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Abstract

Policy gradient (PG) methods are a class of effective reinforcement learning al-
gorithms, particularly when dealing with continuous control problems. These
methods learn the parameters of parametric policies via stochastic gradient ascent,
typically using on-policy trajectory data to estimate the policy gradient. However,
such reliance on fresh data makes them sample-inefficient. Indeed, vanilla PG
methods require Opϵ´2q trajectories to reach an ϵ-approximate stationary point. A
common strategy to improve efficiency is to reuse off-policy information from past
iterations, such as previous gradients or trajectories. While gradient reuse has re-
ceived substantial theoretical attention, leading to improved rates of Opϵ´3{2q, the
reuse of past trajectories remains largely unexplored from a theoretical perspective.
In this work, we provide the first rigorous theoretical evidence that extensive reuse
of past off-policy trajectories can significantly accelerate convergence in PG meth-
ods. We introduce a power mean correction to the multiple importance weighting
estimator and propose RPG (Retrospective Policy Gradient), a PG algorithm that
combines old and new trajectories for policy updates. Through a novel analysis,
we show that, under established assumptions, RPG achieves a sample complexity
of rOpϵ´1q, the best known rate in the literature. We further validate empirically
our approach against PG methods with state-of-the-art rates.

1 Introduction

Among reinforcement learning (RL, Sutton and Barto, 2018) approaches, policy gradient (PG,
Deisenroth et al., 2013) methods have demonstrated notable success in tackling real-world problems,
due to their capacity to operate in continuous state and action spaces (Peters and Schaal, 2006),
robustness to sensor and actuator noise (Gravell et al., 2020), and effectiveness in managing partially
observable environments (Azizzadenesheli et al., 2018). Moreover, PG methods allow for the
integration of expert prior knowledge into policy design (Ghavamzadeh and Engel, 2006), thereby
enhancing the safety, interpretability, and performance of the learned policy (Peters and Schaal,
2008). PG methods operate by directly optimizing the parameters θ P RdΘ of parametric policies to
maximize a performance objective Jpθq, typically the expected return. In practice, the parameter
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vector θ is updated via gradient ascent, based on an estimate of the gradient ∇Jpθq w.r.t. the policy
parameters. The goal is to identify an optimal parameterization θ˚ that maximizes the objective. In
most cases Jpθq is a non-convex objective, thus this notion of optimality is often relaxed to that of
finding a first-order stationary point, defined by the condition }∇Jpθ˚q}2 “ 0 (Papini et al., 2018).

Despite their practical success, PG methods remain notoriously data-hungry, as each update requires
several interactions with the environment to gather fresh data for gradient estimation. This limitation
is reflected in their theoretical convergence guarantees, which have become a central focus in the
PG literature. Vanilla PGs such as REINFORCE (Williams, 1992), PGT (Sutton et al., 1999), and
GPOMDP (Baxter and Bartlett, 2001) aim to learn θ˚ via stochastic gradient ascent, using only
on-policy trajectories, i.e., those generated by the current policy. These methods require order of
Opϵ´2q total trajectories to reach an ϵ-approximate stationary point, i.e., a parameter θ such that
}∇Jpθq}22 ď ϵ. These unsatisfactory theoretical guarantees of vanilla PG methods are primarily due
to the high variance of the gradient estimates, which are computed using only on-policy trajectories.
To mitigate this variance, one can reuse off-policy data collected during the learning process, such as
past gradients or past trajectories originating from different policy parameterizations. These data are
typically incorporated into the gradient estimation through importance weighting (Owen and Zhou,
2000). A central challenge in this setting arises from the use of importance weights (IWs), which
may inject high variance in the gradient estimate (Mandel et al., 2014).

While reusing trajectories is the most natural choice for improving PGs’ sample efficiency, the
literature extensively focused instead on reusing gradients, proposing various update schemes. Among
these methods, Papini et al. (2018) introduced SVRPG, which incorporates ideas from stochastic
variance-reduced gradient methods (Johnson and Zhang, 2013; Allen-Zhu and Hazan, 2016; Reddi
et al., 2016). Specifically, SVRPG employs a semi-stochastic gradient that combines the stochastic
gradient at the current iterate with that of a past “snapshot” parameterization. This method achieves a
sample complexity of Opϵ´5{3q (Xu et al., 2020). An improvement over this result was proposed
by Xu et al. (2019), who introduced SRVRPG. Unlike SVRPG, SRVRPG employs a recursive
semi-stochastic gradient, which integrates the current stochastic gradient with those accumulated
throughout the entire learning process. This recursive structure reduces the sample complexity to
Opϵ´3{2q under the same convergence criterion. Furthermore, Yuan et al. (2020) proposed STORM-
PG, which, instead of alternating between small and large batch updates as in SRVRPG, maintains a
moving average of past stochastic gradients. This approach enables adaptive step sizes and eliminates
the need for large batches of trajectories, while still ensuring a sample complexity of Opϵ´3{2q. More
recently, Paczolay et al. (2024) introduced a variant of STORM-PG that stochastically decides whether
or not to reuse past gradients at each iteration. This method retains the same sample complexity of
Opϵ´3{2q, while relaxing the standard assumption of bounded IW variance. Beyond gradient reuse,
variance reduction can also be achieved by reusing off-policy trajectories collected with previous
policies. While this approach is conceptually more natural, it has received relatively little theoretical
attention. For instance, Metelli et al. (2018) propose reusing trajectories to compute multiple
successive stochastic gradient estimates, but with no formal convergence guarantees. Similarly,
Papini et al. (2024) leverage past trajectories collected under multiple policy parameterizations,
achieving a sample complexity of Opϵ´5{3q, under strong technical assumptions. Table 1 summarizes
the key assumptions, data reuse strategies, and sample complexities of related PG methods.

Original Contribution. Despite significant progress in reducing sample complexity, state-of-the-art
methods still require Opϵ´3{2q trajectories to reach an ϵ-approximate stationary point. Most of these
improvements rely on gradient reuse, a theoretically convenient but arguably less natural strategy than
reusing trajectories. This observation raises a fundamental question: Can the extensive reuse of past
off-policy trajectories lead to provable improvements in convergence guarantees for PG methods?

In this work, we answer this question affirmatively by introducing the RPG (Retrospective Policy
Gradient) method that estimates the gradient direction via a power mean (PM) corrected version
of the multiple importance weighting (MIW) estimator. The convergence guarantees of RPG are
established exploiting the properties of the PM gradient estimator, which are derived through a novel
analysis. Our main contributions are summarized as follows:

• In Section 3, we introduce the PM gradient estimator, a variant of MIW applying PM correction
originally proposed in the single-IW setting by Metelli et al. (2021). We also present RPG that
leverages this estimator to update the policy parameters. RPG fully exploits all previously collected
off-policy trajectories, along with a constant-size batch of newly collected on-policy samples.
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REINFORCE (Williams, 1992) — ✓ ✗ O
`
ϵ´2

˘

PGT (Sutton et al., 1999) — ✓ ✗ O
`
ϵ´2

˘

GPOMDP (Baxter and Bartlett, 2001) — ✓ ✗ O
`
ϵ´2

˘

BPO (Papini et al., 2024) Trajectories ✓ : ✓ : O
`
ϵ´5{3

˘

SVRPG (Papini et al., 2018; Xu et al., 2020) Gradients ✓ ✓ O
`
ϵ´5{3

˘

SRVRPG (Xu et al., 2019) Gradients ✓ ✓ O
`
ϵ´3{2

˘

STORM-PG (Yuan et al., 2020) Gradients ✓ ✓ O
`
ϵ´3{2

˘

DEF-PG (Paczolay et al., 2024) Gradients ✓ ✗ O
`
ϵ´3{2

˘

RPG (this work) Trajectories ✓ ✓ rO
`
ϵ´1

˘
#

: Stricter assumptions implying the ones matched. # rOp¨q hides logarithmic factors. § See Assumption 4.4.
Table 1: Comparison of the sample complexities of methods achieving }∇Jpθq}22 ď ϵ.

• In Section 4, we derive high-probability upper bounds on the estimation error of the PM estima-
tor. These results are obtained by employing a martingale-based argument combined with the
Freedman’s inequality and a covering argument.

• In Section 5, we prove that RPG achieves a sample complexity of rOpϵ´1q for reaching an ϵ-
approximate stationary point, under standard assumptions. This is made possible by a novel
analysis that builds upon the results of Section 4, and provides the first rigorous theoretical
evidence that extensive trajectory reuse can accelerate convergence in PG methods.

Comparative experimental results are reported in Section 6. All the proposed results extend to
parameter-based PGs (Sehnke et al., 2010), whose discussion is deferred to Appendix A.

2 Background and Notation

Notation. For n,m P N with n ě m, we denote JnK :“ t1, . . . , nu and Jm,nK :“ tm, . . . , nu. For
a measurable set X , we denote with ∆pX q the set of probability measures over X . For P P ∆pX q,
we denote with p its density function w.r.t. a reference measure that we assume to exist whenever
needed. For P,Q P ∆pX q, we denote that P is absolutely continuous w.r.t. Q as P ! Q. If P ! Q,
the χ2 divergence is defined as χ2pP }Qq :“ `ş

X ppxq2qpxq´1dx
˘ ´ 1.

Lipschitz Continuous and Smooth Functions. A function f : X Ď Rd Ñ R is L1-Lipschitz
continuous (L1-LC) if |fpxq ´ fpx1q| ď L1}x ´ x1}2 for every x,x1 P X . Similarly, f is L2-
Lipschitz smooth (L2-LS) if it is continuously differentiable and its gradient ∇f is L2-LC, i.e.,
}∇fpxq ´ ∇fpx1q}2 ď L2}x ´ x1}2 for every x,x1 P X .

Markov Decision Processes. A Markov Decision Process (MDP, Puterman, 1990) is represented
by M :“ pS,A, p, r, ρ0, γq, where S Ď RdS and A Ď RdA are the measurable state and action
spaces; p : S ˆ A ÝÑ ∆pSq is the transition model, where pps1|s,aq specifies the probability density
of landing in state s1 P S by playing action a P A in state s P S; r : S ˆ A ÝÑ r´Rmax, Rmaxs
is the reward function, where rps,aq specifies the reward the agent gets when playing action a in
state s; ρ0 P ∆pSq is the initial-state distribution; γ P r0, 1s is the discount factor. A trajectory
τ “ psτ,0,aτ,0, . . . , sτ,T´1,aτ,T´1q of length T P N Y t`8u is a sequence of T state-action pairs.
In the following, we refer to T as the set of all the possible trajectories. The discounted return of a
trajectory τ P T is given by Rpτq :“ řT´1

t“0 γtrpsτ,t,aτ,tq. We admit γ “ 1 only when T ă `8.

3



Policy Gradients. Consider a parametric stochastic policy πθ : S Ñ ∆pAq, where θ P Θ is the
parameter vector belonging to the parameter space Θ Ď RdΘ . The policy is used to sample actions
at „ πθp¨|stq to be played in state st for every step t of interaction. The performance of πθ is
assessed via the expected return J : Θ Ñ R, defined as Jpθq :“ Eτ„pθ

rRpτqs, where pθpτq :“
ρ0psτ,0q śT´1

t“0 πθpaτ,t|sτ,tqppsτ,t`1|sτ,t,aτ,tq is the density function of trajectory τ induced by
policy πθ. The goal is to learn θ˚ P argmaxθPΘ Jpθq and we denote J˚ :“ Jpθ˚q.

On-Policy Estimators. If Jpθq is differentiable w.r.t. θ, PG methods (Peters and Schaal, 2008)
update the parameter θ via stochastic gradient ascent: θk`1 ÐÝ θk ` ζk p∇Jpθkq, where ζk ą 0 is the
step size and p∇Jpθq is an estimator of ∇θJpθq. In particular, p∇Jpθq often takes following form:

p∇Jpθq “ 1

N

N´1ÿ

j“0

gθpτjq,

being gθpτq a single-trajectory gradient estimator and N the number of independent trajectories
tτjuN´1

j“0 collected with policy πθ (i.e., τj „ pθ), called batch size. Classical on-policy unbiased
gradient estimators are REINFORCE (Williams, 1992) and GPOMDP (Baxter and Bartlett, 2001),
which are respectively defined as follows:

gR
θpτq “ řT´1

t“0 ∇θ log πθpaτ,t|sτ,tqRpτq, gG
θpτq “ řT´1

t“0

´řt
l“0 ∇θ log πθpaτ,l|sτ,lq

¯
γtrpsτ,t,aτ,tq.

In the following, we use gθpτq whenever it is possible to employ both the estimators.

Off-Policy Estimators. The gradient ∇Jpθq can also be estimated by employing trajectories
tτjuN´1

j“0 collected via a behavioral policy πθb
. In particular, under the assumption that πθp¨|sq !

πθb
p¨|sq for every s P S , the (single) off-policy gradient estimator (Owen, 2013) is defined as follows:

p∇ISJpθq “ 1

N

N´1ÿ

j“0

pθpτjq
pθb

pτjqgθpτjq,

where τj „ pθb
and pθpτq

pθb
pτq

is the Importance Weight (IW, Owen and Zhou, 2000) of the trajectory

τ P T , defined as pθpτq

pθb
pτq

“ śT´1
t“0

πθpaτ,t|sτ,tq

πθb
paτ,t|sτ,tq

. We call p∇IWJpθq the Importance Weighting (IW)
estimator, which is unbiased for a fixed θ P Θ (i.e., non depending on the collected trajectories).The
variance of the IW (Cortes et al., 2010) is related to the χ2-divergence as shown in the following:

Var
τ„pθb

„
pθpτq
pθb

pτq
ȷ

“ χ2ppθ}pθb
q.

This approach can be extended to take into account trajectories collected under different behavioral
policies. Consider m P N behavioral policies tθium´1

i“0 and suppose to have collected Ni trajectories
tτi,juNi´1

j“0 for each θi (i.e., τi,j „ pθi
) with i P J0,m ´ 1K. Let βi ě 0 be a partition of the unit,

i.e.,
řm´1

i“0 βipτq “ 1 for every τ P T . Under the assumption that βiπθp¨|sq ! πθip¨|sq the multiple
off-policy gradient estimator (Veach and Guibas, 1995; Owen, 2013) is defined as:

p∇MIWJpθq “
m´1ÿ

i“0

1

Ni

Ni´1ÿ

j“0

βipτi,jq pθpτi,jq
pθi

pτi,jqgθpτi,jq, (1)

Also in this case, the estimator is unbiased for a fixed θ P Θ. In the following, we refer to this
gradient estimator as the Multiple Importance Weighting (MIW) one.

3 Trajectory Reuse in Policy Optimization

As highlighted in Section 1, vanilla PG methods rely exclusively on on-policy trajectories. A natural
strategy to improve the sample efficiency is to reuse off-policy trajectories collected during previous
iterations. However, since these trajectories are generated under different policy parameterizations,
the resulting gradient estimates must be corrected accordingly through MIW (Owen, 2013).

In this section, we first formalize this learning scenario relying on the generic MIW gradient estimator
presented in Equation (1). We then discuss why the Balance Heuristic (BH, Veach and Guibas,
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1995), the most studied instantiation of the MIW estimator, is not well-suited for this setting. Next,
we propose a PM-corrected version of the MIW estimator, referred to as the PM estimator, which
addresses the limitations of the BH one. Finally, we introduce RPG (Retrospective Policy Gradient),
a PG algorithm that leverages the PM estimator to perform parameter updates.

Learning Scenario. Consider a generic PG method that, at the kth iteration, collects a constant-size
batch of N trajectories tτk´1,juN´1

j“0 using the current policy parameterization θk´1 (i.e., τk´1,j „
pθk´1

). The policy is then updated via gradient ascent: θk Ð θk´1 ` ζk´1
p∇MIWJpθk´1q, where

ζk´1 is the step size and p∇MIWJ denotes a MIW gradient estimator, as defined in Equation (1).
The estimator p∇MIWJ leverages the full set of collected trajectories ttτi,juN´1

j“0 uk´1
i“0 , where each

τi,j „ pθi
, being tθiuk´1

i“0 the set of policy parameters encountered up to iteration k. Note that,
because of the gradient ascent update, the parameters tθiuk´1

i“0 are all statistically dependent since
each θi depends on the past collected trajectories ttτl,juN´1

j“0 ui´1
l“0 used for the gradient step.

MIW with Balance Heuristic. The most studied choice for the coefficients βi of the MIW estimator
from Equation (1) is the BH (Veach and Guibas, 1995). In our learning scenario they take the form
βBH
i pτq :“ pθi

pτqřk´1
l“0 pθl

pτq
for every τ P T , leading to the BH estimator:

p∇BHJpθk´1q “ 1

N

k´1ÿ

i“0

N´1ÿ

j“0

pθk´1
pτi,jq

řk´1
l“0 pθl

pτi,jqgθk´1
pτi,jq.

The BH estimator enjoys the defensive property, i.e., the IWs are bounded by k. Moreover, when
the behavioral policies tθiuk´1

i“0 are statistically independent, which is not the case of our learning
scenario, the BH estimator is proven to enjoy nearly-optimal variance (Veach and Guibas, 1995,
Theorem 1). However, in our learning scenario, the BH estimator suffers from both practical and
theoretical limitations. Specifically, computing each IW requires evaluating the likelihood of each
trajectory τi,j under all policies. More critically, the BH requires evaluating both older trajectories
under newer policies and newer trajectories under older policies, as shown in the following:

p∇BHJpθk´1q “ 1

N

k´1ÿ

i“0

N´1ÿ

j“0

pθk´1
pτi,jq

ři
l“0 pθl

pτi,jq ` řk´1
l“i`1 pθl

pτi,jqgθk´1
pτi,jq.

The part in (–) illustrates how the BH introduces circular dependency among the random variables,
violating the natural temporal ordering, with the effect of introducing bias into the estimate. Consider,
for instance, the random variable pθl

pτi,jq, with l ă i: it depends on the trajectory τi,j „ pθi , while
the parameterization θi itself is a random variable computed from the earlier parameterization θl and
its associated trajectories τl,j „ pθl

. Notably, we cannot simply omit the problematic terms from
the summation, as this would introduce additional bias, since the resulting coefficients would be no
longer a partition of the unit. A graphical representation of these issues is provided in Appendix B.

Power Mean-corrected MIW. To overcome the limitations of the BH estimator, we could select
the coefficients as βipτq :“ αi,k ě 0 for all i P J0, k ´ 1K, making them depend only on the
parameterization θi and the total number of parameterizations k, with the constraint

řk´1
i“0 αi,k “ 1.

While this choice eliminates the bias introduced by the violation of the natural temporal ordering, it
no longer guarantees the defensive property. To overcome also this issue, we borrow the idea of a
PM-correction of the IW, which was proposed for the single-IW setting by Metelli et al. (2021), and
extend it to the MIW estimator, leading to the following:

p∇PMJpθk´1q “ 1

N

k´1ÿ

i“0

N´1ÿ

j“0

αi,kpθk´1
pτi,jq

p1 ´ λi,kqpθipτi,jq ` λi,kpθk´1
pτi,jqgθk´1

pτi,jq,

with λi,k P r0, 1s for every i P J0, k ´ 1K. The PM correction computes a weighted power mean
with exponent ´1 between the vanilla IW and 1. Importantly, whenever λi,k ą 0, the PM-corrected
IW is bounded by αi,k{λi,k. We stress that the PM estimator offers significant practical advantages,
overcoming the reported pitfalls of the BH one. Specifically, this estimator requires evaluating
the likelihood of each trajectory τi,j only w.r.t. the policy under which it was collected and the
current target policy θk´1. This eliminates both the computational inefficiency and the temporal
inconsistencies of the BH estimator, where newer trajectories must be evaluated under older policies.
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Algorithm 1: RPG.
Input :Iterations K, Batch Size N , Learning Rate Schedule tζku

K´1
k“0 , Initial Parameterization θ0.

for k P J0,K ´ 1K do
Collect N trajectories tτk,ju

N´1
j“0 with policy πθk .

Update the policy parameterization: θk`1 Ð θk ` ζk p∇PMJpθkq.
end
Return θOUT P tθiu

K´1
i“0 chosen uniformly at random.

Clearly, the presence of the correcting term λi,k introduces a bias that, differently from that of BH, is
easily manageable. The reported properties make the PM estimator particularly well-suited for the
described learning scenario. These advantages are graphically represented in Appendix B.

The RPG Method. Having introduced the PM estimator, our proposed method RPG, whose pseudo-
code is provided in Algorithm 1, follows the learning scenario described earlier in this section, but
replaces the generic MIW estimator with the PM one.

4 PM Estimator: Dealing with the Estimation Error

In this section, we provide high-probability upper bounds on the estimation error } p∇PMJpθq ´
∇Jpθq}2 when using the PM estimator, setting the basis for the convergence analysis of RPG.

Before presenting the results, we highlight a key difficulty in the analysis. As already mentioned,
the target parameterization θk´1 is the output of a stochastic process and depends on the previ-
ously collected trajectories ttτi,juN´1

j“0 uk´2
i“0 . As a consequence, the PM estimator p∇PMJpθk´1q of

∇Jpθk´1q cannot be easily analyzed using standard martingale-based concentration bounds due to
such statistical dependence. To address this, as an intermediate step, we first derive an upper bound
for the case where the target parameterization is independent of the history. Then, we extend the
result to the real scenario in which θk´1 is the actual outcome of the learning process.

4.1 Bounding the PM Estimation Error for a Fixed Target Parameterization

Before stating the result, we introduce the two following assumptions.

Assumption 4.1 (Bounded Single-Trajectory On-Policy Gradient Estimator). There exist G ă
`8 and G2 ă `8 such that the single-trajectory on-policy gradient estimator gθpτq enjoys:
supθ,τPΘˆT }gθpτq}2 ď G and supθ,τPΘˆT }∇gθpτq}2 ď G2.

Assumption 4.1 is satisfied by both gR
θpτq and gG

θpτq whenever }∇θ log πθpa|sq}2 and
}∇2

θ log πθpa|sq}2 are bounded for every a P A and s P S (see Lemma C.2), which are com-
mon assumptions in the policy gradient literature (Papini et al., 2018; Xu et al., 2019; Yuan et al.,
2020). In the following, we consider a generic single-trajectory on-policy estimator.

Assumption 4.2 (Bounded χ2 Divergence). There exists a known constant D P Rě1 such that:
supθ1,θ2PΘ χ2 ppθ1

}pθ2
q ď D ´ 1.

Assumption 4.2 enforces that the variance of the vanilla IWs is bounded, a standard assumption in the
analysis of variance-reduced PG methods (Papini et al., 2018; Xu et al., 2019, 2020; Yuan et al., 2020).
Moreover, as shown by Cortes et al. (2010), this assumption holds in the case of univariate Gaussian
policies with σ1 ă 2σ2, being σ1 and σ2 the standard deviations of πθ1 and πθ2 respectively. This is
the central assumption for our theoretical results, as it enables a construction of the coefficients αi,k

and λi,k, appearing in the PM estimator, allowing us to derive strong bounds on the estimation error.

We are now ready to provide the first upper bound on the PM estimation error when considering a
fixed target parameterization.

Theorem 4.1 (Fixed Target PM Estimation Error Bound). Consider to run RPG for k iterations,
collecting the parameterizations tθiuk´1

i“0 with trajectories ttτi,juN´1
j“0 uk´1

i“0 . Let θ P Θ be chosen
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independently on tθi, tτi,juN´1
j“0 uk´1

i“0 . Under Assumptions 4.1 and 4.2, using the PM estimator with

λi,k “
d

4dΘ log 6 ` 4 log 1
δ

3DiNk
and αi,k “ D

´1{2
iřk´1

l“0 D
´1{2
l

,

where Dk´1 :“ 1 and Di :“ D for i P J0, k ´ 2K, for every δ P r0, 1s, with probability at least 1 ´ δ,
it holds that:

››› p∇PMJpθq ´ ∇Jpθq
›››
2

ď 8G

d
DdΘ log 6 ` D log

`
1
δ

˘

Nk
.

Several comments are in order. First, the proposed upper bound on the PM estimation error depends
on the parameter dimensionality dΘ which is due to the Euclidean norm } ¨ }2. It also depends on
the constant D from Assumption 4.2. For interested readers, a tighter version of this bound, which
reduces to the on-policy case where D “ `8, is provided in the proof of Theorem 4.1. More
importantly, we highlight that the PM estimation error scales as OppNkq´1{2q, where Nk is the total
number of trajectories collected by RPG up to iteration k. It is worth noting that, instead, the standard
on-policy estimators enjoy a concentration bound scaling with OpN´1{2q only (Papini et al., 2022),
i.e., depending on the batch size only. This plays a key role in our sample complexity analysis. We
also note that the construction of the coefficients αi,k and λi,k requires knowledge of the constant D
(Assumption 4.2) and of the confidence δ, still leading to deterministic coefficients.

4.2 Bounding the PM Estimation Error in the Full Learning Process

Here, we extend the result of Theorem 4.1 to account for the full learning process of RPG where the
target parameterization θk´1 is itself the outcome of k iterations of the learning algorithm.

Strategy Outline. To extend the result of Theorem 4.1 to this setting, we consider that the target
parameterization θk´1 lies within a dΘ-dimensional ball BdΘ

ρ Ď RdΘ of radius ρ, chosen to ensure
that all iterates remain inside the ball almost surely. We then apply a standard covering argument
over BdΘ

ρ to derive the desired uniform bound on the PM estimation error. To carry out this argument,
we first need to introduce the following assumptions.
Assumption 4.3 (Smoothness of J). There exists L2,J P Rą0 such that, for every θ1,θ2 P Θ:

}∇Jpθ1q ´ ∇Jpθ2q}2 ď L2,J }θ1 ´ θ2}2 .
Assumption 4.4 (Regularity of log πθ). There exist L1,π, L2,π P Rą0 such that, for every θ1,θ2 P Θ
and for any a P A and s P S:

}log πθ1
pa|sq ´ log πθ2

pa|sq}2 ď L1,π }θ1 ´ θ2}2 , (2)
}∇ log πθ1

pa|sq ´ ∇ log πθ2
pa|sq}2 ď L2,π }θ1 ´ θ2}2 . (3)

It is worth noting that these are common assumptions in both the standard PG literature (Williams,
1992; Sutton et al., 1999; Baxter and Bartlett, 2001) and the variance-reduced PG one (Papini et al.,
2018; Xu et al., 2019, 2020; Yuan et al., 2020).

We are now ready to extend the result of Theorem 4.1 to the setting in which the target parameterization
for p∇PMJp¨q results from the stochastic learning process of RPG.
Theorem 4.2. Consider to run RPG for k iterations with a constant step size ζ, collecting the
parameterizations tθiuk´1

i“0 with trajectories ttτi,juN´1
j“0 uk´1

i“0 . Under Assumptions 4.1, 4.2, 4.3,
and 4.4, select the αi,k terms as in Theorem 4.1 and, for every δ P r0, 1s, the λi,k terms as:

λi,k “

gffe4dΘ log
´

p18?
3L2,J ` 27L1

?
DNkq ζNk2

16δ
?
dΘ

¯
` 4 log 1

δ

3DiNk
,

where L1 :“ GTL1,π ` G2. With probability at least 1 ´ δ, it holds:

››› p∇PMJpθk´1q ´ ∇Jpθk´1q
›››
2

ď 16G

gffeDdΘ
Nk

log

˜
6ζ

˜
L2,J ` L1

c
3

4
DNk

¸
Nk2

δ
?
dΘ

¸
.
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Note that by extending the result of Theorem 4.1 to the setting where the target parameterization
is generated by the learning process, the PM estimation error remains of order rOppNkq´1{2q, i.e.,
scaling with the total trajectories Nk collected up to iteration k. Thus, compared to Theorem 4.1,
this extension introduces only additional logarithmic factors, preserving the dependencies on dθ and
D. In the next section, we leverage Theorem 4.2 to establish sample complexity guarantees for RPG.

5 RPG: Sample Complexity

Equipped with our bound on the PM estimation error for a stochastic target from Theorem 4.2, we
are ready to study the sample complexity of RPG to converge to an ϵ-approximate stationary point.
Theorem 5.1 (RPG Sample Complexity). Consider to run RPG for K P N iterations. Under
Assumptions 4.1, 4.2, 4.3, and 4.4, for every k P JKK select the terms αi,k as in Theorem 4.1 and the
terms λi,k as:

λi,k “

gffe4dΘ log
´

p18?
3L2,J ` 27L1

?
DNkq ζG2NKk2

8ϵ
?
dΘ

¯
` 4 log 2G2K

ϵ

3DiNk
,

where L1 :“ GTL1,π ` G2. Selecting a constant step size ζ ď 1{L2,J , with a sample com-
plexity NK ě rOpG2DdΘϵ

´1q and an iteration complexity K ě Opϵ´1q, it is guaranteed that
Er}∇JpθOUTq}22s ď ϵ, where the expectation is taken w.r.t. the learning process and the uniform
sampling of θOUT from tθkuK´1

k“0 .

We emphasize that the result presented in Theorem 5.1 is obtained by leveraging Theorem 4.2. This
approach first yields a high-probability bound for reaching an ϵ-approximate stationary point, as
detailed in the proof of Theorem 5.1. We then convert this high-probability bound into an expectation
result. Additionally, we note that Theorem 5.1 establishes an average-iterate convergence result,
as θOUT is selected uniformly at random from the set of iterates tθkuK´1

k“0 , as common in this
context (Papini et al., 2018; Xu et al., 2019; Yuan et al., 2020).

Strengths. As discussed in Section 1 and summarized in Table 1, under standard assumptions, RPG
achieves a sample complexity of order rOpϵ´1q, the best known rate in the policy gradient literature so
far for stochastic gradients and general policy classes. This result is achieved by our novel theoretical
analysis leveraging the properties of the PM estimator, and provides the first rigorous theoretical
evidence of the benefits of reusing all trajectories collected throughout the learning process. Notably,
our convergence guarantees are obtained under a constant batch size N (that can be even 1), in
contrast to prior works (Papini et al., 2018; Xu et al., 2019, 2020; Yuan et al., 2020).

Potential Improvements. The current theoretical guarantees rely on selecting the PM estimator’s
coefficients αi,k and λi,k based on the knowledge of the constant D from Assumption 4.2. In
practice, it would be desirable to adopt adaptive coefficients that depend not on D, but rather on
the actual divergences among trajectory distributions induced by different policy parameterizations.
However, this improvement would introduce additional stochasticity, significantly complicating the
theoretical analysis and likely requiring a fundamentally different approach. Additionally, the current
convergence rate exhibits a dependency on the parameter dimension dΘ, differently to standard
stochastic gradient methods. Finally, RPG requires access to all previously collected trajectories,
which may be computationally impractical. To address this, in Section 6, we introduce a practical
variant reusing only the ω most recent batches.

Comparison with the Existing Lower Bound. Paczolay et al. (2024) adapted a lower bound
by Arjevani et al. (2023) for first-order non-convex stochastic optimization. They show that, with
no assumption on the variance of the IWs, actor-only policy gradient algorithms need Ωpϵ´3{2q
trajectories to find an ϵ-approximate stationary point in the worst case. It may seem that our rOpϵ´1q
upper bound for RPG contradicts the lower bound. However, the results are not directly comparable.
First of all, the policy-class construction used in Paczolay et al. (2024) requires a large number of
parameters dΘ “ rOpϵ´1q. This is apparent in Theorem 3 by Arjevani et al. (2023), on which the
lower bound of Paczolay et al. (2024) is based. While SGD/REINFORCE is dimension-free, i.e., its
sample complexity upper bound does not explicitly depend on dΘ (though this dependence may be
implicitly hidden in the estimator’s variance in the worst case), the sample complexity we establish
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Figure 1: Cart Pole. 10 runs (mean ˘95% C.I.).

for RPG is rOpdΘϵ´1q. This translates into a rOpϵ´2q sample complexity in the hard instance used to
prove the Ωpϵ´3{2q lower bound, so there is no contradiction. Moreover, the lower bound does not
require the variance of IWs to be bounded. Hence, we cannot exclude the existence of algorithms
able to achieve dimension-free rOpDϵ´1q sample complexity under Assumption 4.2.

6 Experiments

We now numerically validate our method. For the experimental campaign, we adapt RPG to reuse only
the trajectories collected over the ω most recent iterates, rather than all trajectories collected since the
beginning of training. We refer to ω as the window size. This modification is necessary to maintain
computational tractability, as computing IWs and gradient estimates over the entire trajectory history
would become increasingly expensive. Moreover, as training progresses, older parameterizations
tend to diverge from the current one, causing the corresponding trajectories to receive lower IWs and
contribute less to the gradient estimate. In addition, instead of selecting the αi,k and λi,k coefficients
as prescribed in Theorem 5.1, we allow them to be dynamic. Since the constant D in Assumption 4.2
is generally unknown in practice, we estimate the divergence terms Di between pθi

and pθk´1
, where

θk´1 is the current target parameterization and i P Jmaxt0, k ´ ω ` 1u, k ´ 1K. Implementation and
experimental details, along with additional experiments, are provided in Appendices E and F.

On Reusing Trajectories. Figure 1 compares different configurations of RPG and GPOMDP in
the Cart Pole environment (Barto et al., 1983), matching the total number of trajectories used to
compute gradient estimates. Specifically, RPG was run with ω “ 4 and N P t5, 10, 25u, while
GPOMDP used N P t20, 40, 100u. Both methods employ linear Gaussian policies with fixed variance
σ2 “ 0.3 and were trained using the Adam optimizer (Kingma and Ba, 2015) with initial learning
rate ζ0 “ 10´2. Figure 1b reports the performance Jpθq as a function of training iterations. The
learning curves of RPG and GPOMDP closely align across matched configurations, empirically
validating that, in this setting, reusing past trajectories provides nearly the same gradient information
as collecting fresh data. However, each configuration of GPOMDP requires a larger number of
environment interactions per update compared to its RPG counterpart. Figure 1a shows the same
Jpθq plotted against the total number of collected trajectories. Here, the data efficiency of RPG
becomes evident: for every matched configuration, RPG reaches optimal performance faster and
with fewer environment interactions. These findings confirm that trajectory reuse enables both faster
convergence and improved sample efficiency compared to relying solely on newly collected data.

Baselines Comparison. Figure 2 compares RPG with GPOMDP (not reusing trajectories) and several
baselines with state-of-the-art rates: SVRPG, SRVRPG, STORM-PG, and DEF-PG, all discussed in
Section 1. The experiment was conducted in the Half Cheetah-v4 environment from the MuJoCo
control suite (Todorov et al., 2012). All methods employ a 32 ˆ 32 deep Gaussian policy with tanh
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activations and fixed variance σ2 “ 0.1, and are trained using the Adam optimizer (Kingma and
Ba, 2015) with an initial learning rate of ζ0 “ 10´4. RPG was run with ω “ 8 and N “ 40. All
other methods were configured to observe, on average, the same number of new trajectories per
iteration, specifically 40, so as to ensure a fair comparison in terms of data collection. This averaging
is particularly important for methods like SVRPG, SRVRPG, and DEF-PG, which alternate between
large-batch snapshot gradients and mini-batch updates. As shown in Figure 2, RPG consistently
outperforms all baselines under this setting, achieving nearly twice the final performance of all
competing methods, despite all of them receive the same amount of new information per iteration.
These results reinforce the conclusion that exploiting past experiences not only improves sample
efficiency, but also accelerates convergence, potentially aiding in escaping local optima and achieving
higher final performance. In Appendix F, we compare against these baselines in other environments.

7 Conclusion

In this work, we provide the first rigorous theoretical evidence that extensive reuse of trajectories
collected during previous iterations can accelerate convergence in PGs. Specifically, we introduce
RPG, a PG algorithm that leverages a PM-corrected version of the MIS estimator, and show that it
achieves a rate of rOpϵ´1q to find an ϵ-accurate stationary point, the best-known sample complexity
for this setting. Our theoretical guarantees are enabled by a novel analysis of the PM estimator’s
estimation error, but several directions remain open for improvement. First, RPG requires storing all
past trajectories, which may be impractical; the memory-efficient variant with finite storage should
be studied also from a theoretical perspective. Second, extending the analysis to support dynamic
or stochastic PM coefficients, removing the reliance on the knowledge of D from Assumption 4.2,
would be an important step forward. Additionally, removing this assumption entirely, as in (Paczolay
et al., 2024), is also a worthwhile direction to explore. Finally, eliminating the dependency on dΘ in
the complexity bound and establishing global last-iterate convergence results (e.g., Fatkhullin et al.,
2023; Montenegro et al., 2024) are valuable directions for future work.
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A On Employing Parameter-based Exploration in RPG

As always in RL, addressing the exploration problem is essential. This refers to the need for
an agent to try out different actions, not necessarily to collect immediate rewards, but to gather
information about the possible outcomes and long-term effects of actions. In PG methods, this is
often done by carrying out the exploration either at the actions level or directly at the policy parameters
level. These two exploration strategies are known as action-based (AB) and parameter-based (PB)
exploration (Metelli et al., 2018; Montenegro et al., 2024), respectively. In particular, AB exploration,
whose prototypical algorithms are REINFORCE (Williams, 1992) and GPOMDP (Baxter and Bartlett,
2001), keeps the exploration at the action level by leveraging stochastic policies (e.g., Gaussian).
Instead, PB approaches, whose prototype is PGPE (Sehnke et al., 2010), explore at the parameter level
via stochastic hyperpolicies, used to sample the parameters of an underlying (typically deterministic)
policy.

For readability purposes, in the main paper we focused only on AB PG methods, while here we
provide insights on the fact that all the proposed analysis works for PB PG methods as well.

A.1 Parameter-based Exploration

In PB exploration, we use a parametric stochastic hyperpolicy νξ P ∆pΘq, where ξ P Ξ Ď RdΞ is
the hyperparameter vector. The hyperpolicy is used to sample parameters θ „ νξ to be plugged in the
underlying parametric policy πθ (that may also be deterministic) at the beginning of every trajectory.
The performance index of νξ is JP : Ξ Ñ R, that is the expectation over θ of Jpθq defined as:

JPpξq :“ E
θ„νξ

rJpθqs . (4)

PB exploration aims at learning ξ˚ P argmaxξPΞ JPpξq and we denote J˚
P :“ JPpξ˚q. If JPpξq is

differentiable w.r.t. ξ, PGPE (Sehnke et al., 2010) updates the hyperparameter ξ via gradient ascent:
ξk`1 Ð ξk ` ζk p∇ξJPpξkq. In particular, PGPE uses an estimator of ∇ξJPpξq defined as:

p∇ξJPpξq “ 1

N

N´1ÿ

i“0

gP
ξpθi, τiq, (5)

where N is the batch size, which in this context is the number of independent parameters-trajectories
pairs tpθi, τiquN´1

i“0 , collected with hyperpolicy νξ (θi „ νξ and τi „ pθi
). The single-parameter

gradient estimator for the hyperpolicy is defined as follows:

gP
ξpθ, τq :“ ∇ log νξpθqRpτq, (6)

where τ „ pθ.

A.2 Importance Sampling for Parameter-based Exploration

Consider to run a PGPE-like method for k iterations, collecting a set of hyperpolicy parameterizations
tξiuk´1

i“0 and, for each ξi, sampling N policy parameterizations tθi,juN´1
j“0 , i.e., @j P J0, N ´ 1K :

θi,j „ νξi
. Consider each policy parameterization θi,j to be used to sample a single trajectory τi,j „

pθi,j
. In this scenario, the data reused from previous iterates are the sampled policy parameterizations

θi,j collected under hyperpolicy ξi with their associated trajectories τi,j „ pθi,j
. The IW for

incorporating this data into the gradient estimator is simply:

νξk´1
pθjqpθj

pτjq
νξi

pθjqpθj
pτjq “ νξk´1

pθjq
νξi

pθjq . (7)

That being said, the PB version of the PM estimator is defined as:

p∇PMJPpξk´1q “ 1

N

k´1ÿ

i“0

N´1ÿ

j“0

αi,kνξk´1
pθi,jq

p1 ´ λi,kqνξi
pθi,jq ` λi,kνξk´1

pθi,jqgP
ξk´1

pθi,j , τi,jq.
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A.3 Theoretical Guarantees of Parameter-based RPG

All the results presented in the main paper hold for the PB version of RPG, under assumptions that
are the PB versions of Assumptions 4.1, 4.2, 4.3, and 4.4:

• Assumption 4.1 translates into requiring that there exist GP ă `8 and G2,P ă `8 such that

sup
ξ,θ,τ P ΞˆΘˆT

}gP
ξpθ, τq}2 ď GP and sup

ξ,θ,τ P ΞˆΘˆT
}∇gP

ξpθ, τq}2 ď G2,P. (8)

• Assumption 4.2 translates into requiring that there exists DP P Rě1 such that

sup
ξ1,ξ2 P Ξ

χ2pνξ1
}νξ2

q ď DP ´ 1. (9)

• Assumption 4.3 translates into requiring that there exists L2,P P Rě0 such that, for every ξ1, ξ2 P
Ξ,

}∇JPpξ1q ´ ∇JPpξ2q}2 ď L2,P }ξ1 ´ ξ2}2. (10)

• Assumption 4.4 translates into requiring that there exist L1,ν , L2,ν P Rě0 such that, for every
ξ1, ξ2 P Ξ and θ P Θ,

} log νξ1pθq ´ log νξ2pθq}2 ď L1,ν}ξ1 ´ ξ2}2, (11)
}∇ log νξ1pθq ´ ∇ log νξ2pθq}2 ď L2,ν}ξ1 ´ ξ2}2. (12)

In particular, the χ2 takes a simple form in the common case of Gaussian hyperpolicies, making it
easier to ensure Assumption 4.2. (Metelli et al., 2020).
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B On Temporal Dependencies in BH and PM Estimators
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Figure 3: Graphical models for the BH and PM estimators, considering N “ 1 and k “ 2 iterations.
Nodes represent random variables, arrows represent causal relations. Elements in ( ) represent
anticausal dependencies.
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Figure 4: Temporal dependencies among densities pθi
(i P J0, kK) and sampled trajectories τj

(j P J0, kK) of the BH and PM estimators with N “ 1 and k iterations. Arrows represent required
evaluations. Elements in ( ) represent newer trajectories which have to be evaluated under older
policies.
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C Proofs of Section 4

Theorem 4.1 (Fixed Target PM Estimation Error Bound). Consider to run RPG for k iterations,
collecting the parameterizations tθiuk´1

i“0 with trajectories ttτi,juN´1
j“0 uk´1

i“0 . Let θ P Θ be chosen
independently on tθi, tτi,juN´1

j“0 uk´1
i“0 . Under Assumptions 4.1 and 4.2, using the PM estimator with

λi,k “
d

4dΘ log 6 ` 4 log 1
δ

3DiNk
and αi,k “ D

´1{2
iřk´1

l“0 D
´1{2
l

,

where Dk´1 :“ 1 and Di :“ D for i P J0, k ´ 2K, for every δ P r0, 1s, with probability at least 1 ´ δ,
it holds that:

››› p∇PMJpθq ´ ∇Jpθq
›››
2

ď 8G

d
DdΘ log 6 ` D log

`
1
δ

˘

Nk
.

Proof. In order to study the concentration of } p∇PMJpθq ´ ∇Jpθq}2, we will resort to Freedman’s
inequality, that we state below.

Theorem C.1 (Freedman’s Inequality (Freedman, 1975)). Let pziqmi“1 be a martingale differ-
ence sequence adapted to the filtration pFi´1qmi“1 such that |zi| ď M a.s. for every i andřm

i“1 Erz2i |Fi´1s ď V (with M and V deterministic, possibly depending on m). Then, with
probability 1 ´ δ:

mÿ

i“1

zi ď
c
2V log

1

δ
` 2

3
M log

1

δ
. (13)

Furthermore, we focus on the inner product between the gradient estimator and a fixed unit vector w
(i.e., }w}2 “ 1). For i P J0, k ´ 1K and j P J0, N ´ 1K, let us define:

xi,j “ αi,k

N

wJgθpτi,jq
p1 ´ λi,kqpθi

pτi,jq

pθpτi,jq
` λi,k

, zi,j “ xi,j ´ Erxi,j |Fi´1s, (14)

where Fi´1 “ σpθ0, tτ0,juN´1
j“0 , . . . ,θk´2, tτk´2,juN´1

j“0 ,θk´1q is the filtration. Notice that the
filtration depends on i only, since, within the batch, the trajectories are independent. Furthermore, we
have that Erxi,j |Fi´1s “ Erxi,j1 |Fi´1s for every j, j1 P J0, N ´ 1K. Given this, we have:

wJ p∇PMJpθq “
k´1ÿ

i“0

N´1ÿ

j“0

xi,j . (15)

First of all, we observe the boundedness for every i, j:

|xi,j | ď αi,kGpwq
λi,kN

, |zi,j | ď 2αi,kGpwq
λi,kN

, (16)

a.s., being Gpwq :“ supθ,τ P ΘˆT wJgθpτq. We now prove that ppzi,jqN´1
j“0 qk´1

i“0 is a martingale
difference sequence. Indeed, for i P J0, k ´ 1K and j P J0, N ´ 1K, we have:

Er|zi,j |s ď 2αi,kGpwq
Nλi,k

ă `8, (17)

Erzi,j |Fi´1s “ Erxi,j ´ Erxi,j |Fi´1s|Fi´1s “ 0, (18)

a.s.. Let us now compute the second moment:

Erz2i,j |Fi´1s ď Erx2
i,j |Fi´1s ď α2

i,kGpwq2Di

N2
, (19)

where

Di “
"
1 if i “ k ´ 1

D otherwise
(20)
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since, conditioned to Fi´1, this is the standard power mean estimator, whose variance has been
established in (Lemma 5.1, Metelli et al., 2021). For what concerns the bias, let us define:

yi,j “ xi,j |λi,k“0 “ αi,k

N

wJgθpτi,jq
pθi

pτi,jq

pθpτi,jq

. (21)

Note that: Eryi,j |Fi´1s “ wJ∇Jpθq for every i, j. Thus:

|Erxi,j |Fi´1s ´ wJ∇Jpθq| “ |Erxi,j |Fi´1s ´ Eryi,j |Fi´1s| ď Gpwqαi,kλi,kDi

N
, (22)

since, when conditioning to Fi´1, we are evaluating the bias of a PM estimator, whose has been
established again in (Lemma 5.1, Metelli et al., 2021). In order to apply Freedman’s inequality, we
have to guarantee that the bounds on the variance and maximum value of the martingale difference
sequence are deterministic. Thus, we can choose αi,k and λi,k based on the index i (possibly j), but
not on the history. We choose:

λi,k “
d

4 log 1
δ

3DiNk
, αi,k “ D

´1{2
iřk´1

l“0 D
´1{2
l

. (23)

Notice that this property ensures that αi,k

λi,k
is a constant independent on i. Thus, w.p. 1 ´ δ, we have:

wJp p∇PMJpθq ´ ∇Jpθqq (24)

“ wJ p∇PMJpθq ´
k´1ÿ

i“0

N´1ÿ

j“0

Erxi,j |Fi´1s `
k´1ÿ

i“0

N´1ÿ

j“0

Erxi,j |Fi´1s ´ wJ∇Jpθq (25)

ď
k´1ÿ

i“0

N´1ÿ

j“0

zi,j `
k´1ÿ

i“0

N´1ÿ

j“0

|Erxi,j |Fi´1s ´ wJ∇Jpθq| (26)

ď Gpwq
gffe 2

N

k´1ÿ

i“0

α2
i,kDi log

1

δ
` 4Gpwq

3Nk

k´1ÿ

i“0

αi,k

λi,k
log

1

δ
` Gpwq

k´1ÿ

i“0

αi,kλi,kDi. (27)

By replacing our choices of λi,k and αi,k:

Gpwq
řk´1

i“0 D
´1{2
i

c
k

N
log

1

δ
p?

2 ` a
4{3 ` a

4{3qlooooooooooooomooooooooooooon
ď4

ď 4Gpwq
c

D

Nk
log

1

δ
, (28)

having bounded all Di ď D in the inequality for i P J0, k ´ 1K. To bound the norm, we
follow the standard approach, defining Cη as an η-cover (with η ă 1) of the unit ball (i.e.,
supw:}w}2ď1 infw1PCη

}w ´ w1}2 ď η) having cardinality |Cη| ď p3{ηqdΘ , and observing that:
››› p∇PMJpθq ´ ∇Jpθq

›››
2

(29)

“ sup
w : }w}2“1

wJp p∇PMJpθq ´ ∇Jpθqq (30)

ď sup
w : }w}2“1

inf
w1PCη

!
pw1qJp p∇PMJpθq ´ ∇Jpθqq ` pw ´ w1qJp p∇PMJpθq ´ ∇Jpθqq

)
(31)

ď sup
wPCη

wJp p∇PMJpθq ´ ∇Jpθqq ` η
››› p∇PMJpθq ´ ∇Jpθq

›››
2

(32)

“ p1 ´ ηq´1 sup
wPCη

wJp p∇PMJpθq ´ ∇Jpθqq. (33)

With a union bound over the points of the cover, we have w.p. 1 ´ δ:
››› p∇PMJpθq ´ ∇Jpθq

›››
2

ď p1 ´ ηq´14G

c
D

Nk
log

|Cη|
δ

(34)

ď p1 ´ ηq´14G

gffeDdΘ log
´

3
η

¯
` D log

`
1
δ

˘

Nk
(35)
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where G “ supwPCη
Gpwq “ supwPCη

supθ,τ P ΘˆT ωJgθpτq ď supθ,τ P ΘˆT }gθpτq}2 “ G, as
defined above. We choose η “ 1{2, obtaining:

››› p∇PMJpθq ´ ∇Jpθq
›››
2

ď 8G

d
DdΘ log 6 ` D log

`
1
δ

˘

Nk
. (36)

We conclude by noticing that, after the union bound, the coefficients λi,k for every i P J0, k ´ 1K
become:

λi,k “

gffe4 log
´

|C1{2|

δ

¯

3DiNk
(37)

“
d

4dΘ log 6 ` 4 log 1
δ

3DiNk
. (38)

Lemma C.2 (Characterization of G and G2). Under Assumption 4.4, the following hold:

sup
θ,τ P ΘˆT

››gR
θpτq››

2
ď GR :“ T p1 ´ γT q

1 ´ γ
RmaxL1,π,

sup
θ,τ P ΘˆT

››∇gR
θpτq››

2
ď G2,R :“ T p1 ´ γT q

1 ´ γ
RmaxL2,π,

sup
θ,τ P ΘˆT

››gG
θpτq››

2
ď GG :“ 1 ´ γT

p1 ´ γq2RmaxL1,π,

sup
θ,τ P ΘˆT

››∇gG
θpτq››

2
ď G2,G :“ 1 ´ γT

p1 ´ γq2RmaxL2,π.

Proof. These results simply come from the explicit forms of gR
θpτq and gG

θpτq, then applying As-
sumption 4.4. Similar results are presented in (Papini et al., 2022).

For REINFORCE, we have:

››gR
θpτq››

2
“

›››››
T´1ÿ

t“0

∇ log πθpaτ,t|sτ,tqRpτq
›››››
2

ď T p1 ´ γT q
1 ´ γ

RmaxL1,π, (39)

and

››∇gR
θpτq››

2
“

›››››∇
T´1ÿ

t“0

∇ log πθpaτ,t|sτ,tqRpτq
›››››
2

ď T p1 ´ γT q
1 ´ γ

RmaxL2,π. (40)

Similarly, for GPOMDP, the following holds:

››gG
θpτq››

2
“

›››››
T´1ÿ

t“0

˜
tÿ

l“0

∇ log πθpaτ,l|sτ,lq
¸
γtrpsτ,t,aτ,tq

›››››
2

ď 1 ´ γT

p1 ´ γq2RmaxL1,π, (41)

and

››∇gG
θpτq››

2
“

›››››∇
T´1ÿ

t“0

˜
tÿ

l“0

∇ log πθpaτ,l|sτ,lq
¸
γtrpsτ,t,aτ,tq

›››››
2

ď 1 ´ γT

p1 ´ γq2RmaxL2,π. (42)
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Lemma C.3. Suppose to employ the PM estimator with policy parameterizations tθiuk´1
i“0 and

related trajectories tτi,juN´1
j“0 , i.e., for any i P J0, k ´ 1K and j P J0, N ´ 1K, τi,j „ pθi . Under

Assumptions 4.1, 4.2, 4.3, and 4.4, for every pair of parameterizations θ1,θ2 P Θ, using the choices
of αi,k and λi,k from Theorem 4.1, the following holds:

›››
´

p∇PMJpθ1q ´ ∇Jpθ1q
¯

´
´

p∇PMJpθ2q ´ ∇Jpθ2q
¯›››

2
ď LPM

››θ1 ´ θ2

››
2
,

where

LPM :“ L2,J ` pGTL1,π ` G2q
c

3

4
DNk.

Proof. We start the proof with the following derivation:

›››p p∇PMJpθ1q ´ ∇Jpθ1qq ´ p p∇PMJpθ2q ´ ∇Jpθ2qq
›››
2

(43)

ď
››› p∇PMJpθ1q ´ p∇PMJpθ2q

›››
2

` ››∇Jpθ1q ´ ∇Jpθ2q››
2

(44)

ď
››› p∇PMJpθ1q ´ p∇PMJpθ2q

›››
2

` L2,J

››θ1 ´ θ2

››
2
, (45)

where we used the triangular inequality and we exploited Assumption 4.3.

Now, in order to deal with } p∇PMJpθ1q ´ p∇PMJpθ2q}2, we can equivalently bound }∇θ
p∇PMJpθq}2,

for any θ P Θ.

›››∇θ
p∇PMJpθq

›››
2

(46)

“
››››››
∇θ

¨
˝ 1

N

k´1ÿ

i“0

N´1ÿ

j“0

αi,k

p1 ´ λi,kqpθi
pτi,jq

pθpτi,jq
` λi,k

gθpτi,jq
˛
‚

››››››
2

(47)

ď

›››››››
1

N

k´1ÿ

i“0

N´1ÿ

j“0

¨
˚̋αi,kp1 ´ λi,kq pθi

pτi,jq

pθpτi,jq2
∇θpθpτi,jqgθpτi,jq

´
p1 ´ λi,kqpθi

pτi,jq

pθpτi,jq
` λi,k

¯2 ` αi,k∇θgθpτi,jq
p1 ´ λi,kqpθi

pτi,jq

pθpτi,jq
` λi,k

˛
‹‚

›››››››
2

,

(48)

obtained by simply making the form of the PM estimator explicit and by computing the gradient w.r.t.
θ.

Before carrying on with the derivation, note that

∇θpθpτi,jq
pθpτi,jq “ ∇θ log pθpτi,jq, (49)

that

1

p1 ´ λi,kqpθi
pτi,jq

pθpτi,jq
` λi,k

p1 ´ λi,kqpθi
pτi,jq

pθpτi,jq ď 1, (50)

and that

αi,k

p1 ´ λi,kqpθi
pτi,jq

pθpτi,jq
` λi,k

ď αi,k

λi,k
. (51)
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That being said, we have what follows:
›››∇θ

p∇PMJpθq
›››
2

(52)

ď

›››››››
1

N

k´1ÿ

i“0

N´1ÿ

j“0

¨
˚̋αi,kp1 ´ λi,kq pθi

pτi,jq

pθpτi,jq2
∇θpθpτi,jqgθpτi,jq

´
p1 ´ λi,kqpθi

pτi,jq

pθpτi,jq
` λi,k

¯2 ` αi,k∇θgθpτi,jq
p1 ´ λi,kqpθi

pτi,jq

pθpτi,jq
` λi,k

˛
‹‚

›››››››
2
(53)

ď 1

N

k´1ÿ

i“0

N´1ÿ

j“0

¨
˝αi,k

››∇θ log pθpτi,jq››
2

››gθpτi,jq››
2

p1 ´ λi,kqpθi
pτi,jq

pθpτi,jq
` λi,k

` αi,k

››∇θgθpτi,jq››
2

p1 ´ λi,kqpθi
pτi,jq

pθpτi,jq
` λi,k

˛
‚ (54)

ď 1

N

k´1ÿ

i“0

N´1ÿ

j“0

αi,k

λi,k

››gθpτi,jq››
2

››∇θ log pθpτi,jq››
2

looooooooooooooooooooooooooooomooooooooooooooooooooooooooooon
A

` 1

N

k´1ÿ

i“0

N´1ÿ

j“0

αi,k

λi,k

››∇θgθpτi,jq››
2

loooooooooooooooooomoooooooooooooooooon
B

, (55)

where we used inequalities introduced above.

Before continuing with the derivation, we exploit the choices for the αi,k and λi,k terms:

λi,k “
d

4dΘ log 6 ` 4 log 1
δ

3DiNk
and αi,k “ D

´1{2
iřk´1

l“0 D
´1{2
l

, (56)

being 1 ´ δ the probability with which the bound of Theorem 4.1 holds and

Di “
"
1 If i “ k ´ 1

D otherwise
. (57)

This choice for αi,k and λi,k leads to the following constant ratios for every i P J0, k ´ 1K:

αi,k

λi,k
ď

d
3ND

4k
`
dΘ log 6 ` log 1

δ

˘ ď
c

3ND

4k
. (58)

Now, exploiting this bound on αi,k{λi,k, we focus on the first term A:

A “ 1

N

k´1ÿ

i“0

N´1ÿ

j“0

αi,k

λi,k

››gθpτi,jq››
2

››∇θ log pθpτi,jq››
2

(59)

ď G

c
3D

4Nk

k´1ÿ

i“0

N´1ÿ

j“0

››∇θ log pθpτi,jq››
2

(60)

ď G

c
3D

4Nk

k´1ÿ

i“0

N´1ÿ

j“0

T´1ÿ

l“0

››∇θ log πθpaτi,j ,l|sτi,j ,lq
››
2

(61)

ď GTL1,π

c
3

4
DNk, (62)

where we exploited Assumptions 4.1 and 4.4.

To conclude the derivation, we can now focus on term B. We will exploit the bound on αi,k{λi,k and
Assumption 4.1. The following holds:

B “ 1

N

k´1ÿ

i“0

N´1ÿ

j“0

αi,k

λi,k

››∇θgθpτi,jq››
2

(63)

ď G2

c
3

4
DNk. (64)
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All in all, we have: ›››p p∇PMJpθ1q ´ ∇Jpθ1qq ´ p p∇PMJpθ2q ´ ∇Jpθ2qq
›››
2

(65)

ď
››› p∇PMJpθ1q ´ p∇PMJpθ2q

›››
2

` L2,J }θ1 ´ θ2}2 (66)

ď LPM }θ1 ´ θ2}2 , (67)
where

LPM :“ L2,J ` pGTL1,π ` G2q
c

3

4
DNk. (68)

Before concluding the proof, we let the reader note that when T “ `8 (and γ ă 1), we identify the
length of a trajectory with the effective horizon T « rOp1{p1 ´ γqq. This approximation only affects
logarithmic terms in the sample complexity (Yuan et al., 2022).

Theorem 4.2. Consider to run RPG for k iterations with a constant step size ζ, collecting the
parameterizations tθiuk´1

i“0 with trajectories ttτi,juN´1
j“0 uk´1

i“0 . Under Assumptions 4.1, 4.2, 4.3,
and 4.4, select the αi,k terms as in Theorem 4.1 and, for every δ P r0, 1s, the λi,k terms as:

λi,k “

gffe4dΘ log
´

p18?
3L2,J ` 27L1

?
DNkq ζNk2

16δ
?
dΘ

¯
` 4 log 1

δ

3DiNk
,

where L1 :“ GTL1,π ` G2. With probability at least 1 ´ δ, it holds:

››› p∇PMJpθk´1q ´ ∇Jpθk´1q
›››
2

ď 16G

gffeDdΘ
Nk

log

˜
6ζ

˜
L2,J ` L1

c
3

4
DNk

¸
Nk2

δ
?
dΘ

¸
.

Proof. Consider to be at iteration k P N of RPG. Additionally, consider the kth parameterization
θk´1 to belong to a dΘ-dimensional ball BdΘ

ρ with radius ρ P Rą0, i.e., θk´1 P BdΘ
ρ .

Covering of LC Functions. Let Cηk
be a k-dependent ηk-cover (with ηk ď ρ) of BdΘ

ρ . Thus, for
every parameterization θ P BdΘ

ρ there exists c P Cηk
such that }θ ´ c}2 ď ηk. The cardinality of the

cover set is finite and bounded as:

|Cηk
| ď

ˆ
1 ` 2ρ

ηk

˙dΘ

ď
ˆ
3ρ

ηk

˙dΘ

. (69)

Now, let x P BdΘ
ρ and let xc P Cηk

such that }x´xc}2 ď ηk. For any L-LC function f : BdΘ
ρ Ñ RdΘ

the following holds:
}fpxq}2 ď }fpxq ´ fpxcq}2 ` }fpxcq}2 ď Lηk ` }fpxcq}2 , (70)

which follows by the triangular inequality and the cover definition.

Covering over θ of the PM Estimation Error. In what follows, we need to apply both Theorem 4.1
and Lemma C.3, for which we need to select the αi,k and λi,k terms as:

λi,k “
d

4dΘ log 6 ` 4 log 1
δ

3DiNk
and αi,k “ D

´1{2
iřk´1

l“0 D
´1{2
l

, (71)

being 1 ´ δ the probability with which the bound of Theorem 4.1 holds and

Di “
"
1 If i “ k ´ 1

D otherwise
. (72)

We can apply Lemma C.3 which states that the function p∇PMJpθq ´ ∇Jpθq is LPM-LC. Thus, the
following holds:››› p∇PMJpθk´1q ´ ∇Jpθk´1q

›››
2

ď sup
θPBdΘ

ρ

››› p∇PMJpθq ´ ∇Jpθq
›››
2

(73)

ď ηkLPM ` max
θPCηk

››› p∇PMJpθq ´ ∇Jpθq
›››
2
, (74)
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where the first inequality consists of a uniform bound over the parameterizations θ P BdΘ
ρ .

Now that θ is independent on the parameterization history tθiuk´2
i“0 , we can apply Theorem 4.1,

stating that, w.p. 1 ´ δ1, the following holds:

››› p∇PMJpθq ´ ∇Jpθq
›››
2

ď 8G

d
DdΘ log 6 ` D log

`
1
δ1

˘

Nk
. (75)

Performing a union bound over all the parameterization θ P Cηk
, w.p. 1 ´ δ, the following holds:

››› p∇PMJpθk´1q ´ ∇Jpθk´1q
›››
2

ď ηkLPM ` max
θPCηk

››› p∇PMJpθq ´ ∇Jpθq
›››
2

(76)

ď ηkLPM ` 8G

gffeDdΘ log 6 ` D log
´

|Cηk
|

δ

¯

Nk
(77)

ď ηkLPM ` 8G

gffeDdΘ log
´

18ρ
ηk

¯
` D log

`
1
δ

˘

Nk
(78)

ď ηkLPM ` 8G

d
DdΘ
Nk

log

ˆ
18ρ

ηkδ

˙
. (79)

Notice that, having performed a union bound over the cover set Cηk
, the coefficient λi,k has to be

modified accordingly as:

λi,k “
d

4dΘ log 6 ` 4 log
|Cηk

|

δ

3DiNk
(80)

“

gffe4dΘ log
´

18ρ
ηk

¯
` 4 log 1

δ

3DiNk
. (81)

The last thing to do to conclude the application of the covering argument is to select the value for ηk.
In particular, we select ηk as:

ηk “ 8G

LPM

c
DdΘ
Nk

. (82)

Notice that we should enforce ηk ď ρ. However, the ball radius ρ will be selected later in this proof
to be larger than ηk.

Substituting this value for ηk, we obtain what follows:

››› p∇PMJpθk´1q ´ ∇Jpθk´1q
›››
2

ď ηkLPM ` 8G

d
DdΘ
Nk

log

ˆ
18ρ

ηkδ

˙
(83)

“ 8G

c
DdΘ
Nk

` 8G

gffeDdΘ
Nk

log

˜
18ρLPM

?
Nk

8Gδ
?
DdΘ

¸
, (84)

which holds w.p. 1 ´ δ.

Radius Selection. The next step consists in selecting an appropriate value for the ball radius ρ. Given
that we are at iteration k of RPG, we have to select ρ in order to ensure that }θk´1 ´ θ0}2 ď ρ. In
order to do this, let us consider the maximum displacement between two subsequent parameterizations
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θz and θz´1 (z P Jk ´ 1K):

}θz`1 ´ θz}2 “ ζ
››› p∇PMJpθzq

›››
2

(85)

“ ζ

››››››
1

N

zÿ

i“0

N´1ÿ

j“0

αi,z

p1 ´ λi,zq pθipτi,jq

pθzpτi,jq
` λi,z

gθz
pτi,jq

››››››
2

(86)

ď ζG

gffe 3DNz

4dΘ log
´

18ρ
ηk

¯
` 4 log 1

δ

(87)

ď ζG

gffe 3DNk

4dΘ log
´

18ρ
ηk

¯
` 4 log 1

δ

(88)

ď ζG

c
3

4
DNk, (89)

given the selection of the terms αi,k and λi,k. Importantly, in the last inequality we recover the upper
bound on the ratios αi,k{λi,k shown in the derivation of Lemma C.3, i.e., the value we would obtain
without performing the union bound on the cover set Cηk

, which just enlarge the denominator. We let
the reader note that this passage is crucial, since without it we would have a circular dependency for
the radius ρ selection. We further comment that, given this argument, the term LPM preserves the
same expression reported in Lemma C.3. We thus select the ball radius ρ as the maximum value for
}θk´1 ´ θ0}:

}θk´1 ´ θ0}2 ď
k´2ÿ

z“0

}θz`1 ´ θz}2 ď ζGk

c
3

4
DNk “: ρ. (90)

We can finally plug the choice of ρ into Line (84), obtaining the following:

››› p∇PMJpθk´1q ´ ∇Jpθk´1q
›››
2

ď 8G

c
DdΘ
Nk

` 8G

gffeDdΘ
Nk

log

˜
18ρLPM

?
Nk

8Gδ
?
DdΘ

¸
(91)

ď 8G

c
DdΘ
Nk

` 8G

d
DdΘ
Nk

log

ˆ
2ζLPMNk2

δ
?
dΘ

˙
(92)

“ 8G

c
DdΘ
Nk

˜
1 `

d
log

ˆ
2ζLPMNk2

δ
?
dΘ

˙¸
(93)

ď 16G

c
DdΘ
Nk

d
1 ` log

ˆ
2ζLPMNk2

δ
?
dΘ

˙
(94)

ď 16G

d
DdΘ
Nk

log

ˆ
2eζLPMNk2

δ
?
dΘ

˙
(95)

ď 16G

d
DdΘ
Nk

log

ˆ
6ζLPMNk2

δ
?
dΘ

˙
, (96)

which holds w.p. 1 ´ δ. We let the reader note that in the last inequalities we exploited the fact that
1 ` a

logpxq ď 2
a
logpexq, for any x P Rě1.

To conclude the proof, we have to substitute the value of LPM, obtaining the following result:››› p∇PMJpθk´1q ´ ∇Jpθk´1q
›››
2

(97)

ď 16G

gffffe
DdΘ
Nk

log

¨
˚̋6ζ

´
L2,J ` pGTL1,π ` G2q

b
3
4DNk

¯
Nk2

δ
?
dΘ

˛
‹‚. (98)
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Notice that the final value for the λi,k terms, substituting the found values for ρ, ηk, and LPM is:

λi,k “

gffe4dΘ log
´

18ρ
ηk

¯
` 4 log 1

δ

3DiNk
(99)

“

gffe4dΘ log
´

18LPM
?
Nkρ

8G
?
DdΘ

¯
` 4 log 1

δ

3DiNk
(100)

“

gffe4dΘ log
´

18
?
3ζNk2

16δ
?
dΘ

´
L2,J ` pGTL1,π ` G2q

b
3
4DNk

¯¯
` 4 log 1

δ

3DiNk
(101)

“

gffe4dΘ log
´

18
?
3L2,JζNk2

16δ
?
dΘ

` pGTL1,π ` G2q 27ζD1{2N3{2k5{2

16δ
?
dΘ

¯
` 4 log 1

δ

3DiNk
. (102)

Now, introducing the term:

L1 :“ GTL1,π ` G2, (103)

we have:

λi,k “

gffe4dΘ log
´

p18?
3L2,J ` 27L1

?
DNkq ζNk2

16δ
?
dΘ

¯
` 4 log 1

δ

3DiNk
. (104)
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D Proofs of Section 5

Theorem 5.1 (RPG Sample Complexity). Consider to run RPG for K P N iterations. Under
Assumptions 4.1, 4.2, 4.3, and 4.4, for every k P JKK select the terms αi,k as in Theorem 4.1 and the
terms λi,k as:

λi,k “

gffe4dΘ log
´

p18?
3L2,J ` 27L1

?
DNkq ζG2NKk2

8ϵ
?
dΘ

¯
` 4 log 2G2K

ϵ

3DiNk
,

where L1 :“ GTL1,π ` G2. Selecting a constant step size ζ ď 1{L2,J , with a sample com-
plexity NK ě rOpG2DdΘϵ

´1q and an iteration complexity K ě Opϵ´1q, it is guaranteed that
Er}∇JpθOUTq}22s ď ϵ, where the expectation is taken w.r.t. the learning process and the uniform
sampling of θOUT from tθkuK´1

k“0 .

Proof. For the sake of readability, we divided this proof into four parts. In the first one, we bound
the performance difference across subsequent iterations Jpθk`1q ´ Jpθkq. In the second part, we
telescope the previous result in order to obtain an upper bound on

řK´1
k“0 }∇Jpθkq}22{K, for which

we employ the result of Theorem 4.2. In the third part, we leverage the result obtained in the second
part to compute the convergence rate of RPG, providing a high-probability bound that holds w.p. at
least 1 ´ δ for any δ P r0, 1s. Finally, in the last part we select the confidence δ to provide the final
result in expectation.

Part piq: Bounding the Performance Difference Across Iterations. Consider to be at iteration
k P J0,K ´ 1K. Let us start by bounding the difference in performance between θk`1 and θk:

Jpθk`1q ´ Jpθkq ě ⟨θk`1 ´ θk,∇Jpθkq⟩ ´ L2,J

2
}θk`1 ´ θk}22 (105)

“ ζ
〈

p∇PMJpθkq,∇Jpθkq
〉

´ L2,J

2
ζ2

››› p∇PMJpθkq
›››
2

2
, (106)

where the first inequality is the quadratic bound holding under Assumption 4.3, while the last
inequality follows from the update rule of RPG.

Before going on, note that the following holds for the inner product of p∇PMJpθkq and ∇Jpθkq:
››› p∇PMJpθkq ´ ∇Jpθkq

›››
2

2
“

››› p∇PMJpθkq
›››
2

2
` }∇Jpθkq}22 ´ 2

〈
p∇PMJpθkq,∇Jpθkq

〉
, (107)

which implies the following:〈
p∇PMJpθkq,∇Jpθkq

〉
“ ´1

2

››› p∇PMJpθkq ´ ∇Jpθkq
›››
2

2
` 1

2

››› p∇PMJpθkq
›››
2

2
` 1

2
}∇Jpθkq}22 .

(108)

By substituting this result into Line (106), for any k P J0,K ´ 1K, we obtain the following:

Jpθk`1q ´ Jpθkq (109)

ě ´ζ

2

››› p∇PMJpθkq ´ ∇Jpθkq
›››
2

2
` ζ

2

››› p∇PMJpθkq
›››
2

2
` ζ

2
}∇Jpθkq}22 ´ L2,J

2
ζ2

››› p∇PMJpθkq
›››
2

2
(110)

“ ´ζ

2

››› p∇PMJpθkq ´ ∇Jpθkq
›››
2

2
` ζ

2
}∇Jpθkq}22 ` ζ

2
p1 ´ L2,Jζq

››› p∇PMJpθkq
›››
2

2
(111)

ě ´ζ

2

››› p∇PMJpθkq ´ ∇Jpθkq
›››
2

2
` ζ

2
}∇Jpθkq}22 , (112)

where the last inequality follows by selecting a step size such that ζ ď 1{L2,J .

Part piiq: Telescope the Performance Difference Across Iterations. Now, telescoping the perfor-
mance difference across iterations Jpθk`1q ´ Jpθkq, the following holds:

K´1ÿ

k“0

pJpθk`1q ´ Jpθkqq “ JpθKq ´ Jpθ0q. (113)
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Moreover, by exploiting the result of Equation (112), the following holds:

K´1ÿ

k“0

pJpθk`1q ´ Jpθkqq ě ´ζ

2

K´1ÿ

k“0

››› p∇PMJpθkq ´ ∇Jpθkq
›››
2

2
` ζ

2

K´1ÿ

k“0

}∇Jpθkq}22 . (114)

We recall that in Theorem 4.2 we have the following inequality holding w.p. 1 ´ δ for all k P
J0,K ´ 1K:

››› p∇PMJpθkq ´ ∇Jpθkq
›››
2

2
ď 28G2DdΘ

Npk ` 1q log

ˆ
6ζLPMNpk ` 1q2

δ
?
dΘ

˙
. (115)

Note that, given the chosen notation, the parameterization θk corresponds to a total of k`1 iterations.
Moreover, for readability purposes, we employed the result of Theorem 4.2 with the term LPM,
defined in Lemma C.3, in its implicit form. We further highlight that the expression of LPM of
Lemma C.3 still holds even after all the union bounds performed in Theorem 4.2. Please refer to the
proof of the latter for a complete explanation of this fact.

Next, we perform a union bound over the iterations K. Before going on with the derivation, we
highlight that the terms λi,k become, for any i P J0,K ´ 1K and for any k P JKK:

λi,k “

gffe4dΘ log
´

p18?
3L2,J ` 27L1

?
DNkq ζNKk3

16δ
?
dΘ

¯
` 4 log K

δ

3DiNk
, (116)

where L1 :“ GTL1,π ` G2.

By performing such a union bound over the iterations K, the previous bound on } p∇PMJpθkq ´
∇Jpθkq}22 becomes:

››› p∇PMJpθkq ´ ∇Jpθkq
›››
2

2
ď 28G2DdΘ

Npk ` 1q log

ˆ
6ζLPMNKpk ` 1q2

δ
?
dΘ

˙
(117)

ď 28G2DdΘ
Npk ` 1q log

ˆ
6ζLPMNK3

δ
?
dΘ

˙
. (118)

By employing this last result, the following holds w.p. 1 ´ δ:

K´1ÿ

k“0

pJpθk`1q ´ Jpθkqq (119)

ě ´ζ

2

K´1ÿ

k“0

››› p∇PMJpθkq ´ ∇Jpθkq
›››
2

2
` ζ

2

K´1ÿ

k“0

}∇Jpθkq}22 (120)

ě ´27G2DdΘζ

N
log

ˆ
6ζLPMNK3

δ
?
dΘ

˙ K´1ÿ

k“0

1

k ` 1
` ζ

2

K´1ÿ

k“0

}∇Jpθkq}22 (121)

ě ´28G2DdΘζ log pKq
N

log

ˆ
6ζLPMNK3

δ
?
dΘ

˙
` ζ

2

K´1ÿ

k“0

}∇Jpθkq}22 , (122)

having exploited
řK´1

k“0 pk ` 1q´1 ď logpK ´ 1q ` 1 ď 2 logpKq.

Rearranging the previous result and dividing both sides by K, we obtain:

řK´1
k“0 }∇Jpθkq}22

K
ď 29G2DdΘ log pKq

NK
log

ˆ
6ζLPMNK3

δ
?
dΘ

˙

loooooooooooooooooooooooomoooooooooooooooooooooooon
“:A

`2 pJpθKq ´ Jpθ0qq
ζK

. (123)

27



Now, we are going to rearrange the term A for theoretical purposes. By exploiting the fact that
ζ ď 1{L2,J and recovering the full shape of LPM from Lemma C.3, the following holds:

A “ 29G2DdΘ log pKq
NK

log

ˆ
6ζLPMNK3

δ
?
dΘ

˙
(124)

ď 29G2DdΘ log pKq
NK

log

ˆ
6NK3pLPM{L2,Jq

δ
?
dΘ

˙
(125)

“ 29G2DdΘ log pKq
NK

log

˜
6NK3

δ
?
dΘ

˜
1 ` GTL1,π ` G2

L2,J

c
3

4
DNK

¸¸
. (126)

From now on, for readability purposes, we introduce the following constant:

Ψ1 :“ GTL1,π ` G2

L2,J

c
3

4
D. (127)

Employing NK3 ď NK3
?
NK and introducing:

Ψ2 :“ 6 ` 6Ψ1

δ
?
dΘ

, (128)

the following holds:

A ď 29G2DdΘ log pKq
NK

log

ˆ
6NK3

δ
?
dΘ

´
1 ` Ψ1

?
NK

¯˙
(129)

ď 29G2DdΘ
NK

log pKq log
´
Ψ2NK3

?
NK

¯
looooooooooooooooomooooooooooooooooon

“:B

. (130)

Focusing on the term B, we have:

B “ log pKq log
´
Ψ2NK3

?
NK

¯
(131)

“ log pKq log pΨ2q ` 3

2
log pKq log pNKq ` 2 log pKq2 (132)

ď
ˆ
7

2
` log pΨ2q

˙
log pNKq2 (133)

ď Ψ3 log pNKq2 , (134)

being

Ψ3 :“ 7

2
` log pΨ2q . (135)

Putting all together, we have the following bound for the term A:

A ď 29G2Ψ3DdΘ log pNKq2
NK

. (136)

By plugging the above bound for A into Equation (123), we obtain what follows:
řK´1

k“0 }∇Jpθkq}22
K

ď 29G2Ψ3DdΘ log pNKq2
NK

` 2 pJpθKq ´ Jpθ0qq
ζK

(137)

ď 29G2Ψ3DdΘ log pNKq2
NK

` 2 pJ˚ ´ Jpθ0qq
ζK

, (138)

being J˚ P argmaxθPΘ Jpθq.
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Part piiiq: Rate Computation. In order to conclude the proof, we have to find a sample complexity
NK such that:

29G2Ψ3DdΘ log pNKq2
NK

` 2 pJ˚ ´ Jpθ0qq
ζK

ď ϵ

2
. (139)

To guarantee the convergence to an ϵ-approximate stationary point, we need two separate conditions,
one holding for the iteration complexity K and the other one for the sample complexity NK. The
former can be obtained by solving:

2 pJ˚ ´ Jpθ0qq
ζK

ď ϵ

4
(140)

ùñ K ě 8 pJ˚ ´ Jpθ0qq
ζϵ

“ O
`
ϵ´1

˘
, (141)

given that the step size ζ can be any constant such that ζ ď 1{L2,J .

The condition on the sample complexity NK can be obtained by finding the minimum NK such
that:

29G2Ψ3DdΘ log pNKq2
NK

ď ϵ

4
. (142)

Alternatively, we can find the maximum NK such that:

29G2Ψ3DdΘ log pNKq2
NK

ě ϵ

4
. (143)

Going for the latter method, and considering that logpxq2 ď 3
?
x for x ě 1, we have the following:

NK ď 211G2Ψ3DdΘ logpNKq2
ϵ

(144)

ď 2113G2Ψ3DdΘ
?
NK

ϵ
(145)

ùñ NK ď
ˆ
2113G2Ψ3DdΘ

ϵ

˙2

. (146)

Now, switching back to Line (142), we can substitute inside the logpNKq, the term attaining for the
minimum value of NK satisfying Line (142) itself:

NK ě 211G2Ψ3DdΘ log pNKq2
ϵ

(147)

ě 213G2Ψ3DdΘ
ϵ

log

ˆ
2113G2Ψ3DdΘ

ϵ

˙2

(148)

ùñ NK ě rO
`
ϵ´1

˘
. (149)

We highlight that this sample complexity of order rOpϵ´1q is compatible with the iteration complexity
Opϵ´1q provided in Equation (141), since the considered batch size N is constant.

Part pivq: Switching to Expectation. The last thing to do is to provide a result holding in
expectation. In particular, by Jensen’s inequality, the following holds:

}∇Jpθq}2 “
›››› E
τ„pθ

rgθpτqs
››››
2

ď E
τ„pθ

r}gθpτq}2s ď G, (150)

having exploited Assumption 4.1. That being said, we have the following:
řK

t“1 E
”
}∇Jpθkq}22

ı

K
ď ϵ

2
` δG2, (151)
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whenever ζ ď 1{L2,J , K ě Opϵ´1q, and NK ě rOpϵ´1q. By selecting δ “ ϵ
2G2 , we have:

řK
t“1 E

”
}∇Jpθkq}22

ı

K
ď ϵ. (152)

We let the reader note that the constant Ψ3 has the following form:

Ψ3 “ 7

2
` log

˜
6L2,J ` 3 pGTL1,π ` G2q ?

3D

L2,Jδ
?
dΘ

¸
(153)

“ 7

2
` log

˜
6G2

`
2L2,J ` pGTL1,π ` G2q ?

3D
˘

L2,Jϵ
?
dΘ

¸
, (154)

having substituted the value selected for δ. Finally, we present the explicit shape of the sample
complexity:

NK ě 213G2Ψ3DdΘ
ϵ

log

ˆ
2113G2Ψ3DdΘ

ϵ

˙2

(155)

ě 213G2DdΘ
ϵ

˜
7

2
` log

˜
6G2

`
2L2,J ` pGTL1,π ` G2q ?

3D
˘

L2,Jϵ
?
dΘ

¸¸
(156)

¨ log
˜
2113G2DdΘ

ϵ

˜
7

2
` log

˜
6G2

`
2L2,J ` pGTL1,π ` G2q ?

3D
˘

L2,Jϵ
?
dΘ

¸¸¸2

, (157)

thus being of order:

NK ě rO
ˆ
G2DdΘ

ϵ

˙
. (158)

Before concluding the proof, we highlight that the terms λi,k become, for any i P J0,K ´ 1K and for
any k P JKK, with the selection δ “ ϵ

2G2 :

λi,k “

gffe4dΘ log
´

p18?
3L2,J ` 27L1

?
DNkq ζG2NKk3

8ϵ
?
dΘ

¯
` 4 log 2G2K

ϵ

3DiNk
, (159)

where L1 :“ GTL1,π ` G2.

We conclude the proof by noting that by selecting θOUT uniformly at random from the parameteriza-
tions encountered during the learning tθkuK´1

k“0 , then with the selection of the same sample complexity
NK “ rOpG2DdΘϵ

´1q and iteration complexity K “ Opϵ´1q, Equation (152) is equivalent to:

E
”
}∇JpθOUTq}22

ı
ď ϵ, (160)

where the expectation is taken w.r.t. the entire learning process and the uniform sampling procedure
to extract θOUT.
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E Implementation Details

In this section, we present the practical version of the RPG method, i.e., the one used in our
experimental campaign. Its pseudo-code is provided in Algorithm 2, and it differs from the theoretical
version described in Section 3 in the following ways:

i. At iteration k, instead of reusing all previously collected trajectories ttτi,juN´1
j“0 uk´1

i“0 (with corre-
sponding parameterizations tθiuk´1

i“0 such that τi,j „ pθi
), we retain only the most recent ω iterates,

where ω is referred to as the window size. This choice improves computational feasibility and
mitigates the diminishing utility of older trajectories, which are likely to exhibit greater divergence
from the current parameterization θk´1. A sensitivity analysis on ω is provided in Appendix F.2.

ii. Rather than using the theoretically prescribed values of λi,k and αi,k, which depend on the constant
D from Assumption 4.2, we adopt adaptive coefficients. Since D is typically unknown in practice,
we instead compute αi,k and λi,k based on empirical estimates of the χ2 divergence between
trajectory distributions. These values now reflect the actual discrepancy between sampling and
target policies. Details on this estimation procedure are provided in Appendix E.1.

iii. We return the best parameterization observed during training, instead of sampling one uniformly at
random from the set of visited iterates. While the theoretical version of RPG relies on uniform
sampling to support average-iterate convergence guarantees (see Theorem 5.1), this strategy is not
practical.

iv. We replace the constant step size ζ with an adaptive one, optimized via the Adam sched-
uler (Kingma and Ba, 2015). Section E.2 provides guidance on how to set the initial learning rate
when using modern optimizers.

In addition, Section E.3 discusses the differences between the trajectory-based buffer used in RPG and
the classic transition-based replay buffer used in actor-critic methods. This practical implementation
of RPG is the one employed in the experimental campaign reported in Section 6 and detailed further
in Appendix F.

Algorithm 2: RPG (Practical Version).
Input : iterations K, batch size N , learning rate Schedule tζku

K´1
i“0 , initial parameterization θ0, maximum

window length ω, confidence parameter δ
for k P J0,K ´ 1K do

Let rk :“ maxt0, k ´ ω ` 1u be the oldest parametrization in the current window.

Collect N trajectories tτk,ju
N´1
j“0 with policy πθk .

Estimate the distances between trajectory densities as t pDi “ pd2ppp¨|θkq||pp¨|θiqqu
k
i“k̃

Compute λi,k “

c
4 log 1

δ

3xDiNk
and αi,k “

xD´1{2
iřk´1

l“rk
xD´1{2

l

Compute the GPOMDP gradient gG
θk

pτi,jq for each trajectory in the window (i.e., i P Jk̃, kK and
j P J0, N ´ 1K)

Compute the gradient:

p∇PMJpθkq “
1

N

kÿ

i“rk

N´1ÿ

j“0

αi,kpθk pτi,jq

p1 ´ λi,kqpθipτi,jq ` λi,kpθk pτi,jq
gθk

pτi,jq

Update the policy parameterization:

θk`1 Ð θk ` ζk p∇PMJpθkq

end
Return the last parametrization
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E.1 Divergence Estimation

Rényi Divergence. Before delving into divergence estimation, we introduce the α-Rényi divergence
Dα and its exponentiated version dα, for any α ě 1. Let P,Q P ∆pX q admitting densities p and q
respectively. If P ! Q, the α-Rényi divergence is defined as:

DαpP }Qq :“ 1

α ´ 1
log

ˆż
ppxqαqpxq1´αdx

˙
. (161)

Note that for α “ 1 we have the KL divergence. The exponentiated α-Rényi divergence is defined as:

dαpP }Qq :“ exp ppα ´ 1qDαpP }Qqq “
ż
ppxqαqpxq1´αdx. (162)

In the main paper, we employ the χ2 divergence, which shows the following relation with dα:

χ2pP }Qq “ d2pP }Qq ´ 1, (163)

thus under Assumption 4.2 it holds the following:

sup
θ1,θ2PΘ

d2ppθ1}pθ2q ď D. (164)

Given the provided equivalence, for the sake of generality and simplicity, we focus on dα.

Employed Divergence Estimator. In the main manuscript, the convergence result of Theorem 5.1 is
established by carefully selecting the sequence of parameters αi,k and λi,k, for any i P J0,K ´ 1K
and for any k P JKK. However, this choice entails two notable drawbacks in practical implementation:
piq the absence of a mechanism to constrain the modification of the parameterization (e.g., a trust-
region) makes the determination of the global upper bound D infeasible in practice; piiq all previous
trajectories are treated equally (in terms of αi,k and λi,k), regardless of their proximity to the trajectory
distribution under the current policy parameter.

To tackle these two problems, we no longer employ the global upper bound D, but we use a dynamic
weighting relying on a divergence estimate pDi :“ pd2ppθk

p¨q}pθi
p¨qq, where θk is the parametrization

at the current iteration k and θi is a parametrization belonging to a previous iterate i. The immediate
consequence is an increased weighting of trajectories that are collected under “closer” trajectory
distributions to the current parametrization, while automatically discarding trajectories generated by
“farther” parameterizations. In what follows, we consider two trajectory distributions parameterized
by θ (target) and θb (behavioral).

A naïve estimate of dαppθ}pθb
q consists in using the sample mean:

pdαppθ}pθb
q “ 1

N

N´1ÿ

j“0

ˆ
pθpτb,jq
pθb

pτb,jq
˙α

, (165)

where τb,j „ pθb
. As one would expect, this estimator is inefficient (Metelli et al., 2018, 2020) and

may need a large sample size to be accurate. Empirically, it has also resulted in approximations
pdαp¨q Ñ 0 violating the positive Rényi divergence constraint 1

α´1 logp pdαp¨qq ě 0.

A practical dαp¨q estimator has been proposed by (Metelli et al., 2018, 2020), which expresses pdαp¨q
as a measure of the distance between the two respective parameterized policies at each time step of
the trajectory:

pdαppθ}pθb
q “ 1

N

N´1ÿ

j“0

T´1ź

t“0

dαpπθp¨|sτb,j ,tq}πθb
p¨|sτb,j ,tqq, (166)

where τb,j „ pθb
. The proposed estimator estimates the distance between two trajectories as the

product of the distance of the two policies at each state. The advantage is that this distance can be
computed accurately and is not sample-based. However, this depends on the choice of the policy
distribution. The properties of this estimator are discussed in greater detail in (Metelli et al., 2020,
Remark 6).

Given that our experimental campaign primarily relies on Gaussian policies, as is common prac-
tice (Papini et al., 2018; Xu et al., 2019; Yuan et al., 2020; Paczolay et al., 2024), we provide the
closed-form expression for dαpπθp¨ | sτb,j ,tq}πθb

p¨ | sτb,j ,tqq in the case of this kind of policies.
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Proposition E.1 (Gil et al. 2013). Let θ,θb P Θ and let s P S. Now, let πθp¨|sq “ N pθJs, σ2IdAq
and πθb

p¨|sq “ N pθJ
b s, σ

2IdAq, be two dA-dimensional Gaussian policies. Then, it holds:

dαpπθp¨|sq}πθb
p¨|sqq “ exp

ˆ
αpα ´ 1q}µ ´ µb}22

2σ2

˙
, (167)

where µ :“ θJs and µb :“ θJ
b s.

Proof. We start the proof by recalling the explicit form of dαpπθp¨|sq}πθb
p¨|sqq:

dαpπθp¨|sq}πθb
p¨|sqq “ exp ppα ´ 1qDαpπθp¨|sq}πθb

p¨|sqqq (168)

“
ż
πθpx | sqαπθb

px | sq1´αdx. (169)

By exploiting the fact that both πθ and πθb
are multivariate Gaussian policies, the following derivation

holds:
ż
πθpx | sqαπθb

px | sq1´αdx (170)

“
ż „

1

p2πqdA{2σ
exp

`´ 1
2σ2 }x ´ µ}22

˘ȷα „
1

p2πqdA{2σ
exp

`´ 1
2σ2 }x ´ µb}22

˘ȷ1´α

dx (171)

“
ż

1

p2πqdA{2σ
exp

ˆ
´α}x ´ µ}22 ` p1 ´ αq}x ´ µb}22

2σ2

˙
dx (172)

“
ż

1

p2πqdA{2σ
exp

´
´ 1

2σ2

`
α

`}x}22 ´ 2 ⟨µ,x⟩ ` }µ}22
˘

(173)

` p1 ´ αq `}x}22 ´ 2 ⟨µb,x⟩ ` }µb}22
˘˘ ¯

dx (174)

“
ż

1

p2πqdA{2σ
exp

ˆ
´ 1

2σ2

´
}x}22 ´ 2 pαµ ` p1 ´ αqµbqJ

x (175)

` α}µ}22 ` p1 ´ αq}µb}22
˘˘

dx. (176)

Now, by letting µα “ αµ ´ p1 ´ αqµb, we have the following:
ż
πθpx | sqαπθb

px | sq1´αdx (177)

“
ż

1

p2πqdA{2σ
exp

ˆ
´ 1

2σ2

´
}x}22 ´ 2 pαµ ` p1 ´ αqµbqJ

x ` α}µ}2 ` p1 ´ αq}µb}22
¯˙

dx

(178)

“
ż

1

p2πqdA{2σ
exp

ˆ
´ 1

2σ2

`}x}22 ´ 2xµα,xy ` α}µ}22 ` p1 ´ αq}µb}22
˘˙

dx. (179)

Adding and subtracting }µα}22 inside the exponent:
ż
πθpx | sqαπθb

px | sq1´αdx (180)

“
ż

1

p2πqdA{2σ
exp

ˆ
´ 1

2σ2

`}x ´ µα}22 ` α}µ}22 ` p1 ´ αq}µb}22 ´ }µα}22
˘˙

dx (181)

“
ż

1

p2πqdA{2σ
exp

ˆ
´ 1

2σ2
}x ´ µα}22

˙
exp

ˆ
´ 1

2σ2

`
α}µ}22 ` p1 ´ αq}µb}22 ´ }µα}22

˘˙

loooooooooooooooooooooooooooooomoooooooooooooooooooooooooooooon
“:A

dx.

(182)
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Now that A is independent of x, we continue our derivation as:
ż
πθpx | sqαπθb

px | sq1´αdx (183)

“ exp

ˆ
´ 1

2σ2

`
α}µ}22 ` p1 ´ αq}µb}22 ´ }µα}22

˘˙
¨
ż

1

p2πqdA{2σ
exp

ˆ
´}x ´ µα}22

2σ2

˙
dx

looooooooooooooooooooooomooooooooooooooooooooooon
=1

(184)

“ exp

ˆ
´ 1

2σ2

`
α}µ}22 ` p1 ´ αq}µb}22 ´ pα2}µ}22 ` 2αp1 ´ αqxµ,µby ` p1 ´ αq2}µb}22q˘˙

(185)

“ exp

ˆ
´ 1

2σ2

`
αp1 ´ αq}µ}22 ´ 2αp1 ´ αqxµ,µby ` αp1 ´ αq}µb}22

˘˙
(186)

“ exp

ˆ
´αp1 ´ αq}µ ´ µb}22

2σ2

˙
(187)

“ exp

ˆ
αpα ´ 1q}µ ´ µb}22

2σ2

˙
, (188)

which concludes the proof.

E.2 RPG’s Behavior with Modern Optimizers

The magnitude of pDi is intrinsically linked to the step size of the parameter updates. Indeed, since
large policy deviations from the current parameterization may incur in penalties for scoring the
seen trajectories, employing a large step size may cause the update to depend almost exclusively on
the most recent batch of trajectories. This phenomenon bears analogy to the behavior of step size
schedulers such as Adam (Kingma and Ba, 2015). Specifically, when Adam exhibits uncertainty
regarding the gradient’s direction, it reduces the effective learning rate, thereby placing greater
emphasis on accumulated gradient history and facilitating escape from local optima by integrating
information across numerous trajectories. Conversely, when the optimizer attains high directional
confidence, manifested as a larger step size, the update is dominated by the information contained in
the latest trajectories. Since the estimates of the distance between parameterizations pDi introduce
variance, we would like to keep the updates small enough such that old parameterizations are not
discarded by small variations in the learning rate, which occurs if the initial learning rate ζ0 is small
enough.

E.3 Analogy with Transition-based Replay Buffers of Actor-Critic Methods

Another widely used variance reduction mechanism in PG methods involves the use of critics (Sutton
and Barto, 2018). In particular, Actor-Critic methods (Duan et al., 2016) jointly learn a parametric
critic (e.g., value or advantage function) alongside the policy (actor). The critic’s estimates of value
or advantage functions reduce the variance of the policy gradient. This approach has given rise to
several successful deep RL algorithms (Mnih et al., 2013; Schulman et al., 2015; Duan et al., 2016),
which often rely on experience replay buffers (Lin, 1992). These buffers store individual environment
interactions, allowing the agent to sample past transitions at random. In doing so, they effectively
smooth the training distribution across multiple past behaviors, decoupling data collection from
policy updates.

While RPG also maintains a buffer, there are two key differences: piq the learning signal is the full
cumulative return of each trajectory, rather than individual transitions; and piiq the entire buffer is used
at every iteration, with each trajectory’s contribution weighted according to the representativeness of
its behavioral policy.
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F Experimental details

In this section, we report the hyperparameter configurations used in the experiments presented in the
main manuscript, along with additional experiments aimed at validating the empirical performance of
RPG. All experiments are conducted using environments from the MuJoCo control suite (Todorov
et al., 2012). Table 2 summarizes the observation and action space dimensions, as well as the horizon
and discount factor used for each environment. For baseline comparisons, we consider the following
methods, already introduced in Section 1:

• GPOMDP (Baxter and Bartlett, 2001);
• SVRPG (Papini et al., 2018);
• SRVRPG (Xu et al., 2019);
• STORM-PG (Yuan et al., 2020);
• DEF-PG (Paczolay et al., 2024).

The code for RPG and GPOMDP is available at https://github.com/MontenegroAlessandro/
MagicRL/tree/offpolicy. The implementation of DEF-PG was obtained from the original GitHub
repository (https://github.com/paczyg/defpg), while the remaining baselines were imple-
mented using the Potion library (https://github.com/T3p/potion).

Environment Name Observation Space Action Space Horizon Disc. Factor

Continous Cart Pole (Barto et al., 1983) dS “ 4 dA “ 1 T “ 200 γ “ 1

HalfCheetah-v4 (Todorov et al., 2012) dS “ 17 dA “ 6 T “ 100 γ “ 1

Swimmer-v4 (Todorov et al., 2012) dS “ 8 dA “ 2 T “ 200 γ “ 1

Table 2: Summary of the environments’ characteristics.

F.1 Employed Policies

Linear Gaussian Policy: a linear parametric gaussian policy πθ : S Ñ ∆pAq with dΘ “ dS ˆ dA
and with fixed variance σ2 draws action a „ N pθJs, σ2IdAq, being s P S and a P A. The score of
the policy is defined as follows:

∇θ log πθpaq “ ppa ´ θJsqsJqJ

σ2
. (189)

Deep Gaussian Policy: a deep parametric gaussian policy πθ : S Ñ ∆pAq with fixed variance σ2

draws action a „ N pµθpsq, σ2IdAq, where s P S , a P A, and µθpsq is the action mean output from
the neural network. The score of the policy is the gradient w.r.t. the log probability of the chosen
action.

F.2 Window Sensitivity

In this experiment, we study the sensitivity of RPG to the window size ω. Here we conduct the
evaluations in the Continuous Cart Pole environment (Barto et al., 1983). All learning rates are
managed by the Adam (Kingma and Ba, 2015) optimizer, with a starting learning rate of ζ0 “ 0.01.
Parameters are initialized by following a standard normal distribution. Exploration is managed by a
variance of σ2 “ 0.3 in the context of linear gaussian policies. RPG uses a fixed batch size of N “ 5
and we evaluate the performance over a window size ω P t2, 4, 8, 16, 32u averaged over 10 trials.

As shown in Figure 5, the benefit of increasing the window size ω exhibits diminishing returns: while
performance improves significantly when increasing ω from 2 to 8, larger windows (e.g., ω “ 16 or
beyond) offer no noticeable advantage.

Although this contrasts with the theoretical guarantees, it is consistent with practical expectations
for two reasons. First, in RPG, the variance of each term in the gradient estimate is controlled
by the divergence pDi between the behavior policy and the current policy (Metelli et al., 2021).
Increasing the window size incorporates trajectories from policies that are farther from the current
one, thereby increasing variance. Indeed, we recall that we are estimating such pDi terms appearing
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Figure 5: Window sensitivity study of RPG on Cart Pole (Appendix F.2). 10 trials (mean ˘95%
C.I.).

in the method’s coefficients (see Appendix E). Second, expanding the window may yield limited
additional information, as the data within a smaller window may already be sufficient to capture the
correct gradient direction. Moreover, we highlight that a larger ω leads to a larger computational
time, since the method is required to evaluate the gradient and the IWs for ωN trajectories.

Consequently, there exists an optimal window size ω that balances variance, information gain, and
computational time. This value is generally environment-dependent and challenging to tune in
practice. For our experimental campaign, we found that ω “ 8 offers a good tradeoff between
computational efficiency and performance.

F.3 On Reusing Trajectories

While this experiment was briefly discussed in Section 6, we provide here a more detailed analysis.

We examine the sensitivity of RPG to the batch size N and compare it with GPOMDP under an
equal total data budget, that is, when ωNRPG “ NGPOMDP, where NRPG is the batch size used by RPG
and NGPOMDP the one used by GPOMDP. The aim is to empirically assess the relative informational
value of older trajectories versus those collected under the current policy. Specifically, we investigate
whether reusing past trajectories, thereby reducing the need for newly sampled data, can accelerate
learning in practice.

The evaluations are conducted in the Continuous Cart Pole environment (Barto et al., 1983). All
methods are trained using the Adam optimizer (Kingma and Ba, 2015), with initial learning rates
reported in Table 3.

Hyperparameter TRPG GPOMDP

Adam ζ0 0.01 0.01

Parameter Initialization θ0 N p0dΘ
, IdΘ

q N p0dΘ
, IdΘ

q
Variance σ2 0.3 0.3

Batch size N t5, 10, 25u t20, 40, 100u
Window Size ω 4 –

Confidence δ 0.05 –

Table 3: Hyperparameters for the experiment in Appendix F.3.

As shown in Figure 6a, when GPOMDP and RPG are matched by number of updates (e.g., RPG with
ω “ 4 and N “ 5 versus GPOMDP with N “ 20), their learning curves are nearly indistinguishable.
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Figure 6: Trajectory reusing study on Cart Pole (Appendix F.3). 10 trials (mean ˘95% C.I.).

This trend is consistent across various parameter configurations and is supported by statistically
significant results.

However, when performance is instead plotted against the number of collected trajectories (Figure 6b),
RPG consistently demonstrates faster convergence than GPOMDP across all settings. This provides
empirical confirmation that reusing trajectories enhances learning efficiency in practice.

In relatively simple control tasks, previously collected trajectories appear to provide nearly the
same informational value as freshly sampled ones, an insight particularly valuable in data-scarce
or expensive environments. Additionally, due to its ability to continuously leverage past data, RPG
exhibits superior sample efficiency. For instance, GPOMDP with a batch size of N “ 100 fails to
converge within the allowed trajectory budget, while RPG with ω “ 4 and N “ 25 converges rapidly
to the optimal policy.
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Figure 7: Baselines comparison in Cart Pole (Appendix F.4). 10 trials (mean ˘95% C.I.).

F.4 Comparison Against Baselines in Cart Pole

In this section, we compare our method RPG against PG methods with state-of-the-art rates, whose
are discussed in Appendix F. All the methods employ a linear Gaussian policy. We conduct the
evaluations in the Continuous Cart Pole (Barto et al., 1983) environment. All learning rates are
managed by the Adam (Kingma and Ba, 2015) optimizer. All the hyperparameters are specified in
Table 4.

Hyperparameter RPG GPOMDP STORM-PG SRVRPG SVRPG DEF-PG

Adam ζ0 0.01 0.01 0.01 0.01 0.01 0.01

Parameter Initialization θ0 N p0dΘ
, IdΘ

q N p0dΘ
, IdΘ

q N p0dΘ
, IdΘ

q N p0dΘ
, IdΘ

q N p0dΘ
, IdΘ

q N p0dΘ
, IdΘ

q
Variance σ2 0.3 0.3 0.3 0.3 0.3 0.3

Number of trials 10 10 10 10 10 10

Batch size N 10 10 10 – – –

Init-batch size N0 – – 10 – – –

Window size ω 8 – – – – –

Confidence δ 0.05 – – – – –

Snapshot batch size – – – 55 55 55

Mini-batch size – – – 5 5 5

Table 4: Hyperparameters for the experiment in Appendix F.4.

In relatively simple environments like the one considered here, the number of updates plays a crucial
role in determining convergence. Therefore, the batch sizes and related parameters are configured
to ensure that all methods use the same number of trajectories per update on average. Specifically,
SVRPG and SRVRPG perform a full gradient update using a snapshot batch size of 55 every 10th

iteration, and stochastic mini-batch updates in between. DEF-PG, a defensive variant of PAGE-PG,
performs full gradient updates with probability p “ 0.1 using the snapshot batch size, and uses
mini-batch updates otherwise. As a result, SVRPG, SRVRPG, and DEF-PG each consume an average
of 10 trajectories per iteration.

As shown in Figure 7, when evaluated under equal trajectory budgets per iteration (i.e., by matching
batch sizes across methods), RPG consistently matches or outperforms all competing baselines and
converges more rapidly to the optimal policy. Specifically, in the considered environment, RPG
achieves the highest mean return across all trajectory budgets and requires fewer iterations to reach
optimal performance, thus confirming that the reuse of past trajectories enables faster convergence.
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Figure 8: Baselines comparison in Swimmer (Appendix F.5). 5 trials (mean ˘95% C.I.).

By contrast, STORM-PG and GPOMDP yield nearly overlapping learning curves, indicating com-
parable sample efficiency under this configuration. DEF-PG, however, exhibits pronounced return
oscillations and often fails to sustain monotonic improvement, suggesting instability in the gradient
estimates when operating with the same data budget. This behavior indicates that DEF-PG may
require larger batch sizes to ensure stable updates.

F.5 Baselines Comparison in Swimmer

We conduct the evaluations in the Swimmer-v4 environment, part of the MuJoCo control suite (Todorov
et al., 2012). Using a horizon of T “ 200 and a discount factor of γ “ 1, this environment is known
for featuring a strong local optimum around Jpθq « 30. All methods are trained using the Adam
optimizer (Kingma and Ba, 2015), with initial learning rates specified in Table 5. Policies are
implemented as deep Gaussian networks.

Hyperparameter RPG GPOMDP STORM-PG SRVRPG SVRPG DEF-PG

NN Dimensions 32 ˆ 32 32 ˆ 32 32 ˆ 32 32 ˆ 32 32 ˆ 32 32 ˆ 32

NN Activations tanh tanh tanh tanh tanh tanh

Adam ζ0 1e ´ 3 1e ´ 3 1e ´ 4 1e ´ 4 1e ´ 3 1e ´ 3

Parameter Initialization θ0 Xavier Xavier Xavier Xavier Xavier Xavier

Variance σ2 0.3 0.3 0.3 0.3 0.3 0.3

Number of trials 5 5 5 5 5 5

Batch size N 20 20 20 – – –

Init-batch size N0 – – 20 – – –

Window size ω 4 – – – – –

Confidence δ 0.2 – – – – –

Snapshot batch size – – – 110 110 110

Mini-batch size – – – 10 10 10

Table 5: Hyperparameters for the experiment in Appendix F.5.

As in previous experiments, we ensure that all methods observe, on average, the same number of
trajectories per iteration. This design enables a fair comparison between RPG and the baseline
algorithms in terms of data usage and sample efficiency.
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As illustrated in Figure 8, RPG not only achieves higher average returns than all competing methods
but also demonstrates a greater capacity to escape the environment’s strong local optimum. These
results further reinforce the effectiveness of trajectory reuse in accelerating convergence and over-
coming suboptimal regions in the policy landscape. Interestingly, all competing baselines yield
similar performance, and GPOMDP, despite lacking variance reduction techniques, seems to achieve
higher mean performances w.r.t. its variance-reduced counterparts. This observation suggests that
methods relying on gradient reuse may require larger batch sizes to realize their theoretical advantages
effectively.

Despite these clear advantages, the wider confidence intervals reflect notable variability in the number
of iterations required to escape the local optimum. This variance is expected, given the task’s reward
landscape: in some runs, the policy quickly discovers trajectories that facilitate escape, while in others,
longer exploratory sequences are necessary. Importantly, this variability highlights the robustness of
RPG, which consistently escapes the local optimum across trials, given sufficient interaction time.

F.6 Baselines Comparison in Half Cheetah

We conduct the evaluations in the Half Cheetah-v4 environment, part of the MuJoCo control
suite (Todorov et al., 2012). All methods are trained using the Adam optimizer (Kingma and
Ba, 2015), with initial learning rates specified in Table 6. The policies are implemented as deep
Gaussian networks. As shown in Table 2, Half Cheetah features a significantly more complex
observation and action space and is the most challenging of the three environments considered in this
work.

Hyperparameter RPG GPOMDP STORM-PG SRVRPG SVRPG DEF-PG

NN Dimensions 32 ˆ 32 32 ˆ 32 32 ˆ 32 32 ˆ 32 32 ˆ 32 32 ˆ 32

NN Activations tanh tanh tanh tanh tanh tanh

Adam ζ0 1e ´ 4 1e ´ 4 1e ´ 4 1e ´ 4 1e ´ 4 1e ´ 4

Parameter Initialization θ0 Xavier Xavier Xavier Xavier Xavier Xavier

Variance σ2 0.1 0.1 0.1 0.1 0.1 0.1

Number of trials 10 10 10 10 10 10

Batch size N 40 40 40 – – –

Init-batch size N0 – – 40 – – –

Window size ω 8 – – – – –

Confidence δ 0.2 – – – – –

Snapshot batch size – – – 256 256 256

Mini-batch size – – – 16 16 16

Table 6: Hyperparameters for the experiment in Appendix F.6.

As shown in Figure 9, RPG exhibits significantly faster convergence, achieving nearly twice the
final performance of all competing baselines. This rapid improvement reflects the algorithm’s ability
to efficiently leverage informative experiences while maintaining sufficient exploration to avoid
premature convergence.

Notably, the lower bound of RPG ’s confidence interval at convergence exceeds the upper bounds of
all baselines, providing strong statistical evidence of its advantages. This underscores the effectiveness
of reusing trajectories from past iterations, not only in accelerating convergence but also in escaping
local optima, while reducing the need for additional environment interactions. As for the competing
baselines, they exhibit similar behaviors, as indicated by the largely overlapping confidence intervals.
Interestingly, GPOMDP, which does not employ any variance reduction technique, achieves higher
average performance than some of its variance-reduced counterparts, specifically DEF-PG, SRVRPG,
and SVRPG. This observation, as further discussed in Appendix F.5, suggests that methods reusing
past gradients may require larger batch sizes to fully realize their theoretical advantages.

These results are particularly meaningful in the context of Half Cheetah, a benchmark known for its
dense rewards and sensitivity to unstable policy updates. RPG ’s strong performance in this complex
setting further underscores the value of trajectory reuse in continuous, high-dimensional control tasks.
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Figure 9: Baselines comparison in Half-Cheetah (Appendix F.6). 10 trials (mean ˘95% C.I.).

F.7 Computational Resources

All the experiments were run on a machine equipped as follows:

CPU RAM
AMD Ryzen 7 7800X3D (8 cores, 4.2 GHz) 32 GB 3000 MHz DDR5

Specifically, in the Cart Pole environment with a batch size of N “ 100, a planning horizon of
T “ 200, a linear Gaussian policy, and parallelizing over 10 workers, both the GPOMDP algorithm
and RPG (with ω “ 4) attain a throughput of « 10 iterations per second. By contrast, when
employing a deep Gaussian policy with two hidden layers of 32 units each in the Half Cheetah
environment (N “ 100 and T “ 200), GPOMDP requires « 1.5 seconds per iteration, whereas RPG
(with ω “ 4) requires « 5.5 seconds per iteration.

41


	Introduction
	Background and Notation
	Trajectory Reuse in Policy Optimization
	PM Estimator: Dealing with the Estimation Error
	Bounding the PM Estimation Error for a Fixed Target Parameterization
	Bounding the PM Estimation Error in the Full Learning Process

	RPG: Sample Complexity
	Experiments
	Conclusion
	On Employing Parameter-based Exploration in RPG
	Parameter-based Exploration
	Importance Sampling for Parameter-based Exploration
	Theoretical Guarantees of Parameter-based RPG

	On Temporal Dependencies in BH and PM Estimators
	Proofs of Section 4
	Proofs of Section 5
	Implementation Details
	Divergence Estimation
	RPG's Behavior with Modern Optimizers
	Analogy with Transition-based Replay Buffers of Actor-Critic Methods

	Experimental details
	Employed Policies
	Window Sensitivity
	On Reusing Trajectories
	Comparison Against Baselines in Cart Pole
	Baselines Comparison in Swimmer
	Baselines Comparison in Half Cheetah
	Computational Resources


