max
EAD
PPO

(a) Mean cumulative rewards.

Random Mean Max EAD PPO

5

4

3

2

1

R
et

ur
n

1e4

(b) Boxplot of returns.

Figure 1: Test performances with confidence intervals on DamEnv. Thirteen different episodes have
been considered with a time horizon of one year.

we can observe a better daily control of the PPO agent throughout one year, as shown in Figure 1a,
and a larger average return with small variability, as highlighted in Figure 1b. Detailed results show
that PPO avoids dam overflows much more effectively than the baselines, as detailed in the Appendix.

2.2 ElevatorEnv

ElevatorEnv is a simplified adaptation of the well-known elevator scheduling problem introduced
by Crites and Barto [3]. Similarly to a subsequent work [32], we design a discrete environment that
simulates peak-down traffic, typical of scenarios such as office buildings at the end of a workday.
In this environment, a single elevator serves a multi-floor building with F floors and is tasked with
transporting employees to the ground floor (f = 0). The episode unfolds over T discrete time steps.
At each floor f ∈ {1, . . . , F}, new passengers arrive according to a Poisson process with rate λf .

Arriving passengers join a queue on their respective floor, provided the queue length is below a
predefined threshold Wf,max. Otherwise, they opt to take the stairs. The goal of the elevator controller
is to minimize the cumulative waiting time of all transported passengers throughout the episode. This
can be formalized as minimizing the cost:

min

T∑
t=1

( F∑
f=1

wf,t + ct

)
, (3)

where wf,t denotes the total waiting time of individuals at floor f at time t. This setting defines a
challenging load management problem, involving a trade-off between serving higher floors with longer
queues and minimizing elevator travel time. Furthermore, the discrete and restrained formulation
of ElevatorEnv facilitates the development of provably efficient RL methods, without losing the
connection with the underlying real-world task.

Observation Space. The observation space is structured as follows:
st = (ht, ct,wt,kt), (4)

where ht ∈ {0, . . . ,H} denotes the vertical position of the elevator within the building at time t,
being H the maximum reachable height, ct ∈ {0, . . . , Cmax} indicates the current load of the elevator,
in number of passengers, up to the maximum capacity Cmax, and wt ∈ NF and kt ∈ NF represent
the actual number of people waiting in the queue and the new arrivals at each floor.

Action Space. The action space is defined by the discrete action variable at ∈ {u, d, o} which
indicates whether the elevator has to move upwards (u), move downwards (d), or stay stationary and
open (o) the doors. Actions are mutually exclusive and applied at each time step t.

Reward Function. The instantaneous reward is rt = −(
∑

f wf,t+ct)+1{ct=0}β ct−1, i.e., at each
step t we penalize the presence of individuals, either waiting in queues (wf,t) or inside the elevator
(ct), as in Equation (4). In addition, we grant a positive reward when passengers are successfully
delivered to the ground floor, i.e., when the elevator becomes empty. The positive hyperparameter
β > 0 controls the reward magnitude for offloading ct−1 passengers.

4



0 1000 2000 3000
Time (s)

4

3

2

1

0

G
lo

ba
l w

ai
tin

g 
tim

e 
(s

)

1e4

Random
LF
SF
Q-Learning
SARSA

(a) Mean cumulative rewards.

Random LF Q-Learning SF SARSA
5

4

3

2

1

0

R
et

ur
n 

(s
)

1e4

(b) Boxplot of returns.

Figure 2: Performance of baselines in terms of mean cumulative reward (a) and average return (b) on
ElevatorEnv. Results collected over 30 different episodes.

Benchmarking. For the ElevatorEnv task, we adopt two well-known tabular RL algorithms:
Q-Learning [30] and SARSA [27]. Such methods are evaluated against different rule-based strategies,
i.e., the Random policy, and the Longest-First (LF) and the Shortest-First (SF) policies, which
prioritize the floor with a higher or lower number of waiting people, respectively. As shown in
Figure 2a, both RL algorithms consistently outperform the other rule-based solutions, considerably
reducing the global waiting time. In particular, as reported in Figure 2b, Q-Learning shows higher
performance than SARSA, which, due to its inherent nature, tends to play more conservative actions.

2.3 MicrogridEnv

MicrogridEnv simulates the operation of a microgrid within the context of electrical power systems.
Microgrids are decentralized components of the main power grid that can function either in synchro-
nization or in islanded mode. In this scenario, the control point is placed on the battery component,
which must find the best strategy to manage the accumulated energy over time optimally. Formally,
the controller wants to maximize its total profit over a time horizon of T . Hence, the objective is:

max

T∑
t=1

[rtrad(at) + rdeg(at)], (5)

where rtrad(at) ∈ R is the reward/cost gained from the exchanges of energy with the market, and
rdeg(at) < 0 is the cost due to battery degradation. The benchmark leverages real-world datasets, as
detailed in the Appendix, and the battery behavior is modeled using a digital twin of a BESS [20].
Each episode is formulated as an infinite-horizon problem and terminates either when the dataset is
exhausted or the battery reaches its end-of-life condition. Moreover, the presence of energy market
trends allows the usage of MicrogridEnv for frequency adaptation analysis.

Observation Space. The observation space comprises variables regarding the internal state of the
system and uncontrollable signals received from the environment. Formally:

st =
(
σt,Kt, P̂D,t, P̂G,t, p

buy
t , psell

t , cos(φd
t ), sin(φd

t ), cos(φy
t ), sin(φy

t )
)
, (6)

where σt is the storage state of charge, Kt is the battery temperature, P̂D,t is the estimate of energy
demand PD,t, P̂G,t is the estimate of energy generation PG,t, p

buy
t and psell

t are the buying and selling
energy market prices, respectively, φd

t ∈ [0, 2π] is the angular position of the clock in a day, and
φy
t ∈ [0, 2π] is the angular position of the time over the entire year.

Action Space. The action space is determined by the continuous action variable at ∈ [0, 1],
representing the proportion of energy to dispatch (take) to (from) the BESS. The action operates with
the net power computed as PN,t = PG,t − PD,t. If PN,t > 0, it regulates the proportion of energy
used to charge the battery or sold to the main grid. Conversely, if PN,t < 0, the action balances the
proportion of energy taken from the energy storage or bought from the market.

Reward Function. The instantaneous reward is rt = [rtrad(at) + rdeg(at)] + λrclip(at), where
rclip(at) is a penalty that discourages actions that do not respect physical constraints, weighted by the

5



0 2000 4000 6000 8000
Time (h)

400

300

200

100

0

To
ta

l p
ro

fit
 (

)
Random
OM
BF
50-50
PPO

(a) Mean cumulative rewards.

Random OM BF 50-50 PPO

500

400

300

200

R
et

ur
n 

(
)

(b) Boxplot of returns.

Figure 3: Performance of baselines in terms of mean cumulative reward (a) and average return (b) on
MicrogridEnv. Results have been collected over 28 different episodes.

hyperparameter λ. The first two elements, instead, are the same components of the objective function
in Equation (5), whose contrastive optimization enables multi-objective RL approaches.

Benchmarking. For the MicrogridEnv, we compare an RL agent trained with PPO [22] against
several rule-based policies: the Random policy; the Only-market (OM) policy, which forces the
interaction with the grid without using the battery; the Battery-first (BF) policy, which fosters the
battery usage; and the 50-50 policy, which adopts a behavior in the middle between OM and BF.
Figure 3a shows that, during testing, PPO achieves higher profit than rule-based strategies. However,
as reported in Figure 3b, PPO has a large variance, suggesting the need for novel RL algorithms to
achieve more consistent behavior.

2.4 RoboFeederEnv

RoboFeederEnv is a collection of environments designed to pick small objects from a workspace
area with a 6-degree-of-freedom (6-DOF) robotic arm. This task involves two primary challenges:
determining the picking order of the objects and identifying the precise grasping point on each object
for successful pickup and placement. To closely mimic the behavior of the commercial robotic system,
a simulation emphasizing contact interactions is conducted using MuJoCo [28]. This environment
supports goal-oriented training, enabling the robot to learn how to identify the appropriate grasping
points and, more broadly, to determine the most efficient order of picking. Unlike most robotic
simulators, RoboFeederEnv is uniquely tailored to operate at the trajectory planning level rather
than through low-level joint control, which is more realistic in industrial applications, given the
impossibility of accessing and modifying proprietary kinematic controllers.

Due to the hierarchical nature of the problem, we split the setting into two underlying environments:
RoboFeeder-picking and RoboFeeder-planning.

2.4.1 RoboFeeder-picking

Gym4ReaL includes two types of picking environments of increasing difficulty:

• picking-v0: a simpler environment where the top-down image is pre-processed by cropping
around detected objects, reducing the complexity of the visual input, thus of the observation space;

• picking-v1: a more challenging environment where the observation is the full camera image.

Observation Space. The observation is defined by the visual input st = Xt ∈ RH×W×C , where
each image Xt is represented by a tensor of height H , width W , and channel C, and is captured by
a camera positioned on top of the working area. Within the picking-v0 environment, the image
tensor is restricted to X̂t ∈ RĤ×Ŵ×C , with Ĥ and Ŵ cropped image dimensions.

Action Space. The action space is determined by the continuous action at = (xt, yt), where (xt, yt)
are relative coordinates within the segmented image, corresponding to the target grasping point.

Reward Function. The reward function is designed to foster successful object picking while
penalizing unfeasible or suboptimal actions. Formally, the instantaneous reward is rt = 1 if the object

6



X Position

Y 
Po

sit
io

n

1.0

0.5

0.0

0.5

1.0

Su
cc

es
s R

at
e

(a) picking-v0: baseline.

X Position

Y 
Po

sit
io

n

1.0

0.5

0.0

0.5

1.0

Su
cc

es
s R

at
e

(b) picking-v0: PPO.

1 2 3
Number of Objects

3

2

1

Re
tu

rn

Method
Random
PPO

(c) RoboFeeder-planner.

Figure 4: Heatmap of the success rate of picking tasks across the entire workspace with baseline
(a) and PPO (b) (the higher, the better). Comparison between Random policy and PPO within the
planning problem (c) (average return over 50 episodes and 5 different random seeds).

is correctly picked up, rt = −1 if the action is unfeasible, or rt = −1 + rd,t + rθ,t otherwise, where
rd,t is a distance-based shaping term that rewards proximity of the end-effector to the object, and rθ,t
is a rotation-based shaping term that incentivizes alignment with the desired grasping orientation.

Benchmarking. We evaluate the performance of a trained PPO [22] agent against a fixed action
rule-based strategy on the picking-v0 environment. The task involves objects uniformly distributed
within the workspace, requiring non-trivial generalization capabilities. Figures 4a and 4b report how
the baseline exhibits consistently poor performance, while the PPO agent achieves higher and more
evenly distributed success rates, highlighting its capability to learn an effective picking strategy.

2.4.2 RoboFeeder-planning

The RoboFeeder-planning is an environment aiming to decide the order to follow for picking the
objects in the work area. It is a high-level task w.r.t. RoboFeeder-picking, not involving the direct
control of the robot, but only concerning the optimal picking schedule.

Observation Space. The observation space is defined by the vector of visual input st =
[X1,t, . . . ,XN,t], with Xi,t ∈ RH×W×C , where N is the maximum number of images that can be
processed and Xi,t is an image defined as in the picking-v0 task. Each of the N image patches
corresponds to a cropped and scaled region of a detected object.

Action Space. The action space is determined by the discrete action at ∈ {0, 1, . . . , N}, selecting
the image from 1 to N containing the object to pick. Action 0, instead, is a special idle action that can
be chosen when no graspable objects are available. This formulation enables continuous deployment
since the robot can remain idle while waiting for the arrival of new objects.

Reward Function. The immediate reward is rt = 1, if the selected object is correctly picked,
rt = −1 if it is not picked, and rt = −

∑M
i=1 1{obji not picked but graspable} if the agent plays the idle

action at = 0 while graspable objects are present, with M being the currently available objects.

Benchmarking. In Figure 4c, we compare the efficiency of a trained PPO [22] agent against a
Random strategy. Results highlight the agent’s capability to determine an optimal picking schedule
by distinguishing objects placed in a favorable position to be picked up. Moreover, as the number of
objects increases, the gap between the average return of PPO and the baseline increases too.

2.5 TradingEnv

TradingEnv provides a simulated market environment, trained with historical foreign exchange
(Forex) data relative to the EUR/USD currency pair, where the objective is to learn a profitable
intraday strategy. The problem is framed as episodic: each episode starts at 8:00 EST and ends at
18:00 EST when the position must be closed. At each step, based on its expectations, the agent can
open a long position (i.e., buy a fixed amount of the asset), remain flat (i.e., take no action), or open a
short position (i.e., short sell a fixed amount of the asset). Typical baselines include passive strategies,
such as Buy&Hold (B&H) and Sell&Hold (S&H), which consist of maintaining fixed positions.

Trading tasks are typically subjected to several challenges. For example, the state has to be carefully
designed to deal with the low signal-to-noise ratio, and it is typically large-dimensional, including past
prices and temporal information. Moreover, the environment is partially observable, and financial

7



20
22

-01
-08

20
22

-02
-17

20
22

-03
-29

20
22

-05
-08

20
22

-06
-17

20
22

-07
-27

20
22

-09
-05

20
22

-10
-15

20
22

-11
-24

20
23

-01
-03

Time

6

4

2

0

2

4

6

P
&

L 
(%

)

B&H
S&H
PPO
DQN

(a) P&L curve on test set.

PPO DQN B&H S&H
Strategy

2

1

0

1

2

D
ai

ly
 P

&
L

(b) Boxplot of P&L on test set.

Figure 5: Performances of PPO and DQN against baselines B&H and S&H on Test (a) Daily
Performance on Test (b) on TradingEnv. Mean and standard deviation are computed over 6 seeds.

markets are non-stationary. Another relevant aspect is the calibration of the trading frequency,
considering the amount of noise and transaction costs. In addition, risk-aversion approaches can be
of interest, considering not only the profit-and-loss (P&L) but also the variance among episodes.

Observation Space. The observation space is composed of two components: market state and agent
state. The market state includes calendar features and recent price variations, namely the last 60 delta
mid-prices, where a delta mid-price is defined as dk,t =

pt−k−pt−k−1

pt−k−1
, with k ∈ {0, . . . , 59}. The

agent state component, on the contrary, includes the current position zt, that is, the action that was
previously played. Formally, the state in this setting is:

st =
(
dt, cos(φday

t ), sin(φday
t ), zt

)
, (7)

where dt = [d0,t, . . . , d59,t] is the vector of the last 60 delta mid prices at time t, φday
t ∈ [0, 2π] is

the angular position of the current time over the trading period, and zt = at−1 is the agent position.

Action Space. The action space is determined by a discrete variable at ∈ {s, f, l}, where s (short)
indicates that the agent is betting against EUR, supposing a decline in the value relative to USD; f
(flat) indicates no market exposition; and l (long) means that the agent expects that the relative EUR
value will increase. Each action refers to a fixed amount of capital C to trade.

Reward Function. The immediate reward at time t is the signal rt = at−1(pt − pt−1)− λ|at − zt|,
where the first term is related to the P&L obtained from a price change, and the second component
regards the commissions paid when the agent changes its position, being λ, a constant transaction fee.

Benchmarking. We trained agents using off-the-shelf implementations of PPO [22] and DQN [13]
on TradingEnv. Their performance against common passive baselines, B&H and S&H, are evaluated
on a test year (Figure 5a). As expected, neither PPO nor DQN is able to consistently outperform the
baselines, due to the complexity of the problem. However, RL remains a valid candidate to tackle
trading tasks, as it significantly reduces the daily variability of the P&L (Figure 5b).

2.6 WaterDistributionSystemEnv

WaterDistributionSystemEnv simulates the evolution of a hydraulic network in charge of dis-
patching water across a residential town. A network is composed of different entities, such as storage
tanks, pumps, pipes, junctions, and reservoirs, and the main objective of the system is the safety of
the network. To achieve such a goal, we have to ensure optimal management of hydraulic pumps,
which are in charge of deciding how much water should be collected from reservoirs and dispatched
to the network. The pumps’ controller must guarantee network resilience by maximizing the demand
satisfaction ratio (DSR) while minimizing the risk of overflow. Formally, the objective is

max

T∑
t=1

[rDSR(at) + rof(at)], (8)

where rDSR(at) ∈ [0, 1] is the ratio between the supplied demand on the expected demand at time t,
and rof(at) ∈ [0, 1] is a normalized penalty associated with the tanks’ overflow risk.

8



0 50 100 150
Time (h)

100

0

100

N
et

w
or

k 
R

es
ili

en
ce

Random
P78
P79
Default
DQN

(a) Mean cumulative reward.

Random P78 P79 Default DQN

100

0

100

R
et

ur
n

(b) Boxplot of returns.

Figure 6: Performance of baselines in terms of mean cumulative resilience (a) and average return (b)
on WDSEnv. Results have been collected over 20 different episodes.

The environment leverages the hydraulic analysis framework Epanet [19], which provides the math-
ematical solver for water network evolution, and realistic datasets of demand profiles. Therefore,
WDSEnv may also be suitable to test imitation learning methods, having at disposal an expert policy
from the .inp configuration file of networks read by Epanet.

Observation Space. The observation space includes the internal state of the network and an
estimation of the global demand profile that the system is asked to deal with. Formally:

st =
(
ht,pt, d̂t, cos(φd

t ), sin(φd
t )
)
, (9)

where ht ∈ RL is the vector of L tank levels at time t, pt ∈ RJ is the vector of J junction pressures
at time t, d̂t is the estimated total demand at time t, and φd

t ∈ [0, 2π] is the angular position of the
clock in a day. Finally, although all tanks must be monitored, we can reduce the dimensionality of
the observation space by considering only junctions placed in strategic positions.

Action Space. The discrete action variable at ∈ N can assume values in {0, . . . , 2P − 1}, with P
number of pumps within the system. The action determines the combination of open/closed pumps.

Reward Function. The instantaneous reward given by the environment is rt = rDSR,t(at)+rof,t(at),
where the terms are those described in the objective function in Equation (8).

Benchmarking. The WDSEnv is benchmarked adopting DQN [13], which is compared with different
rule-based baselines: the Random policy, P78 and P79 policies, which act by keeping active only
the relative pump (namely P78 or P79, respectively), and the Default policy, which executes the
default control rules contained within the .inp configuration file of the network, changing the control
action depending on the current tank level. As depicted in Figure 6a, DQN achieves a higher level of
resilience with respect to other baselines. Moreover, Figure 6b shows that it has a more consistent
behavior and low variance, a crucial characteristic for the resilience and safety of the water network.

3 Discussion and Conclusion

In this work, we presented Gym4ReaL, a benchmarking suite designed to model several real-world
environments specifically tailored for RL algorithms. Unlike standard benchmarking suites, which
often rely on idealized tasks, Gym4ReaL represents a novel library that allows for evaluating new
RL methods in realistic playgrounds. Notably, the Gym4ReaL suite includes environments designed
to capture common real-world challenges, such as limited data availability, realistic assumptions
about physical process dynamics, and constrained exploration, fostering research toward broader
adoption of RL methods in practical applications. For this reason, we selected a pool of environments
incorporating different characteristics and addressing various RL paradigms, as shown in Table 1.

Given the standardized and flexible interface offered by our suite, a broader range of real-world
problems and challenges could be easily integrated into our framework. We believe that a collective
effort from the RL community can significantly advance the development of realistic, impactful

9



benchmarks. Hence, we encourage researchers and practitioners to explore, contribute to, and adopt
Gym4ReaL to evaluate RL algorithms in real-world scenarios.

References
[1] R. Almgren and N. A. Chriss. Optimal execution of portfolio trans-actions. 2000. URL

https://api.semanticscholar.org/CorpusID:15502295.

[2] A. Cominola, M. Giuliani, A. Castelleti, A. Abdallah, and D. E. Rosenberg. Developing a
stochastic simulation model for the generation of residential water end-use demand time series.
2016.

[3] R. Crites and A. Barto. Improving elevator performance using reinforcement learning. In
D. Touretzky, M. Mozer, and M. Hasselmo, editors, Advances in Neural Information Processing
Systems, volume 8. MIT Press, 1995. URL https://proceedings.neurips.cc/paper_
files/paper/1995/file/390e982518a50e280d8e2b535462ec1f-Paper.pdf.

[4] V. De Paola, G. Calcagno, A. M. Metelli, and M. Restelli. The power of hybrid learning in
industrial robotics: Efficient grasping strategies with supervised-driven reinforcement learning.
In 2024 International Joint Conference on Neural Networks (IJCNN), pages 1–9, 2024. doi:
10.1109/IJCNN60899.2024.10650627.

[5] G. Dulac-Arnold, N. Levine, D. J. Mankowitz, J. Li, C. Paduraru, S. Gowal, and T. Hester. An
empirical investigation of the challenges of real-world reinforcement learning. arXiv preprint
arXiv:2003.11881, 2020.

[6] D. Fioriti, L. Pellegrino, G. Lutzemberger, E. Micolano, and D. Poli. Optimal sizing of
residential battery systems with multi-year dynamics and a novel rainflow-based model of
storage degradation: An extensive italian case study. Electric Power Systems Research, 203,
2022. ISSN 0378-7796. doi: https://doi.org/10.1016/j.epsr.2021.107675.

[7] Gestore dei Mercati Energetici S.p.A. Historical data mgp, 2015-2020. Data retrieved from
GME: https://www.mercatoelettrico.org/it/download/DatiStorici.aspx.

[8] A. Heinsbroek. Epynet. https://github.com/Vitens/epynet, 2016.

[9] K. A. Klise, R. Murray, and T. Haxton. An overview of the water network tool for resilience
(WNTR), 2018.

[10] J. Kober, J. A. Bagnell, and J. Peters. Reinforcement learning in robotics: A survey. The
International Journal of Robotics Research, 32(11):1238–1274, 2013.

[11] Q. Li, Z. Peng, L. Feng, Q. Zhang, Z. Xue, and B. Zhou. Metadrive: Composing diverse driving
scenarios for generalizable reinforcement learning. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 2022.

[12] X.-Y. Liu, H. Yang, J. Gao, and C. D. Wang. FinRL: Deep reinforcement learning framework
to automate trading in quantitative finance. ACM International Conference on AI in Finance
(ICAIF), 2021.

[13] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare, A. Graves,
M. Riedmiller, A. K. Fidjeland, G. Ostrovski, S. Petersen, C. Beattie, A. Sadik, I. Antonoglou,
H. King, D. Kumaran, D. Wierstra, S. Legg, and D. Hassabis. Human-level control through
deep reinforcement learning. Nature, 518(7540):529–533, Feb 2015. ISSN 1476-4687. doi:
10.1038/nature14236. URL https://doi.org/10.1038/nature14236.

[14] S. Morad, R. Kortvelesy, M. Bettini, S. Liwicki, and A. Prorok. POPGym: Benchmarking par-
tially observable reinforcement learning. In The Eleventh International Conference on Learning
Representations, 2023. URL https://openreview.net/forum?id=chDrutUTs0K.

[15] A. Murillo, R. Taormina, N. O. Tippenhauer, D. Salaorni, R. van Dijk, L. Jonker, S. Vos,
M. Weyns, and S. Galelli. High-fidelity cyber and physical simulation of water distribution
systems. i: Models and data. Journal of Water Resources Planning and Management, 149
(5):04023009, 2023. doi: 10.1061/JWRMD5.WRENG-5853. URL https://ascelibrary.
org/doi/abs/10.1061/JWRMD5.WRENG-5853.

10

https://api.semanticscholar.org/CorpusID:15502295
https://proceedings.neurips.cc/paper_files/paper/1995/file/390e982518a50e280d8e2b535462ec1f-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/1995/file/390e982518a50e280d8e2b535462ec1f-Paper.pdf
https://github.com/Vitens/epynet
https://doi.org/10.1038/nature14236
https://openreview.net/forum?id=chDrutUTs0K
https://ascelibrary.org/doi/abs/10.1061/JWRMD5.WRENG-5853
https://ascelibrary.org/doi/abs/10.1061/JWRMD5.WRENG-5853


[16] A. Naug, A. Guillen, R. Luna, V. Gundecha, C. Bash, S. Ghorbanpour, S. Mousavi, A. R.
Babu, D. Markovikj, L. D. Kashyap, D. Rengarajan, and S. Sarkar. Sustaindc: Bench-
marking for sustainable data center control. In A. Globerson, L. Mackey, D. Belgrave,
A. Fan, U. Paquet, J. Tomczak, and C. Zhang, editors, Advances in Neural Informa-
tion Processing Systems, volume 37, pages 100630–100669. Curran Associates, Inc.,
2024. URL https://proceedings.neurips.cc/paper_files/paper/2024/file/
b6676756f8a935e208f394a1ba47f0bc-Paper-Datasets_and_Benchmarks_Track.
pdf.

[17] S. Pfenninger and I. Staffell. Long-term patterns of european pv output using 30 years of
validated hourly reanalysis and satellite data. Energy, 114:1251–1265, 2016. ISSN 0360-5442.
doi: https://doi.org/10.1016/j.energy.2016.08.060.

[18] A. Raffin, A. Hill, A. Gleave, A. Kanervisto, M. Ernestus, and N. Dormann. Stable-baselines3:
Reliable reinforcement learning implementations. Journal of Machine Learning Research, 22
(268):1–8, 2021. URL http://jmlr.org/papers/v22/20-1364.html.

[19] L. A. Rossman. EPANET 2: Users Manual. U.S. Environmental Protection Agency, Cincinnati,
OH, 2000. https://www.epa.gov/water-research/epanet.

[20] D. Salaorni. Ernesto-dt, 2023. https://github.com/Daveonwave/ErNESTO-DT.

[21] M. Sandler, A. G. Howard, M. Zhu, A. Zhmoginov, and L. Chen. Inverted residuals and
linear bottlenecks: Mobile networks for classification, detection and segmentation. CoRR,
abs/1801.04381, 2018. URL http://arxiv.org/abs/1801.04381.

[22] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov. Proximal policy optimization
algorithms. CoRR, abs/1707.06347, 2017. URL http://arxiv.org/abs/1707.06347.

[23] A. Serrano-Muñoz, D. Chrysostomou, S. Bøgh, and N. Arana-Arexolaleiba. skrl: Modular and
flexible library for reinforcement learning. Journal of Machine Learning Research, 24(254):
1–9, 2023. URL http://jmlr.org/papers/v24/23-0112.html.

[24] D. Silver, T. Hubert, J. Schrittwieser, I. Antonoglou, M. Lai, A. Guez, M. Lanctot, L. Sifre,
D. Kumaran, T. Graepel, T. P. Lillicrap, K. Simonyan, and D. Hassabis. Mastering chess and
shogi by self-play with a general reinforcement learning algorithm. CoRR, abs/1712.01815,
2017. URL http://arxiv.org/abs/1712.01815.

[25] D. Silver, J. Schrittwieser, K. Simonyan, I. Antonoglou, A. Huang, A. Guez, T. Hubert, L. Baker,
M. Lai, A. Bolton, Y. Chen, T. Lillicrap, F. Hui, L. Sifre, G. van den Driessche, T. Graepel, and
D. Hassabis. Mastering the game of go without human knowledge. Nature, 550(7676):354–359,
Oct 2017. ISSN 1476-4687. doi: 10.1038/nature24270. URL https://doi.org/10.1038/
nature24270.

[26] I. Staffell, S. Pfenninger, and N. Johnson. A global model of hourly space heating and cooling de-
mand at multiple spatial scales. Nature Energy, 8, 09 2023. doi: 10.1038/s41560-023-01341-5.

[27] R. S. Sutton and A. G. Barto. Reinforcement Learning: An Introduction. The MIT Press, second
edition, 2018.

[28] E. Todorov, T. Erez, and Y. Tassa. Mujoco: A physics engine for model-based control. In 2012
IEEE/RSJ International Conference on Intelligent Robots and Systems, pages 5026–5033. IEEE,
2012. doi: 10.1109/IROS.2012.6386109.

[29] M. Towers, A. Kwiatkowski, J. Terry, J. U. Balis, G. De Cola, T. Deleu, M. Goulão,
A. Kallinteris, M. Krimmel, A. KG, et al. Gymnasium: A standard interface for reinforcement
learning environments. arXiv preprint arXiv:2407.17032, 2024.

[30] C. J. Watkins and P. Dayan. Q-learning. Machine learning, 8:279–292, 1992.

[31] C. Yeh, V. Li, R. Datta, Y. Yue, and A. Wierman. SustainGym: A benchmark suite of re-
inforcement learning for sustainability applications. In NeurIPS 2022 Workshop on Tack-
ling Climate Change with Machine Learning, New Orleans, LA, USA, 12 2022. URL
https://www.climatechange.ai/papers/neurips2022/38.

11

https://proceedings.neurips.cc/paper_files/paper/2024/file/b6676756f8a935e208f394a1ba47f0bc-Paper-Datasets_and_Benchmarks_Track.pdf
https://proceedings.neurips.cc/paper_files/paper/2024/file/b6676756f8a935e208f394a1ba47f0bc-Paper-Datasets_and_Benchmarks_Track.pdf
https://proceedings.neurips.cc/paper_files/paper/2024/file/b6676756f8a935e208f394a1ba47f0bc-Paper-Datasets_and_Benchmarks_Track.pdf
http://jmlr.org/papers/v22/20-1364.html
https://www.epa.gov/water-research/epanet
https://github.com/Daveonwave/ErNESTO-DT
http://arxiv.org/abs/1801.04381
http://arxiv.org/abs/1707.06347
http://jmlr.org/papers/v24/23-0112.html
http://arxiv.org/abs/1712.01815
https://doi.org/10.1038/nature24270
https://doi.org/10.1038/nature24270
https://www.climatechange.ai/papers/neurips2022/38


[32] X. Yuan, L. Buşoniu, and R. Babuška. Reinforcement learning for elevator control. IFAC
Proceedings Volumes, 41(2):2212–2217, 2008. ISSN 1474-6670. doi: https://doi.org/10.
3182/20080706-5-KR-1001.00373. URL https://www.sciencedirect.com/science/
article/pii/S1474667016392783. 17th IFAC World Congress.

[33] Z. Yuan, A. W. Hall, S. Zhou, L. Brunke, M. Greeff, J. Panerati, and A. P. Schoellig. Safe-
control-gym: A unified benchmark suite for safe learning-based control and reinforcement
learning in robotics. IEEE Robotics and Automation Letters, 7(4):11142–11149, 2022. doi:
10.1109/LRA.2022.3196132.

[34] A. Zouitine, D. Bertoin, P. Clavier, M. Geist, and E. Rachelson. Rrls : Robust reinforcement
learning suite, 2024. URL https://arxiv.org/abs/2406.08406.

12

https://www.sciencedirect.com/science/article/pii/S1474667016392783
https://www.sciencedirect.com/science/article/pii/S1474667016392783
https://arxiv.org/abs/2406.08406


A Metadata

A.1 Hosting and Maintenance

Gym4ReaL is distributed as a Python package and is publicly available on both GitHub and PyPI. The
library follows semantic versioning, with the version associated with this publication labeled as v1.0.
A contributor guide is provided in the GitHub repository to support community involvement. The
following authors serve as maintainers for the individual environments included in Gym4ReaL:

• Davide Salaorni (davide.salaorni@polimi.it): ElevatorEnv, MicrogridEnv, WDSEnv

• Vincenzo De Paola (vincenzo.depaola@polimi.it): RoboFeederEnv

• Samuele Delpero (samuele.delpero@mail.polimi.it): DamEnv

• Giovanni Dispoto (giovanni.dispoto@polimi.it): TradingEnv.

A.2 Licenses and Responsibility

Gym4ReaL as a whole is released under a Apache-2.0 license 2. The authors bear all responsibility
in case of violation of rights. Gym4ReaL does not contain any personally identifiable data, nor any
offensive content.

A.3 Reproducibility

The GitHub repository includes tutorial notebooks demonstrating how to train off-the-shelf RL agents
on the various environments, as well as the notebooks used to generate the results we present in this
work. Additionally, detailed installation and usage instructions for each notebook are available in the
Gym4ReaL wiki: https://daveonwave.github.io/gym4ReaL/.

A.4 Intended Usage

Gym4ReaL is designed as a benchmarking suite for evaluating RL algorithms across a diverse set of
real-world-inspired tasks. While substantial effort has been made to ensure that the environments
closely reflect the dynamics and constraints of real-world systems, strong performance in Gym4ReaL
does not necessarily guarantee equivalent performance in actual real-world deployments.

A.5 Software and Hardware Requirements

Gym4ReaL is implemented in Python 3.12. Each environment may require specific dependencies,
which are listed in the documentation and provided in the corresponding requirements files.

Gym4ReaL does not require a specific hardware configuration and is portable across all major com-
mercial operating systems. An exception is WDSEnv, which relies on the EPANET simulator since
the version that we adopted is not compatible with Apple Silicon processors and requires an Intel-
compatible environment. For macOS users, we recommend setting up a dedicated virtual environment
to ensure compatibility.

All reported experiments were conducted on an Apple M1 chip (8-core CPU, 8GB of RAM). The
per-episode running time for each environment is detailed in Table 2. As can be observed, the WDSEnv
is computationally expensive, and this is due to the inherent design of the underlying simulator,
which was not originally intended for real-time control or RL applications. We further discuss this in
WDSEnv Section D.6.

B Characteristics and RL paradigms

In this section, we define and analyze in detail the environment-specific categories identified in
Table 1. The table is divided into two main sections:

2https://www.apache.org/licenses/LICENSE-2.0

13

https://daveonwave.github.io/gym4ReaL/
https://www.apache.org/licenses/LICENSE-2.0


Table 2: Running time required per episode for the different environments.

Environment Time per Episode (s)
DamEnv 0.045

ElevatorEnv 0.035

MicroGridEnv 2.781

RoboFeeder-picking-v0 0.266

RoboFeeder-picking-v1 0.207

RoboFeeder-planning-v0 0.076

TradingEnv 0.007

WDSEnv 72.932

1. Characteristics. In the first part of the table, we report the key features of each environment
with respect to the standard RL taxonomy. These Characteristics are inherent to the design
and implementation of the environments provided by Gym4ReaL.

2. RL Paradigms. This second part of the table describes the RL subfields that can be
associated with each environment. Specifically, although the benchmarking results provided
in the main paper employ standard RL approaches, the environments can be adapted to test
novel algorithms related to the respective RL paradigms mentioned in the table.

We now elaborate on each of the Characteristics and RL paradigms reported in the table.

Characteristics.

• Continuous States. The environments match this characteristic if the associated state
space is continuous. Among the environments provided in Gym4ReaL, 5 out of 6 satisfy this
feature, thus reflecting their realism. A notable exception is represented by ElevatorEnv,
which allows testing algorithms devised for environments with finite state spaces.

• Continuous Actions. This characteristic is matched by the environments when the as-
sociated action space is continuous. Gym4ReaL environments cover both the finite and
continuous cases.

• Partially Observable. This characteristic is associated with environments where only partial
information is available. Partial information can be related to the difficulty of modeling or
accessing relevant state features. This scenario typically happens in trading contexts, such
as the one modeled in the proposed TradinvEnv.

• Partially Controllable. This characteristic refers to environments where part of the
state evolves due to external, uncontrollable dynamics. These components, present in the
observation space, are independent of the agent’s actions. Examples are precipitation in a
water control system (DamEnv) or market price variations (MicrogridEnv, TradingEnv).

• Non-Stationary. This characteristic refers to an (abrupt or gradual) variation of the un-
derlying data distribution, which introduces additional challenges caused by the need for
continuous adaptation. This feature is intrinsically related to trading contexts, such as
TradingEnv.

• Visual Input. This characteristic is satisfied when a visual component constitutes a portion
of the state space. For example, in RoboFeederEnv, the observation space is defined by
camera images.

RL Paradigms.

• Frequency Adaptation. Given that many real-world problems can be naturally defined
in the continuous time domain, the environments within this paradigm allow selecting
actions at different frequencies. Increasing the control frequency of the system offers
the agent more control opportunities, at the cost of higher computational and sample
complexity. MicrogridEnv and TradingEnv are natural examples in which different
market opportunities can be exploited at various frequencies.

14



• Hierarchical RL. The hierarchical RL (HRL) paradigm allows modeling, at different
specificity levels, complex real-world problems presenting an inherent stratified structure.
HRL divides the problem into simpler subtasks arranged in a hierarchy, thus enabling
more efficient learning. Notably, RoboFeederEnv represents an example where the tasks
of ordering (RoboFeeder-Planning) and collecting (RoboFeeder-Picking) items are
hierarchically decoupled.

• Risk-Averse. Risk-averse RL focuses on mitigating uncertainty by favoring policies that
yield more predictable and less variable outcomes. This paradigm is especially relevant in
high-stakes real-world domains, such as finance (TradingEnv) or healthcare, where large
losses can have significant consequences.

• Imitation Learning. Imitation Learning in RL refers to a class of methods in which an agent
learns to perform tasks by mimicking expert behavior. To this extent, a dataset comprising
expert choices is needed. Within our DamEnv and WDSEnv environments, we provided such
data information.

• Provably Efficient. Provably Efficient RL refers to a class of algorithms that come with
theoretical guarantees on their performance, typically in terms of sample or computational
efficiency. These guarantees can be tested more easily in tabular settings, such as the one
provided in ElevatorEnv.

• Multi-Objective RL. Multi-Objective RL (MORL) is a paradigm where the agent must
optimize multiple contrastive objectives simultaneously, instead of a single scalar reward.
Multiple contrastive objectives can be identified in DamEnv, MicrogridEnv, and WDSEnv,
where a trade-off between competing interests needs to be simultaneously optimized.

C Datasets

C.1 DamEnv

The dataset underlying the current training of the DamEnv environment is related to Lake Como,
Northern Italy. The dataset includes historical daily records of water level, demand, and inflow
from 1946 to 2010. The 65 one-year-long time series have been split into train and test sets in
an 80%–20% proportion, resulting in 52 years for training and 13 subsequent years for testing.
Additionally, the minimum required water release for each day of the year can be integrated into
the dataset. Furthermore, given the information of the lake water level, it is possible to reconstruct
the control action performed by experts, therefore enabling the use of this environment to perform
Imitation Learning or Inverse RL tasks. Data are released under a Creative Commons Attribution-
NonCommercial 4.0 International (CC BY-NC 4.0) license.3

C.2 ElevatorEnv

ElevatorEnv does not rely on external datasets. Instead, passenger arrival profiles are synthetically
generated using a Poisson process, with the arrival rate for each floor independently sampled from a
uniform distribution within a predefined range. This range is carefully selected to avoid unrealistic
scenarios, such as excessively high arrival rates that exceed the physical handling capacity of the
elevator. Specifically, the arrival rate λf for each floor f is sampled from the interval [0.01, 0.1],
resulting in a minimum and maximum expected number of arrivals of approximately 43 and 372,
respectively, over a one-hour window with arrivals occurring at one-second intervals.

C.3 MicrogridEnv

MicrogridEnv integrates diverse datasets covering energy consumption, renewable energy gener-
ation, market pricing, and ambient temperature. Most datasets are provided at hourly resolution,
except for ambient temperature, which is available daily. The data span the period from 2015 to 2021.
We use the first four years for training and reserve the final year for testing.

3https://creativecommons.org/licenses/by-nc/4.0/

15

https://creativecommons.org/licenses/by-nc/4.0/


Energy Consumption. This dataset includes 398 realistic demand profiles representing residen-
tial electricity usage across different Italian regions (North, Center, South, and islands), obtained
from Fioriti et al. [6]. We split these demand time-series in 370 profiles for training and the remaining
28 for testing. The dataset is released under a Creative Commons Attribution 4.0 International (CC
BY 4.0) license.4

Energy Generation. Hourly renewable generation profiles are computed for a 3 kW residential
photovoltaic installation located in northern Italy. Capacity factors are derived from Pfenninger and
Staffell [17] and retrieved via https://www.renewables.ninja, under a CC BY-NC 4.0 license3.

Energy Market. Electricity prices are based on hourly data from the Italian Gestore Mercati
Energetici (GME) [7], including the National Single Price and fixed tax-related and operational fees.
These data, available under the CC BY-NC 4.0 license, are used to define the energy selling price.
The buying price includes an additional empirical surcharge to account for taxes and provider fees.

Ambient Temperature. Daily temperature data are sourced from Staffell et al. [26] and obtained
from https://www.renewables.ninja, also under the CC BY-NC 4.0 license3.

C.4 RoboFeederEnv

The RoboFeederEnv’s tasks do not rely on any external dataset. In particular, in the picking-v0
environment, the object detection module is trained offline using a set of 300 synthetic images
generated directly from the simulator. The geometry of the object is not synthetic or artificially
designed, but it is derived directly from real-world components used in the automotive industry.
Specifically, it reflects the exact structure of metallic hinges employed in assembly applications,
ensuring that all evaluations are grounded in practical, industrially relevant scenarios. This training
process is independent of the environment’s dynamics and interaction loop, ensuring a clear separation
between perception and control.

C.5 TradingEnv

TradingEnv is built using historical market data. In this suite, we consider the Forex market, in
which currencies are traded. In particular, in the environment, we provide an implementation for the
EUR/USD currency pair. The Forex market is open 24 hours a day, 5 days a week. In this environment,
we use tick-level data freely available at https://www.histdata.com/, which provides the highest
level of granularity by recording every individual price change. Each entry in the dataset contains the
datetime with nano-second resolution, bid price, ask price, and volume, which is then resampled to a
minute resolution.

C.6 WDSEnv

WDSEnv relies on synthetically generated residential water demand datasets using STREaM [2], a
stochastic simulation model to generate synthetic time series of water end uses with diverse sampling
resolutions. STREaM is calibrated on a large dataset that includes observed and disaggregated water
end-uses from U.S. single-family households. The STREaM simulator is available under the GNU
General Public License 3.0 (GPL-3.0)5.

We categorized the generated profiles into one of three classes, representing increasing levels of stress
imposed on the water distribution system: normal, stressful, or extreme. These classes are designed
to facilitate the analysis of network resilience under varying conditions.

During training, users can specify the probability distribution over the three demand types via the
environment’s configuration file. Specifically, the dataset includes 21 files corresponding to normal
operating conditions, 5 files reflecting stressful scenarios, and 5 files depicting extreme demand
situations. Each file comprises a time series of weekly demand values over a period of 53 weeks. The
test set comprises 1,000 synthetic profiles, held out from training and randomly sampled across the
defined demand categories.

4https://creativecommons.org/licenses/by/4.0/
5https://www.gnu.org/licenses/gpl-3.0.html

16

https://www.renewables.ninja
https://www.renewables.ninja
https://www.histdata.com/
https://creativecommons.org/licenses/by/4.0/
https://www.gnu.org/licenses/gpl-3.0.html


D Environment Details

D.1 DamEnv

In addition to the description in Section 2.1, in this section we provide further details about the
DamEnv environment. This environment models a water reservoir with the aim of controlling the
water release to meet the demand while avoiding floods and starvation. The action is provided daily,
and it represents the amount of water per second to be released during the day.

Simulator. The dynamics of the reservoir are modeled with greater granularity with respect to the
action, which is provided daily. This is controlled by the parameter integration in the environment
configuration file. It is set by default to 24, which corresponds to one iteration per hour.

For each iteration, the bounds of the feasible amount of water to release are computed as explained in
the following paragraph. Those bounds then clip the action, and the new water level is calculated. In
this calculation, the water inflow and the evaporation (if provided at initialization) are also taken into
account.

In Table 3 we report the default parameters of the simulator, which refer to the Lake Como basin,
in Northern Italy. We set evaporation to False. If set to True, evaporation_rates must be
provided in the form of a csv file path with a value for each day of the year. Many of these parameters
are needed for clipping the action, and their role will be clarified in the following paragraph.

Table 3: DamEnv’s simulator parameters.

Parameter Symbol Value
Surface A 145.9 [km2]
Evaporation - False [-]
Initial level l0 0.35 [m]
Minimum flow rmin 5 [m3/s]
Minimum level lmin −0.5 [m]
Maximum level lmax 1.25 [m]
Zero-flow level α −2.5 [m]
Rating exponent β 2.015 [-]
Discharge coefficient Cr 33.37 [m3−β /s]
Linear slope k 1488.1 [m2/s]
Linear intercept c 744.05 [m3/s]
Linear limit llim −0.4 [m]

Feasible Actions. For each iteration of the lake simulator, the action is clipped in the feasible range,
which is bounded by two piecewise functions. Both the maximum and the minimum account for
operational and physical constraints, such as minimum water release requirements and hydraulic
limits. These bounds are functions of the water level and the minimum daily release rmin

t .

The minimum release qmin(l, t) on day t is defined as:

qmin(l, t) =


0 l ≤ lmin,

rmin,t lmin < l ≤ lmax,

Cr(l − α)β l > lmax .

This structure ensures that: no water is released when the water level is below the critical level lmin,
the minimum release rmin,t is maintained within the normal operating range, and a nonlinear release
based on a rating curve applies when the level exceeds hmax.

The maximum release qmax(h) is defined as:

17



qmax(l) =


0 l ≤ lmin,

kl + c lmin < l ≤ llim,

Cr(l − α)β l > llim.

This formulation reflects operational policies where: no release occurs below the critical level hmin,
a linear release policy applies in the intermediate range, and a nonlinear rating curve governs the
release when the water level exceeds llim.

Reward Function. The reward function of DamEnv presents five components:

• Daily deficit: it penalizes actions that do not meet the daily demand. It is computed as
−max (dt −max (rt − rmin,t, 0) , 0), where at time t, dt is the demand, rt is the water that
is being released, and rmin,t is the minimum amount of water that needs to be released.

• Overflow: it penalizes actions that lead the water level to go beyond the overflow threshold.
If this happens, its value is −1, otherwise 0.

• Starving: similarly, it penalizes actions that lead the water level to go below the starving
threshold. If this happens, its value is −1, otherwise 0.

• Wasted water: it penalizes actions that release more water than the demand. It is computed
as −max (rt − dt, 0), where rt and dt are defined as above.

• Clipping: it penalizes actions that do not fulfill the constraints of the environment. It is
calculated as − (at − rt)

2 where at is the action performed at time t.

Every component is weighted by a coefficient that can be set when the environment is created,
balancing the influence of each component depending on the specific characteristics of the water
reservoir considered.

Limitations. Simulating a different water reservoir with DamEnv requires domain-specific expertise
to configure realistic environment parameters. Similarly, acquiring high-quality, multi-year data for
other reservoirs, essential for effective learning, may be difficult.

D.2 ElevatorEnv

This section provides additional details on the ElevatorEnv w.r.t. the main paper. The environment
simulates the operation of an elevator system under a specific and realistic traffic pattern known as
peak-down traffic, which typically occurs during limited periods of the day (e.g., lunch breaks or
end-of-work shifts), when the majority of users exit upper floors toward the ground level.

We adopt an episodic setting lasting 3600 seconds (i.e., one hour), with control actions executed
every second. While the environment does not include a full physical simulator, we deliberately
model it in a fully discrete manner. This choice enables a compact formalization of the dynamics
while preserving the core challenges of the task and allows us to use tabular policies, which are
both simple and interpretable. This is particularly advantageous for benchmarking, as it avoids the
complexity of large-scale function approximation while still offering meaningful learning dynamics.
By carefully designing the observation space and controlling its dimensionality, we ensure that the
problem remains tractable, yet rich enough to pose a non-trivial challenge. Additionally, considering
the six Gym4ReaL environments, this is the only one that allows users to test RL algorithms designed
for tabular settings, as typical of provably efficient approaches, thus broadening the applicability of
our library.

The configurable parameters used in this task are reported in Table 4.

Assumptions. The following assumptions are made to simplify the dynamics of the ElevatorEnv,
allowing for an efficient yet representative modeling of the task:

• No acceleration dynamics. We do not model acceleration or deceleration; the elevator is
assumed to move with uniform rectilinear motion;

• Instantaneous boarding. We assume that the entry and exit of passengers inside the elevator
occur instantaneously;

18



Table 4: ElevatorEnv parameters.

Parameter Symbol Value
Floors f {0, . . . , 4} [-]
Maximum capacity Cmax 4 [people]
Movement speed v 3 [m/s]
Floor height - 6 [m]
Maximum queue length Wf,max 3 [people]
Maximum new arrivals - 2 [people]
Arrival rate λf [0.01, 0.1] [-]

• Uniform floor spacing. All floors are equidistant, and the total height of the building is
assumed to be divisible by the elevator’s speed. This ensures that the elevator can only
occupy a finite number of discrete vertical positions;

• Elevator height. For the same reason as the previous bullet point, we assume that the height
of the elevator is equal to the floor height;

• Non-floor stopping. We allow the elevator to open its doors even between two floors, unlike
in real-world systems. While this behavior is physically unrealistic, it does not provide any
advantage. The agent is penalized for unnecessary stops and will learn to avoid such actions
through experience.

Feasible Actions. We adopt a permissive design where all control actions are considered feasible
at any state. In particular, we do not explicitly penalize the agent for executing physically invalid
actions, such as opening doors between two floors (e.g., when the floor height is smaller than the
elevator’s movement speed), or attempting to move upward at the top floor (at = u when ht = H),
or downward at the ground floor (at = d when ht = 0). These actions do not result in termination
or constraint violations but are treated as valid no-ops since the agent is still implicitly penalized
through time progression, as ineffective or wasteful actions delay task completion and reduce the
cumulative reward.

Reward Function. Although not strictly necessary to solve the task, the β hyperparameter plays
a crucial role in accelerating the learning process. Specifically, β modulates the only source of
positive reward available to the agent, i.e., passenger delivery. This design encourages the agent to
recognize that minimizing the cumulative waiting time inherently requires completing passenger trips
by bringing them to their destinations. In doing so, β reinforces the primary operational goal of an
elevator system: transporting users efficiently rather than merely avoiding penalties or idle behavior.

Limitations. The principal limitation of ElevatorEnv arises from its scalability. While the
environment is inherently finite and conceptually straightforward, the dimensionality of its observation
space can increase rapidly, rendering it intractable for tabular RL algorithms. Consequently, it is
essential to carefully configure the environment, adjusting its parameters to ensure that the resulting
problem is neither trivial nor computationally prohibitive.

D.3 MicrogridEnv

This section provides further details on MicrogridEnv. As outlined in the main paper, this environ-
ment models a control problem centered on optimal electrical energy management in a residential
setting equipped with a PV implant, a battery system, and access to the main grid for energy trading.
At each time step t, the controller must decide how to allocate the net power, PN,t = PG,t − PD,t

where PG,t is the power generated by the PV system and PD,t is the residential electricity demand.
The agent must choose whether to address the net power to the battery or trade it with the grid.
Importantly, this decision is made based on estimates of PG,t and PD,t, as the actual values are
unknown at decision time.

Consequently, the decision-making process is inherently influenced by uncertainty in both demand
and generation forecasts, as well as by exogenous factors such as electricity prices and ambient

19



temperature, each exhibiting cyclo-stationary patterns. Notably, ambient temperature significantly
impacts battery degradation, creating a long-term trade-off between maximizing short-term energy
efficiency and preserving battery health.

The problem is formulated as an infinite-horizon task, which terminates when the battery reaches
its end-of-life (EOL) condition. Control actions are taken every 3600 seconds, matching the finest
available data granularity.

Simulator. We simulate the dynamics of the BESS using a digital twin [20], which models the
evolution of the battery’s state of charge (SoC), temperature, and state of health (SoH) over time.
The simulator emulates a realistic lithium-ion battery pack suitable for residential applications. The
simulator operates in a step-wise manner consistent with the Gymnasium interface. At each time
step, it receives the input power to store or retrieve from the battery, computes the resulting voltage,
thermal dynamics, SoC update, and degradation, and returns a snapshot of the battery’s status to the
RL agent.

Model parameters and configurations are based on expert consultation and are preconfigured for
direct use. However, users can easily modify or replace the battery model configuration to experiment
with different setups or refer directly to the full simulator details in [20]. The specific parameters
used in this work are summarized in Table 5.

Table 5: MicrogridEnv’s simulator parameters.

Parameter Symbol Value
Nominal capacity CN 60.0 [Ah]
Maximum voltage Vmax 398.4 [V]
Minimum voltage Vmin 288.0 [V]
Replacement cost R 3000 [C]
SoC range - [0.2, 1] [-]

Observation Space. The observation space includes the variables P̂D,t, P̂G,t, p
buy
t , and psellt ,

which encapsulate the exogenous factors influencing the system, namely, energy demand, renewable
energy generation, and the buying/selling energy prices. Ideally, the control decision at time t should
rely on the actual values of demand PD,t and generation PG,t. However, these values are not available
at decision time. To overcome this, we approximate them using their most recent observations at time
t− 1, denoted as P̂D,t and P̂G,t. This assumption is reasonable in typical microgrid scenarios, where
energy demand and generation profiles exhibit temporal smoothness or autocorrelation, allowing
previous values to serve as informative estimators. On the other hand, energy market prices pbuyt

and psellt are assumed to be known in advance. This assumption is justified by the common practice
in energy markets where prices are typically set a day ahead, enabling the agent to access this
information at decision time.

To further enhance the expressiveness of the observation space, we introduce two time-based features
that encode temporal periodicity. These are defined as:

• φd = 2πτd
Td

, where τd ∈ [0, Td] represents the current time of day in seconds, and Td is the
total number of seconds in a day. This captures daily periodicity (e.g., day-night cycles).

• φy =
2πτy
Ty

, where τy ∈ [0, Ty] represents the current time of year in seconds, and Ty is the
total number of seconds in a year. This accounts for seasonal patterns within datasets.

Feasible Actions. The controller’s action at defines the fraction of the net power PN,t to allocate
to the battery at time step t. We can formally express this decision as:

PB,t = atPN,t, (10)
PE,t = (1− at)PN,t, (11)

where PB,t is the amount of power stored in (or retrieved from) the battery, and PE,t is the portion
traded with the main grid, either sold or purchased.

20



The controller’s behavior depends on the sign of PN,t:

• Deficit case (PN,t < 0): The generated PV power does not meet the demand. The controller
determines PB,t, the amount to draw from the battery, and covers the remaining deficit PE,t

by purchasing from the grid.

• Surplus case (PN,t > 0): There is excess generation relative to demand. The controller
allocates PB,t to the battery and sells the remaining PE,t to the grid.

The chosen action must respect the physical constraints of the BESS, such as bounds on charg-
ing/discharging power and SoC limits. At time t, SoC denoted as σt ∈ [0, 1] is defined by:

σt := σ1 +

t∑
h=2

ih∆τ

Ch
, (12)

where σ1 is the initial SoC, ih is the current, Ch is the internal battery capacity at time h, and ∆τ is
the time step in hours. To ensure valid operations, PB,t must satisfy:

Pdch ≤ PB,t ≤ Pch, (13)
(σmin − σt)

∆τ
CtVt ≤ PB,t ≤

(σmax − σt)

∆τ
CtVt, (14)

where Pdch < 0 and Pch > 0 are the maximum discharging and charging powers, σmin and σmax are
the minimum and maximum SoC levels, and Vt is the battery voltage at time t.

Reward Function. The reward signal consists of three components: trading profit, battery degrada-
tion cost, and a penalty for violating physical constraints. Formally, the trading component rtrad(at)
of the reward is defined as:

rtrad(at) =
(
psell
t P+

E,t + pbuy
t P−

E,t

)
∆τ , (15)

where psell
t and pbuy

t are the unit energy prices for selling and buying electricity at time t, respec-
tively, with psell

t < pbuy
t . The terms P+

E,t and P−
E,t denote the positive and negative parts of PE,t,

respectively.6

The degradation component rdeg(at) accounts for battery aging and is linked to the SoH, which
monotonically decreases from 100% to an application-specific EOL threshold (typically 60–80%).
Let ρt ∈ [0, 1] denote the SoH at time t, defined as:

ρt :=
Ct

CN
, (16)

where Ct is the internal capacity at time t, and CN ∈ R+ is the nominal capacity of the system. The
SoH decay incorporates both calendar aging and usage-related degradation. Thus, the degradation
cost is computed as:

rdeg(at) =
ρt − ρt−1

1− ρEOL
R, (17)

where ρEOL ∈ (0, 1) is the SoH value at end-of-life, and R is the BESS replacement cost. Note that
since ρt < ρt−1, this term yields a negative reward.

Finally, rclip(at) penalizes actions that violate the system’s operational constraints and must be
clipped. In our formulation, we only penalize violations of the tighter constraint (14), which is stricter
than (13). Hence, formally, the penalty is defined as:

rclip(at) = −max
{
0, atPN,t +

(σt − σmax)

∆τ
CtVt,

(σmin − σt)

∆τ
CtVt − atPN,t

}
. (18)

Limitations. The main limitation of MicrogridEnv lies in its data and configuration specificity.
The environment is built upon data representative of a single geographical and regulatory context
(Italy), which includes particular consumption patterns, solar generation profiles, and market prices.
Additionally, the battery configuration models a specific lithium-ion storage system with fixed

6For a real-valued quantity q ∈ R, its positive and negative parts are defined as q+ := max{0, q} and
q− := min{0, q}, respectively.

21



chemical composition, physical dimensions, and operational parameters. As a result, the environment
may not generalize directly to other geographical regions or technological setups without additional
data integration or customization.

D.4 RoboFeederEnv

In addition to the description provided in Section 2.4, we present further details used in designing
the Robofeeder environment. Robofeeder (Fig. 7) is designed to handle small objects like those
shown in Figure 8, using a commercial 6-DOF Staubli robot with a predefined kinematic cycle
that enables reliable pick-and-place operations. The environment includes a configuration file that
allows users to specify the number of objects in the scene and their initial orientations. Notably,
since RoboFeederEnv is built on MuJoCo, the object geometries can be easily modified, making it
possible to extend the simulator’s capabilities far beyond the examples presented here. In Table 6 we
report the main parameters of the RoboFeederEnv environments.

Figure 7: Rendering of MuJoCo simulator
from RoboFeederEnv.

Figure 8: the objects considered, metallic
hinges from the automotive sector ([4]).

Table 6: RoboFeeder Parameters.
Parameter Symbol picking-v0 picking-v1 planning
# objects N 1 1 3

Observation shape - 1× 50× 50× 1 [px] 1× 300× 300× 1 [px] 3× 50× 50× 1 [px]
Distance-rotation weight λ 0.85 0.85 -
Threshold distance δd 0.012 0.012 -
Threshold rotation δθ 0.35 0.35 -
Distance decay rate αd − ln(0.5)

(δd)2
− ln(0.5)

(δd)2
-

Rotation decay rate αθ − ln(0.5)
(δθ)2

− ln(0.5)
(δθ)2

-

Timestamps T 2 2 5

D.4.1 RoboFeeder-picking

In each episode, the agent interacts with the family of RoboFeeder-picking environments by
selecting an action a0 based on the initial state s0 of the system, where a single object is placed within
the robot’s working area. The action a0 ∈ [−1, 1] is rescaled with respect to the observation space to
map it onto the u-v image coordinates, representing a precise position in the MuJoCo robotic world.
After executing the action, the agent receives a reward r(s0, a0), and the simulator transitions to state
s1 depending on the success of the robot’s motion. This process repeats at each timestep until the
episode reaches the terminal step t = T .

22



Assumptions. The picking environments are designed to train a specialized robot to grasp a single,
small, and complex-geometry object. To ensure the robot can consistently focus on the picking
task, the environment contains only one object, which is placed in a way that always allows it to be
successfully grasped. Even though the object’s position is randomized at the start of each episode, its
orientation is carefully set to ensure that at least one feasible robot pose exists from which it can be
picked. When working with 6-DOF robots, mechanical constraints may prevent the end-effector from
reaching every position in Cartesian space. Therefore, robot programming should avoid assigning
target poses that are near kinematic singularities or that would place excessive stress on the joints. To
replicate reality, we exclude from the feasible action space the upper part of the workspace area, not
reachable by the robot. This assumption could be changed from the base configuration file provided
in the environment implementation.

Observation Space. Gym4Real implements two versions of this environment. picking-v0 repre-
sents the simpler of the two, as the region of interest in which the agent must search is limited to the
object’s neighborhood, thanks to the assistance of a pretrained object detection neural network. By
leveraging an SSD MobileNet V2 network [21], the observation space is significantly reduced to a
cropped image of dimensions 1×Hcropped ×Wcropped × C, where Hcropped = Wcropped = 50 px, and
C = 1. This reduction simplifies the task, as the reward function is designed to evaluate the distance
between the robot’s selected grasp point and the actual object. By narrowing the search area, the
agent can focus on a more relevant region of the scene, reducing training time and avoiding sparse
experience with little to no learning signal.

Feasible Actions. Actions coincide with a continuous value that normalizes the choice of where to
grasp, depending on the observation space definition. It means that based on the observation, i.e., the
actual visual input, the agent selects the portion of the image to identify as a grasping point. From
the image projection, the environment converts the agent’s choice to a unique robot world position,
which is relative to the fixed position of the top-down camera in the world. The latter is set parallel to
the object’s home position, acquiring a fixed portion of the scene. This design allows for playing an
action with a granularity definition in the continuous domain.

Reward Function. The reward function for the picking environments is defined as a weighted
sum of the distance and orientation alignment between the robot’s end-effector (TCP) and the target
object.

Let d denote the Euclidean distance between the TCP and the object, and ∆θ the angular misalignment
(in radians) between the TCP and the object. Define δlim as the distance threshold for soft negative
feedback, and δθ as the angular threshold for rotational alignment. A weighting parameter λ ∈ [0, 1]
balances the contribution of the distance and rotational terms.

The reward function r(d,∆θ) is then given by:

rt(d,∆θ) =

{
1−

[
λ · exp

(
αd · d2

)
+ (1− λ) · exp

(
αθ · (∆θ)2

)]
picking failed

1 picking successfull
(19)

αd and αθ act as decay rates to incentivize the agents to correctly pick the object, where αd = − ln(0.5)
(δd)2

and αθ = − ln(0.5)
(δθ)2

.

This formulation ensures that when d = δd or ∆θ = δθ, the respective exponential term evaluates
to 0.5. The parameter λ thus tunes the agent’s sensitivity between spatial precision and angular
alignment during grasping attempts. Both versions of the picking environments share the parameter λ,
which expresses the preference of the simulator for giving a higher reward when correctly approaching
the theoretical point of grasp in the Euclidean space with respect to its correct orientation. λ is set to
encourage the agent to reach a limit distance in terms of space and angle, so that it will be able to
correctly pick the object. The cumulative reward is updated as

∑T
t rt(d,∆θ).

Limitations. The picking environments are well-suited for scenarios where the user needs to
adjust the object geometry. However, the embedded kinematic solver is specifically designed for the

23



robot being used, which means it does not support modifications to the robot model. This limitation
extends to the two-finger grasping tool and its pick-and-place cycle.

Why RL is Needed. Although the RoboFeeder-picking problem may initially appear solvable
through supervised learning, given that the object is always placed in a pickable position, the task
fundamentally requires RL. This is due to the need for the agent to learn grasping as a procedural
strategy, rather than a simple input-output mapping. In practice, it is not sufficient to identify where
the object is located; the agent must also learn how to approach and align itself to perform a successful
grasp under realistic constraints, such as occlusions, partial views, and kinematic limitations of the
robot. While in a real-world setting, a human expert could manually specify the grasp points,
the objective of this environment is to enable the robot to autonomously learn the entire grasping
process—from perception to actuation—without supervision. This involves discovering optimal
action sequences and dealing with delayed rewards and sparse success signals, challenges that are
inherently better addressed through RL frameworks rather than supervised data-driven approaches.

D.4.2 RoboFeeder-planning

In each episode, the agent interacts with the RoboFeeder-planning environment by selecting a
discrete action a0 based on the initial state s0, where multiple objects are placed within the robot’s
working area. The action a0 ∈ {0, . . . , n}, with n ∈ N, corresponds to a relative index in a
vector of cropped images representing the state s0. From s0, the selected cropped image, of shape
1 × Hcropped × Wcropped × C, is used as input to a pre-trained agent that determines a grasp point
to reach an object, if one is present in the selected region. Depending on the success of the grasp
attempt, the agent receives a reward r(s0, a0), and the simulator transitions to a new state s1. This
process is repeated at each time step t ∈ [T ] := {1, . . . , T} until the episode reaches the final step
t = T .

Observation Space. The environment is designed to handle a variable number of objects within the
robot’s workspace. This is achieved by maintaining a fixed-size array of detected objects. The visual
observation at each timestep is represented as st = [X1,t, . . . ,XN,t], Xi,t ∈ RH×W×C where
each Xi,t corresponds to the image crop of the i-th detected object. Although the environment can
potentially detect many objects, we define an upper bound N = 3 on the number of objects processed
in each observation, ensuring a consistent and manageable input size for the agent. Each cropped
image, used in observation space, contains the result of the object detection stage, capturing only
one object at a time and creating a totally black image when the number of objects present in the
robot workspace is less than N . This would happen if the environment is loaded with fewer objects
or during the episode, simulating with the robot capable of placing the objects in the final position.

Feasible Actions. Based on the construction of the observation space, the agent can only select
an index i ∈ [1, N ] with N the maximum fixed number of elements. object processed, to attempt a
demanding grasping of the inner picking agent. The action at = 0 corresponds to a reset request.

Limitations. This environment strongly depends on the performance of a low-level pre-trained
agent capable of solving the underlying picking tasks. The optimal policy π∗(a, s) is one that can
correctly infer when an object is properly oriented for picking, or when a sequence of grasp attempts
will eventually allow the robot to feed out the remaining objects.

D.5 TradingEnv

In this section, we provide additional details about TradingEnv introduced in Section 2.5. The
environment, for each episode, simulates a trading day, and at every step, the agent decides which
action to perform to maximize the profit-and-loss (P&L) net of transaction costs. The configuration
parameters considered in the presented setting are reported in Table 7.

Assumptions. As stated in the main paper, we restricted the trading hours from 8:00 EST to 18:00
EST, from Monday to Friday, due to low liquidity outside this interval. Hence, since we are learning
an intra-day trading strategy, the position of the agent is opened at 8:00 EST and forced to be closed
at 18:00 EST.

24



Observation Space. In this section, we want to give more information about the considered
observation space. As said, the variable dt is the vector of the delta mid-prices. The mid-price pt is
defined as the average price between bid and ask pt =

pbid+pask

2 .

Furthermore, the observation space can be customized, including more and different market informa-
tion, such as:

• Number of delta mid-prices: Setting a higher number of delta mid-prices could allow for
considering longer price evolution. However, this could increase noise in the observations,
negatively impacting the learning.

• Delta mid-prices offset: Default is 1 minute, but it is possible to enlarge it to consider
the return obtained with different intervals (e.g., by considering 60 delta mid-prices with
1-minute offset, we can observe information on the last hour price variation).

• Temporal information: By default, only the timestamp is considered, but it is possible to
consider also Month, Day, and Day of the Week to capture more complex temporal patterns.

Table 7: TradingEnv parameters.

Parameter Symbol Value
Number of deltas dt 60 [-]
Offset - 1 [min]
Persistence - 5 [min]
Capital C 100k [C]
Fees λ 1 [C]

Regarding the temporal features, it is also possible to enable the cyclic encoding, using sine and
cosine transformations. Cyclic encoding emphasizes that time-related quantities, although numerically
distant, can be close in a cyclical sense. This type of encoding is typically preferred when using
function approximators such as neural networks. In contrast, it is not recommended in some cases,
such as with tree-based models, which are sometimes considered in trading settings, where the
encoding can obscure the natural ordering of features.

Feasible Actions. At each decision step, the agent can perform 3 actions: As explained in Sec-
tion 2.5, at each decision step, the agent can perform 3 actions: long, short, and flat. Each action
involves a fixed amount of capital C that in the experiments we set to C100k.

In this environment, it is possible to specify the action frequency (or persistence), as time is discretized.
The default frequency is 5 minutes, meaning that the agent reassesses its position every 5 minutes. It
is important to emphasize that the persistence should be adjusted in conjunction with the observed
delta mid-prices, both in terms of their quantity and the temporal offset used.

Reward Function. In the presented reward formulation, λ is the transaction fees that in our
experiments is set to 1$, which is paid for every position change. Modification to the fees parameter
could lead to more conservative or aggressive strategies.

Limitations. The main limitation of TradingEnv is that, being built using historical data, the
effective quality of the learning environment is highly linked to the quality of those. Such data
typically contains missing values that must be appropriately handled and preprocessed. In our case,
missing values up to 5 minutes (this is a customizable threshold) are forward-filled. Instead, all the
days with wider gaps are removed from the data. In addition, the market impact is not taken into
account. This is not a substantial limitation in high liquid settings, as the EUR/USD currency pair,
considered in this paper.

We refer to Optimal Execution approaches for further details [1], since this is a well-established
research area that aims to minimize market impact and prevent significant price movement during
trade execution.

25



D.6 WDSEnv

WDSEnv addresses the problem of enhancing the resilience of residential water distribution networks.
As discussed in the main paper, we rely on the EPANET simulator [19] to model the evolution of
the network and to compute the fluid dynamics within the system. The task is formulated as an
infinite-horizon decision-making problem, with each episode truncated after one week of simulated
time. Both the hydraulic step and the demand pattern step are set to one hour, aligning with the
temporal resolution typically used in real-world water management systems.

Simulator. To simulate the environment, we rely on Epynet [8], a Python wrapper for EPANET,
upon which we built our Gymnasium-based environment. While the most widely adopted Python
interface for EPANET is currently WNTR [9], it lacks support for step-wise (i.e., discrete-time)
simulation of the hydraulic network [15], which is essential for reinforcement learning tasks. In
contrast, Epynet includes built-in features that facilitate step-wise simulation with only minimal
modifications required on our end.

The simulator models the water distribution system as a graph composed of nodes and links. Among
the nodes, tanks, and junctions play a critical role: tanks store water and help meet demand during
peak usage or scarcity and must maintain their water levels within operational boundaries; junctions,
on the other hand, are expected to maintain adequate pressure to ensure service reliability.: tanks
store water and help meet demand during peak usage or scarcity, and must maintain their water
levels within operational boundaries; junctions, on the other hand, are expected to maintain adequate
pressure to ensure service reliability. Each junction is assigned a base demand value in the .inp file,
which represents the nominal water demand at that location. The Demand Satisfaction Ratio (DSR)
is used as a key indicator of how well the actual demand is met over time.

It is important to note that the demand values in .inp files are static. To simulate dynamic and
diverse operational conditions, we introduce time-varying demand profiles that modulate the base
demand values to reflect normal, stressful, and extreme scenarios. These profiles allow us to simulate
periods of increased stress on the network, such as high usage due to heatwaves or population surges.
In Table 8, we summarize the main parameters used to configure the water distribution simulator.

The network chosen for the experiment is the Anytown system, which has the following composition:
22 junctions (from J1 to J22), 2 tanks (T41 and T42), 2 pumps (P78 and P79), and 1 reservoir (R40).
Further details on the network configuration are available in the relative .inp file.

Table 8: WDSEnv’s simulator parameters.

Parameter Symbol Value
Town - anytown.inp
Demand estimation d̂t SMA
Normal demand prob. - 0.6 [-]
Stressful demand prob. - 0.35 [-]
Extreme demand prob. - 0.05 [-]
Overflow risk λof 0.9 [-]

Observation Space. The observation space considered in the reported experiment includes both
the tank level (L = 2) and all the junctions of the network (J = 22). The estimated total demand
pattern d̂t is computed as a moving average over the previous quarter of the day, corresponding to
a 6-hour window. This can be implemented either as a simple moving average (SMA) or using an
exponentially weighted moving average (EWMA), depending on the desired responsiveness to recent
variations. Additionally, the observation space includes a time-based feature to capture intra-day
periodicity. Specifically, we define φd = 2πτd

Td
, where τd ∈ [0, Td] denotes the current time of day in

seconds, and Td is the total number of seconds in a day (i.e., Td = 86400).

Reward Function. The reward function consists of two main components: the DSR term and the
overflow penalty term. These components jointly encourage the agent to maintain an adequate water
supply across the network while avoiding risky conditions such as tank overflows.

26



The first component, the DSR term rDSR,t(at), quantifies how effectively the agent satisfies the
expected demand across all junctions at time t. It is defined as:

rDSR,t(at) =

∑J
j=1 dj,t∑J
j=1 dj,t

, (20)

where dj,t denotes the actual supplied demand at junction j and time t, and dj,t is the corresponding
expected demand. This term rewards the agent proportionally to the fraction of demand satisfied,
with rDSR,t(at) = 1 indicating perfect demand satisfaction.

The second component, the overflow penalty term rof,t(at), is designed to discourage unsafe opera-
tional states where tank levels approach their capacity limits. It is defined as:

rof,t(at) =

{∑L
l=1

hl,t−λof hl,max
(1−λof)hl,max

if hl,t > λof hl,max,

0 otherwise,
(21)

where hl,t is the current level of tank l, hl,max is its maximum allowable level, and λof ∈ (0, 1) is a
configurable threshold that defines the critical level for triggering the penalty. The penalty increases
linearly beyond this threshold, encouraging the agent to avoid risky overfill conditions before they
become critical.

Limitations. The main limitations of WDSEnv stem from the underlying simulator. First, from a
modeling perspective, the environment does not allow for fine-grained control of pumps beyond
simple on/off status, since features such as variable speed control are not supported by either Epynet
or Epanet.

Second, running experiments within this environment is computationally expensive, as reported in
Table 2. While our experiments are conducted on a relatively small network with a limited number
of nodes and links, scaling to larger networks for benchmarking would require significantly more
powerful hardware and the use of parallelization strategies. This challenge is inherent in the design
of Epanet, which was not originally intended for real-time control or RL applications. Instead,
Epanet was primarily developed to simulate the hydraulic behavior of water networks in response to
predefined scenarios and configurations, such as in what-if analyses.

Given these limitations, there is an opportunity for closer collaboration between the RL and hydraulic
communities. A potential direction could involve the development of a lightweight, RL-friendly
Python wrapper for Epanet, optimized for efficient, step-wise simulations and scalable training
pipelines. Such a tool would significantly facilitate the integration of advanced learning algorithms
into water system management tasks.

E Experiment Details

E.1 DamEnv

In this section we provide more details on the benchmarking experiments performed on the DamEnv
environment. In this setting we compare the SkRL [23] version of PPO with some rule-based
strategies described in Section 2.1. The parameters used for the PPO results reported in the main
paper can be found in Table 9.

Additionally, Figure 9 shows the validation performances during the training of PPO. In particular,
the y-axis represents the mean return over 13 year-long episodes, with 95%-confidence intervals.
From the figure, we can observe the proper learning and convergence of the approach.

E.2 ElevatorEnv

Within the ElevatorEnv, we compare custom implementation of tabular RL algorithms, i.e., Q-
Learning and SARSA, against several rule-based strategies. Besides the trivial Random policy, we
wanted to provide also other two intuitive rule-based solutions that could be easily implemented in a
physical system. Below, we briefly describe the rational behind such rule-based policies.

• Random policy: the agent selects an action uniformly at random, without considering the
state of the system.

27



0 50k 100k 150k 200k
Training step

1.0

0.8

0.6

0.4

0.2

R
ew

ar
d

1e5

PPO

Figure 9: Learning curves of PPO on DamEnv.

Table 9: Parameter configuration for PPO on DamEnv.

Parameter Value
Training Steps 200k
Batch Size 32

# Epochs 10

Rollouts 2048

Gamma 0.995

Learning Rate 8e− 6

Policy Network Size [16, 16]

Initial log. std. −0.5

Normalize obs. True
Seed 123

• Longest-first (LF) policy: the agent prioritizes serving passengers on the floor with the
longest waiting queue. Once passengers are picked up, the elevator travels directly to their
destination, skipping any intermediate stops.

• Shortest-first (SF) policy: the agent prioritizes serving passengers on the floor with the short-
est waiting queue. Similarly, it proceeds directly to their destination floor after onboarding
passengers without making additional stops.

As evidenced in Figures 2a and 2b, both the LF and SF policies outperform the Random one,
demonstrating to be reasonable in this setting. However, Q-Learning and SARSA are able to achieve
even higher performances both in their vanilla version and with a modest training. We expect even
better performances from ad-hoc algorithms specifically designed to address this problem and its
challenges.

We provide information on training configurations in Table 10 for both algorithms, as well as their
learning curves in Figure 10. In particular, y-axis reports the mean return, i.e., the global waiting
time, over 30 episodes for each evaluation epoch, with a 95%-confidence interval. Notably, we
trained Q-Learning and SARSA for 100, 000 episodes with an early-stopping mechanism that alts the
training if after 10 subsequent episodes no improvement grater than a threshold (tolerance) occurs.

28



Table 10: Parameter configuration for Q-Learning and SARSA on ElevatorEnv.

Parameter Q-Learning SARSA
# Episodes 100k 100k
# Envs 1 1
Gamma 1.0 1.0

Epsilon 1.0 1.0

Epsilon decay 0.99 0.99

Minimum Epsilon 0.05 0.05

Tolerance 0.1 0.1

Stop after # eps. with no improvement 10 10

Seed 42 42

0 10k 20k 30k
Training step

1.75

1.50

1.25

1.00

0.75

0.50

R
ew

ar
d

1e4

Q-Learning
SARSA

Figure 10: Learning curves of Q-Learning and SARSA on ElevatorEnv.

E.3 MicrogridEnv

Within the MicrogridEnv, we compare the Stable-Baselines3 [18] version of PPO against several
rule-based strategies. Below, we briefly describe each of them.

• Random policy: the agent selects an action uniformly at random, without considering the
current state of the system.

• Battery-first (BF) policy: the agent prioritizes the use of the battery, attempting to store
or retrieve energy as much as possible. The main grid is used only when the battery is
insufficient (at = 1).

• Only-market (OM) policy: the agent exclusively interacts with the main grid, buying and
selling energy without utilizing the battery (at = 0). Note that the battery will still degrade
over time due to temporal aging, even though it is not actively used.

• 50-50 policy: the agent consistently splits the net power PN,t equally between the battery
and the grid, by selecting at = 0.5 at every time step.

We trained PPO over 100 episodes on 8 parallel environments. The training span 4-year of data
(from 2015 to 2019 included), while testing is done on year 2020, all with a resolution of 1 hour.
Parameters of PPO used to obtained the results presented in the main paper are reported in Table 11.
The learning curve of PPO is depicted in Figure 11 with on y-axis the is reported the normalized
mean episode return over 10 demand profiles, with 95%-confidence interval.

29



Table 11: Parameter configuration for PPO on MicrogridEnv.

Parameter Value
# Episodes 100

# Envs 8

Policy Network Size [64, 32]

Gamma 0.99

Learning Rate 5e−5

Batch size 512

# Epochs 10

Rollouts 8912

Initial log. std. −1

Normalize obs. True
Seed 42

0 5M 10M 15M 20M 25M
Training step

1.0

0.8

0.6

R
ew

ar
d

1e3

PPO

Figure 11: Learning curves of PPO on MicrogridEnv.

E.4 RoboFeederEnv

This section gives further details on the training of RL agents on RoboFeeder for reproducibility pur-
poses. Table 12 enumerates the entire list of hyperparameters used to train the Stable-Baselines3 [18]
implementations of the PPO algorithm. This algorithm is used for both the picking and planning
environments.

E.4.1 RoboFeeder-picking

Figures 12a and 12b illustrate the training curve of the PPO algorithm, interacting with the
RoboFeeder-picking-v0 environment. Based on 15k timestamps, using a single object to train
the robot to learn to pick the object, it is possible to notice how the distance-based reward helps the
agent to learn the right approaching point to the object. The mean reward, over the multiple parallel
environments considered, is normalized with respect to the total number of timesteps T = 2, to
have a value in the range r ∈ [−1, 1]. The training curves of the robofeeder-picking-v1 are not
provided, since they are in line with the ones provided for v0. The training curve reported and the
related confidence intervals are based on 5 different seeds.

30



Table 12: Parameters configuration for PPO on RoboFeederEnv.

Parameter PPO (picking) PPO (planning)
# Episodes 15 10

# Envs 20 6
Policy Network Size [512, 128] [64, 64]

Gamma 0.99 0.99

Learning Rate 0.001 0.0003

Log Rate 10 10

Batch Size 128 128

# Steps 15k 10k
Ent. Coeff. 0.01 −
Clip fraction 0.2 0.2

Seed [0,1,2,56,123] [0,1,2,56,123]

0 3k 6k 9k 12k 15k
Training step

1.5

1.6

1.7

1.8

1.9

2.0

Ep
iso

de
 L

en
gt

h

PPO

(a) Mean Episode Length during training.

0 3k 6k 9k 12k 15k
Training step

0.8

0.6

0.4

0.2

0.0

Re
wa

rd

PPO

(b) Mean reward during training.

Figure 12: RoboFeeder-picking-v0, PPO training curve of mean episode length and reward over
5 seeds.

E.4.2 RoboFeeder-planning

Figures 13a and 13b present the results of training the PPO algorithm over 10k iterations. The
environment is set up with three objects positioned so they can be successfully picked. Despite the
limited number of training steps, the learning curve for the mean reward demonstrates the agent’s
ability to select effective actions. With a total time horizon of T = 5, the agent achieves positive
rewards, indicating successful object picking. Initially, episodes end prematurely, as shown in the
mean episode length plot. However, over time, the agent converges to an optimal time horizon of
T = 4, which aligns with picking the three available objects, followed by a reset action once the
scene is empty. The resulting training curves are based on 5 different seeds.

E.5 TradingEnv

This section gives further details on the training of RL agents on TradingEnv for reproducibility
purposes. Regarding the environment configuration, we considered the base setting, as referred in the
Appendix E.5, using 60 delta mid-prices, the timestamp, and the position of the agent. The trading
activity is allowed from 8:00 EST to 18:00 EST. Due to the use of Deep RL algorithms as PPO [22]
and DQN [13], the timestamp is transformed using cyclic encoding.

It is important to notice that training, validation, and tests were performed using different sets of
years on 6 seeds. In particular, the model was trained from 2019 to 2020, validated in 2021, where
the best model is selected, and tested in 2022. The hyperparameter configurations chosen for DQN
and PPO are reported in Table 13, while the related training curves can be found in Figure 14

31



0 2k 4k 6k 8k 10k
Training step

2.5

3.0

3.5

4.0

4.5

Ep
iso

de
 L

en
gt

h

PPO

(a) Mean Episode Length during training.

0 2k 4k 6k 8k 10k
Training step

2

1

0

1

Re
wa

rd

PPO

(b) Mean reward during training.

Figure 13: RoboFeeder-planning, training curve of mean episode reward and episode length over
5 seeds.

and 15. We used the Stable-Baselines3 [18] implementations of the algorithms, specifically the SBX
(Stable-Baselines3 in JAX) implementation of PPO and the standard SB3 implementation of DQN.

Table 13: Parameter configuration for PPO and DQN on TradingEnv.

Parameter PPO DQN
# Episodes 30 30

# Envs 6 6
Policy Network Size [512, 512] [512, 512]

Gamma 0.90 0.90

Learning Rate 0.0001 0.0001

Log Rate 10 -
Batch Size 236 64

# Steps 708 -
Entropy Coeff. 0.0 -
Buffer Size - 1M
Learning Starts - 100

Exploration Fraction - 0.2

Exploration Final Eps. - 0.05

Polyak Update (tau) - 1.0
Train Frequency - 4

Standard hyperparameters have been used for benchmarking, hence we encourage the use of hyperpa-
rameter tuning techniques to better calibrate the model. Indeed, without a proper methodology for
hyperparameter tuning and model selection, it is very easy to overfit when manually selecting their
values.

In Figure 16, the P&L performances for Training, Validation, and Test years are reported in addition
to common passive strategies. The training was performed for approximately 7M steps. Unlike other
domains, these baseline strategies are particularly strong. Indeed, people who invest in the stock
market typically adopt the Buy&Hold strategy, buying the stock and keeping the position long for
years. In this environment, the Buy&Hold policy corresponds to consistently selecting the Long
action, while the Sell&Hold policy corresponds to consistently selecting the Short action.

Figure 17 shows a sample of three policies on the validation set with PPO. We can observe that three
different seeds lead to three significantly different policies, underlying the high stochasticity of the
environment.

32



0 1 2 3 4 5 6 7
Training step 1e6

150
100

50
0

50
100

R
ew

ar
d 10473

32517
47605
67288
84029
91352

(a) Episode Reward Mean during PPO Training.

0 10 20 30 40 50
Evaluation step

10

0

10

20

30

R
ew

ar
d

10473
32517
47605
67288
84029
91352

(b) Cum. Reward of PPO on validation data.

Figure 14: Training Curves PPO of the 6 seeds considered for TradingEnv, (a) episode reward mean
on Training and (b) cumulative reward on the entire validation year.

0 1 2 3 4 5 6 7
Training step 1e6

200
150
100

50
0

50
100

R
ew

ar
d 10473

32517
47605
67288
84029
91352

(a) Episode Reward Mean during DQN Training.

0 10 20 30 40 50
Evaluation step

20
10

0
10
20
30

R
ew

ar
d

10473
32517
47605
67288
84029
91352

(b) Cum. Reward of DQN on Validation.

Figure 15: Training Curves DQN of the 6 seeds considered for TradingEnv, (a) episode reward
mean on Training and (b) cumulative reward on the entire validation year.

E.6 WDSEnv

Within the WDSEnv, we compare the Stable-Baselines3 [18] version of DQN against different rule-
based strategies. Hereafter, we spend a few words to describe each.

• Random policy: the agent selects an action uniformly at random, without considering the
state of the system;

• P78 policy: the agent plays a fixed action at = 2, keeping the pump P78 always open and
the pump P79 always closed;

• P79 policy: conversely from the previous policy, the agent plays a fixed action at = 1,
keeping the pump P79 always open and the pump P78 always closed;

• Default policy: the agent plays a strategy defined in the [CONTROLS] section of the .inp
file. This represents an expert policy adopted by default within Epanet. In this case, the
strategy requires the following actions:

– with l being tank T41, open P78 if hl,t < 5.0 and close P78 if hl,t > 8.0;
– with l being tank T42, open P79 if hl,t < 5.0 and close P79 if hl,t > 8.0.

In this environment, we adopt the DQN algorithm, which is well-suited to the setting due to the
continuity of the observation space and the finite nature of the action space. Training is carried out
over episodes of one-week duration, with a control time step of one hour. Each episode presents the
agent with varying demand profiles, sampled according to the occurrence probabilities reported in
Table 8. Experimental results show that DQN consistently outperforms all rule-based strategies, as it
learns to execute more conservative control actions that effectively reduce the risk of tank overflow,
while still maintaining a high DSR.

The full training configuration for DQN is detailed in Table 14, while the convergence of the algorithm
is illustrated in Figure 18. The y-axis in the figure reports the mean episode return over 10 evaluation
episodes, with a 95% confidence interval.

33



20
19

-01
-04

20
19

-04
-14

20
19

-07
-23

20
19

-10
-31

20
20

-02
-08

20
20

-05
-18

20
20

-08
-26

20
20

-12
-04

Time

6

4

2

0

2

4

6

8

P
&

L 
(%

)

B&H
S&H
PPO
DQN

(a) Training Years.

20
21

-01
-13

20
21

-02
-22

20
21

-04
-03

20
21

-05
-13

20
21

-06
-22

20
21

-08
-01

20
21

-09
-10

20
21

-10
-20

20
21

-11
-29

20
22

-01
-08

Time

4

2

0

2

4

6

P
&

L 
(%

)

B&H
S&H
PPO
DQN

(b) Validation Years.

Figure 16: Performances of PPO and DQN w.r.t. common baselines (i.e., passive strategies) on
Training (2019-2020) and Validation (2021) for TradingEnv. Confidence intervals obtained with 6
seeds.

08
:00

08
:50

09
:40

10
:31

11
:21

12
:11

13
:02

13
:52

14
:42

15
:33

16
:23

17
:13

Time of the Day

0
10
20
30
40
50
60
70
80
90

100
110
120
130
140
150
160
170
180
190

D
ay

s

Action Heatmap | seed = 91352

Short

Flat

Long

08
:00

08
:50

09
:40

10
:31

11
:21

12
:11

13
:02

13
:52

14
:42

15
:33

16
:23

17
:13

Time of the Day

0
10
20
30
40
50
60
70
80
90

100
110
120
130
140
150
160
170
180
190

D
ay

s

Action Heatmap | seed = 67288

Short

Flat

Long

08
:00

08
:50

09
:40

10
:31

11
:21

12
:11

13
:02

13
:52

14
:42

15
:33

16
:23

17
:13

Time of the Day

0
10
20
30
40
50
60
70
80
90

100
110
120
130
140
150
160
170
180
190

D
ay

s

Action Heatmap | seed = 84029

Short

Flat

Long

Figure 17: Policy learned by PPO on 3 different seeds in the TradingEnv. The x-axis and the y-axis
report the time of the day and the different days, respectively. Noticeably, three different policies are
learned depending on the seed.

Table 14: Parameter configuration for DQN on WDSEnv.

Parameter Value
# Episodes 100

# Envs 8

Policy Network Size [64, 64]

Gamma 0.99

Learning Rate 0.001

Batch Size 32

Buffer Size 1M
Learning Starts 100
Exploration Fraction 0.1

Exploration Final Eps. 0.05

Polyak update (tau) 1.0
Train Frequency 4

Seed 42

34



0 25k 50k 75k 100k 125k
Training step

50

0

50

100

150

R
ew

ar
d

DQN

Figure 18: Learning curves of DQN on WDSEnv.

35


	Introduction
	Environments and Benchmarking
	DamEnv
	ElevatorEnv
	MicrogridEnv
	RoboFeederEnv
	RoboFeeder-picking
	RoboFeeder-planning

	TradingEnv
	WaterDistributionSystemEnv

	Discussion and Conclusion
	Metadata
	Hosting and Maintenance
	Licenses and Responsibility
	Reproducibility
	Intended Usage
	Software and Hardware Requirements

	Characteristics and RL paradigms
	Datasets
	DamEnv
	ElevatorEnv
	MicrogridEnv
	RoboFeederEnv
	TradingEnv
	WDSEnv

	Environment Details
	DamEnv
	ElevatorEnv
	MicrogridEnv
	RoboFeederEnv
	RoboFeeder-picking
	RoboFeeder-planning

	TradingEnv
	WDSEnv

	Experiment Details
	DamEnv
	ElevatorEnv
	MicrogridEnv
	RoboFeederEnv
	RoboFeeder-picking
	RoboFeeder-planning

	TradingEnv
	WDSEnv


