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Abstract Nowadays, when it comes to selling a product online, two of the most
significant factors are the pricing strategy and the investments in advertising. When
determining the price of a product, it is essential to strike a balance. The price
should neither be set too low, as this would result in a reduced revenue, nor too
high, as it may deter potential buyers. The amount of money we invest in advertising
should be balanced to let people know our offer without overspending. These two
aspects are usually handled disjointedly by humans, but this may lead to suboptimal
solutions. In this work, we focus on the adoption of online learning algorithms to
solve the task of finding the optimal price for a product and understand how to
advertise it properly. We face various aspects of pricing and advertising, offering
theoretical frameworks to address the associated challenges. We start discussing
pricing methods, with emphasis on the problem of learning in the presence of
temporal dynamics. Then, we discuss the theoretical aspects of advertising, with a
particular focus on marketing mix models. Finally, we bring together the problems
of pricing and advertising, presenting a unified view.

1 Introduction

Motivated by the rapid increase in the quantity of data and the exponential growth
of online platforms, companies are continually seeking innovative strategies to en-
hance their market presence, capture consumer attention, and optimize their pricing
models. Machine Learning (ML) has emerged in recent years as a groundbreaking
transformative force, empowering organizations to revolutionize the way they price
products and promote them through advertising. The traditional paradigms of pricing
and advertising, once reliant on static models and generalized strategies, are rapidly
giving way to data-driven, adaptive approaches powered by ML algorithms.
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In this work, we face the problem of online decision-making in the context of
dynamic pricing and advertising budget optimization. These two topics are, indeed,
two sides of the same coin. In order to sell a product, we must be able to select both
a price that is proper for the reference market and advertise it properly. The price
should neither be set too low, as this would result in reduced revenue from the single
sale, nor too high, as it may deter potential buyers. The amount of money we invest
in advertising should be balanced to let people know of us without overspending
and reaching people who are not interested. The goal, indeed, is to optimize the
combination of pricing and advertising policies to increase our revenue.
Structure and Contributions. In Section 2, we formulate a new approach (Bac-
chiocchi et al., 2024) for handling dynamic pricing using Multi-Armed Ban-
dits (MABs, Lattimore and Szepesvári, 2020) methods taking into account the
temporal dependencies through the introduction of AutoRegressive (AR) processes
to model such a dependency. Such processes are useful to represent trends that are
not captured by standard MABs. In Section 3, we focus on the problem of budget
optimization in online advertising, and in particular, on the problem of budget op-
timization in Marketing Mix Models (MMMs). We propose (Mussi et al., 2023), a
framework to face the problem of optimizing the budget allocation in MMMs online.
In Section 4, we face the problem of jointly optimizing the price at which we want
to sell an item and the expenditure to advertise it. We propose (Mussi et al., 2024,
2025), a new framework for handling the problem in which the reward is factored and
observable in intermediate steps, and we design an algorithm to solve this problem
with theoretical guarantees.1 These three parts are all binded each other from (𝑖) the
scope of the proposed algorithms, whose final goal in all the cases is to improve the
revenues due to the sales we perform, and (𝑖𝑖) the methodology used to pursue the
goal, as all the algorithms presented in this work are based on MABs.

2 Dynamic Pricing

In this section, we consider the problem of finding the optimal price for a given
product. Our goal is to maximize a certain index, e.g., volumes, turnover, or profit.
Usually, pricing algorithms focus on the one-step performance (Mussi et al., 2022).
These solutions, however, fail in modeling the long-term phenomena that a pricing
strategy inherently presents. Indeed, with one-step solutions, we fail (𝑖) to model the
long-term effect such as customer loyalty, and (𝑖𝑖) to capture the different demands
of loyal and non-loyal customers. This problem, even if ubiquitous in the real world,
is unexplored in the literature, as existing approaches struggle to correctly deal
with these autoregressive dynamics. Motivated by the problem described above, we
propose a novel setting, named AutoRegressive Bandits (ARBs), in which the reward
follows an AR process of order 𝑛 whose parameters depend on the actions.

1 For all the formal proofs and additional results, we refer the interested reader to the works cited
above and to (Mussi, 2023).
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2.1 Setting

Let 𝑇 ∈ N be the learning horizon. At every round 𝑡 ∈ ⟦𝑇⟧, the learner chooses an
action 𝑎𝑡 ∈ A := ⟦𝑘⟧, among the 𝑘 ∈ N available ones. In the ARB setting, the
reward evolves according to an autoregressive process of order 𝑛 (AR(𝑛)). Thus, the
learner observes a noisy reward 𝑥𝑡 of the form:

𝑥𝑡 = 𝛾0 (𝑎𝑡 ) +
𝑛∑︁
𝑖=1

𝛾𝑖 (𝑎𝑡 )𝑥𝑡−𝑖 + 𝜖𝑡 ,

where 𝛾0 (𝑎𝑡 ) ∈ R and (𝛾𝑖 (𝑎𝑡 ))𝑖∈⟦𝑛⟧ ∈ R𝑛 are the unknown parameters depending
on chosen action 𝑎𝑡 , and 𝜖𝑡 is 𝜎2-subgaussian noise. The reward evolution can be
also expressed as 𝑥𝑡 = ⟨𝜸(𝑎𝑡 ), z𝑡−1⟩ + 𝜖𝑡 , where z𝑡−1 := (1, 𝑥𝑡−1, . . . , 𝑥𝑡−𝑛)T ∈
Z := {1} × X𝑛 is the vector of past rewards expressing past history, and 𝜸(𝑎) :=
(𝛾0 (𝑎), . . . , 𝛾𝑛 (𝑎))T ∈ R𝑛+1 is the parameter vector, defined for every 𝑎 ∈ A. We
introduce the following assumptions:

a. (Non-negative coefficients) 𝛾𝑖 (𝑎) ≥ 0 for every 𝑎 ∈ A, 𝑖 ∈ ⟦0, 𝑛⟧;
b. (Stability) Γ := max𝑎∈A

∑𝑛
𝑖=1 𝛾𝑖 (𝑎) < 1;

c. (Boundedness) 𝑚 := max𝑎∈A 𝛾0 (𝑎) < +∞.
The performance of a policy 𝝅 is evaluated in terms of the expected cumulative
reward over the horizon 𝑇 , defined as:

𝐽 (𝝅, 𝑇) := E

[
𝑇∑︁
𝑡=1

𝑥𝑡

]
.

A policy 𝝅∗ is optimal if it maximizes the expected average reward, i.e., 𝝅∗ ∈
arg max𝝅 𝐽 (𝝅, 𝑇). The goal of the learner is to minimize the expected cumulative
(policy) regret by playing a policy 𝝅, competing against the optimal policy 𝝅∗ over
the learning horizon 𝑇 :

𝑅(𝝅, 𝑇) = 𝐽 (𝝅∗, 𝑇) − 𝐽 (𝝅, 𝑇) = E

[
𝑇∑︁
𝑡=1

𝑟𝑡

]
,

where 𝑟𝑡 := 𝑥∗𝑡 − 𝑥𝑡 is the instantaneous policy regret and (𝑥∗𝑡 )𝑡∈⟦𝑇⟧ is the sequence
of rewards observed by playing the optimal policy. The optimal policy, which maxi-
mizes the expected cumulative reward, is 𝝅∗𝑡 ∈ arg max𝑎∈A ⟨𝜸(𝑎), z𝑡−1⟩.
Mapping to Pricing. The pricing problem discussed above can be mapped to the
ARB setting. Imagine we want to maximize the volumes over time. The volumes are
our reward 𝑥𝑡 , and the history of our rewards 𝑥𝑡−1, . . . , 𝑥𝑡−𝑛 provides an indication of
the loyal customer pool over the past 𝑛 units of time (e.g., weeks). The ARB setting
allows modeling a reward which is the contribution of both new customers (via 𝛾0)
and the loyal customer pool (via 𝛾1, . . . , 𝛾𝑛). Specifically, the price (our action),
induces different values of the coefficient 𝜸(𝑎𝑡 ), to represent the different demand
curves that loyal and new customers might have.
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Algorithm 1: AR-UCB.
Input: Regularization param. 𝜆, AR order 𝑛, Exploration coefficients (𝛽𝑡−1 )𝑡∈⟦𝑇⟧
Initialize V0 (𝑎) = 𝜆I𝑛+1, b0 (𝑎) = 0𝑛+1,𝜸0 (𝑎) = 0𝑛+1, ∀𝑎 ∈ A, z0= (1, 0, . . . , 0)T, 𝑡 ← 1
for 𝑡 ∈ ⟦𝑇⟧ do

Compute 𝑎𝑡 ∈ arg max𝑎∈A UCB𝑡 (𝑎) := ⟨𝜸𝑡−1 (𝑎) , z𝑡−1⟩ + 𝛽𝑡−1 (𝑎) ∥z𝑡−1 ∥V𝑡−1 (𝑎)−1

Play action 𝑎𝑡 and observe 𝑥𝑡 = ⟨𝜸 (𝑎𝑡 ) , z𝑡−1⟩ + 𝜖𝑡
Update ∀𝑎 ∈ A:

V𝑡 (𝑎) = V𝑡−1 (𝑎) + z𝑡−1zT
𝑡−11{𝑎=𝑎𝑡 }

b𝑡 (𝑎) = b𝑡−1 (𝑎) + z𝑡−1𝑥𝑡1{𝑎=𝑎𝑡 }
𝜸𝑡 (𝑎) = V𝑡 (𝑎)−1b𝑡 (𝑎)

Update z𝑡 = (1, 𝑥𝑡 , . . . , 𝑥𝑡−𝑛+1 )T, 𝑡 ← 𝑡 + 1
end

2.2 Algorithm

We present AutoRegressive Upper Confidence Bound (AR-UCB, Algorithm 1), an
optimistic regret minimization algorithm for the ARB setting. AR-UCB leverages the
myopic optimal policy for ARBs and implements an incremental regularized least
squares procedure to estimate the unknown parameters 𝜸(𝑎), for every action 𝑎 ∈ A
independently. The algorithm requires knowledge of the order 𝑛 of the AR process,
although this knowledge can be replaced with that of an upper bound 𝑛 > 𝑛 of the
AR order. AR-UCB starts by initializing for all the actions 𝑎 ∈ A the Gram matrix
V0 (𝑎) = 𝜆I𝑛+1, where 𝜆 > 0 is the Ridge regularization parameter, the vectors
b0 (𝑎) = 𝜸0 (𝑎) = 0𝑛+1, and the observations vector z0 = (1, 0, . . . , 0)T. Then, for
each round 𝑡 ∈ ⟦𝑇⟧, AR-UCB computes the Upper Confidence Bound (UCB) index
for every 𝑎 ∈ A and select the optimistic action 𝑎𝑡 as:

𝑎𝑡 ∈ arg max
𝑎∈A

UCB𝑡 (𝑎) := ⟨𝜸𝑡−1 (𝑎), z𝑡−1⟩ + 𝛽𝑡−1 (𝑎) ∥z𝑡−1∥V𝑡−1 (𝑎)−1 ,

where 𝜸𝑡−1 (𝑎) is the most recent estimate of the parameter vector 𝜸(𝑎), z𝑡−1 =

(1, 𝑥𝑡−1, . . . , 𝑥𝑡−𝑛)T is the observations vector, and 𝛽𝑡−1 (𝑎) > 0 is a properly se-
lected exploration coefficient. The index UCB𝑡 (𝑎) is designed to be optimistic, i.e.,
⟨𝜸(𝑎), z𝑡−1⟩ ≤ UCB𝑡 (𝑎) with high probability for all 𝑎 ∈ A. Then, action 𝑎𝑡 is
executed and the new reward 𝑥𝑡 is observed. This sample is employed to update the
Gram matrix estimate V𝑡 (𝑎𝑡 ), the vector b𝑡 (𝑎𝑡 ), and the estimate 𝜸𝑡 (𝑎𝑡 ).
Regret Guarantees. AR-UCB suffers an expected policy regret as follows:

E[𝑅(AR-UCB, 𝑇)] ≤ Õ
(
(𝑚 + 𝜎) (𝑛 + 1)3/2

√
𝑘𝑇

(1 − Γ)2

)
.
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3 Advertising Optimization

In online advertising, the process that leads to a conversion presents complex dynam-
ics and may involve different types of campaigns, and a profitable budget investment
policy has to account for their interplay (Court et al., 2009). Indeed, a conversion
should be attributed not only to the latest ad and the joint consideration of campaigns
is fundamental. Consider a simplified model with two types of campaigns: aware-
ness (i.e., impression) ads and conversion ads. If we evaluate our performance in
terms of conversions, we observe that impression ads are not effective, so we will be
tempted to reduce their budget. However, this approach may be sub-optimal, as im-
pression ads enhance the effectiveness of conversion ads by increasing the likelihood
that users will convert. In addition, the effect of some ads, especially the ones via
television, may be delayed, and it has been demonstrated (Chapelle, 2014) that users
remember ads in a vanishing way. To model this scenario, we propose Dynamical
Linear Bandits (DLBs), to model these effects as a linear system with hidden state.

3.1 Setting

In a DLB, we have a hidden state x ∈ X, where X ⊆ R𝑛 is the state space. At each
round 𝑡, the environment is in the hidden state x𝑡 ∈ X, the learner chooses an action
u𝑡 ∈ U, where U ⊆ R𝑑 is the action space. The learner receives a noisy reward
𝑦𝑡 = ⟨𝝎, x𝑡 ⟩ + ⟨𝜽 , u𝑡 ⟩ + 𝜂𝑡 , where 𝝎 ∈ R𝑛, 𝜽 ∈ R𝑑 are unknown, and 𝜂𝑡 is 𝜎2-
subgaussian noise. Then, the environment evolves according to the unknown linear
dynamics x𝑡+1 = Ax𝑡 +Bu𝑡 +𝝐𝑡 , where A ∈ R𝑛×𝑛 is the dynamic matrix, B ∈ R𝑛×𝑑 is
the action-state matrix, and 𝝐𝑡 is a 𝜎2-subgaussian noise vector. We consider stable
systems in which A has maximum eigenvalues smaller than 1 in module (𝜌(A) < 1).
Given a policy 𝝅, we define its (infinite-horizon) expected average reward:

𝐽 (𝝅) := lim inf
𝐻→+∞

E

[
1
𝐻

𝐻∑︁
𝑡=1

𝑦𝑡

]
.

A policy 𝝅∗ is an optimal policy if it maximizes the expected average reward. We
evaluate policies in terms of expected cumulative regret, i.e., the sum over time of
the difference in performance w.r.t. the optimal policy 𝝅∗.
Lower Bound. We characterize the expected regret that every policy 𝝅 will suffer:

E[𝑅(𝝅, 𝑇)] ≥ Ω

(
𝑑
√
𝑇√︁

(1 − 𝜌(A))

)
.

Mapping to Advertising. Budget allocation in MMMs can be mapped to a DLB
where the budget is our action u𝑡 , the value of awareness (not measurable) is the
hidden state x𝑡 , and the reward 𝑦𝑡 is the number of conversions (observed).
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Algorithm 2: DynLin-UCB.
Input: Regularization param. 𝜆, Exploration coeffs. (𝛽𝑡−1 )𝑡∈⟦𝑇⟧, Spectral radius UB 𝜌

Initialize 𝑡 ← 1, V0 = 𝜆I𝑑 , b0 = 0𝑑 , ĥ0 = 0𝑑
Define 𝑀 = min{𝑀 ′ ∈ N :

∑𝑀′

𝑚=1 1 + ⌊ log𝑚
log(1/𝜌) ⌋ > 𝑇 } − 1

for 𝑚 ∈ ⟦𝑀⟧ do
Compute u𝑡 ∈ arg maxu∈U UCB𝑡 (u) where UCB𝑡 (u) := ⟨ĥ𝑡−1, u⟩ + 𝛽𝑡−1 ∥u∥V−1

𝑡−1
Play arm u𝑡 and observe reward 𝑦𝑡

Define 𝐻𝑚 = ⌊ log𝑚
log(1/𝜌) ⌋

for 𝑗 ∈ ⟦𝐻𝑚⟧ do
Play arm u𝑡 = u𝑡−1 and observe 𝑦𝑡
Update V𝑡 = V𝑡−1, b𝑡 = b𝑡−1, 𝑡 ← 𝑡 + 1

end
Update and compute: V𝑡 = V𝑡−1 + u𝑡uT𝑡 , b𝑡 = b𝑡−1 + u𝑡 𝑦𝑡 , ĥ𝑡 = V−1

𝑡 b𝑡 , 𝑡 ← 𝑡 + 1
end

3.2 Algorithm

We present an optimistic regret minimization algorithm for the DLBs setting. Dy-
namical Linear Upper Confidence Bound (DynLin-UCB, Algorithm 2) requires the
knowledge of an upper-bound 𝜌 < 1 on the spectral radius of A. To assess the
quality of action u ∈ U, we persist in applying it so that the system approxi-
mately reaches the corresponding steady state and, then, observe the reward 𝑦𝑡 ,
representing a reliable estimate of 𝐽 (u) = ⟨h, u⟩, where h = 𝜽 + BT (I𝑛 − A)−T𝝎 is
what we call a Markovian vector representing the whole system at the steady state.
We shall show that the number of rounds needed to approximately reach such a
steady state is logarithmic in the learning horizon 𝑇 and depends on 𝜌. DynLin-UCB
subdivides the learning horizon 𝑇 into 𝑀 epochs. Each epoch 𝑚 ∈ ⟦𝑀⟧ is com-
posed of 𝐻𝑚 + 1 rounds, where 𝐻𝑚 = ⌊log𝑚/log(1/𝜌)⌋. At the beginning of
each epoch, DynLin-UCB computes the UCB index defined for every u ∈ U as
UCB𝑡 (u) := ⟨̂h𝑡−1, u⟩ + 𝛽𝑡−1 ∥u∥V−1

𝑡−1
, where ĥ𝑡−1 = V−1

𝑡−1b𝑡−1 is the Ridge re-
gression estimator of a Markov parameter h, and 𝛽𝑡−1 > 0 is a properly selected
exploration coefficient. Similar to Lin-UCB (Abbasi-Yadkori et al., 2011), the index
UCB𝑡 (u) is designed to be optimistic, i.e., 𝐽 (u) ≤ UCB𝑡 (u) in high-probability
for all u ∈ U. The optimistic action u𝑡 ∈ arg maxu∈U UCB𝑡 (u) is executed and
persisted for the next 𝐻𝑚 rounds. In this way, at the end of each epoch, the reward 𝑦𝑡
is an almost-unbiased sample of the steady-state performance 𝐽 (u𝑡 ), which can be
employed to update the V𝑡 and b𝑡 .
Regret Guarantees. Considering a proper selection of 𝛽𝑡 and the knowledge of
the upper bounds 𝜌 < 1, DynLin-UCB suffers an expected regret bounded as:

E[𝑅(DynLin-UCB, 𝑇)] ≤ Õ
(
𝑑
√
𝑇

1 − 𝜌
+
√
𝑑𝑇

(1 − 𝜌)3/2
+ 1
(1 − 𝜌(A))2

)
.
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4 Joint Pricing and Advertising

In this section, we present a model for jointly optimizing pricing and advertising.
We have to coherently choose (𝑖) the price and (𝑖𝑖) how much budget to invest in
advertising. The price we set determines the willingness of the users to buy a given
item, i.e., the conversion rate, while the advertising budget influences the number of
people that will see an item, i.e., the number of impressions. At every step, we select a
price-budget couple, and we observe the conversion rate, which depends on the price,
and the number of impressions, which depends on the budget we invest in advertising.
This scenario can be treated as a standard MAB by looking just at the reward (i.e., the
revenue) and considering price-budget couples as actions. However, this solution is
very inefficient, and the resulting problem will present an unnecessarily large action
space, including all the possible combinations of actions. Given that, we now propose
a general model, called Factored Reward Bandits (FRBs), able to characterize the
problem of optimizing this scenario.

4.1 Setting

Let𝑇 ∈ N be the time horizon. In a FRB, at every round 𝑡 ∈ ⟦𝑇⟧we choose an action
vector a(𝑡) = (𝑎1 (𝑡), . . . , 𝑎𝑑 (𝑡)) in a given action space A := ⟦𝑘1⟧ × · · · × ⟦𝑘𝑑⟧,
where 𝑘𝑖 ∈ N is the number of options for the 𝑖th action component, and 𝑑 ∈ N is
the action vector dimension (i.e., the number of components that the learner must
select). As a result, we observe a vector of 𝑑 components x(𝑡) = (𝑥1 (𝑡), . . . , 𝑥𝑑 (𝑡)).
The 𝑖th component 𝑥𝑖 (𝑡) of the observation vector x(𝑡) is the effect of the 𝑖th action
component 𝑎𝑖 (𝑡) in the action vector a(𝑡). Every component of the observation vector
x(𝑡) is independent of the others and sampled from a distribution 𝑥𝑖 (𝑡) ∼ 𝜈𝑖,𝑎𝑖 (𝑡 ) .
We consider stochastic observations, i.e., 𝑥𝑖 (𝑡) = 𝜇𝑖,𝑎𝑖 (𝑡 ) + 𝜖𝑖 (𝑡), where 𝜇𝑖,𝑎𝑖 (𝑡 ) is
the expected value of the observation of action 𝑎𝑖 of the 𝑖th component, and 𝜖𝑖 (𝑡) is
𝜎2-subgaussian noise. We consider bounded expected values for the observations,
i.e., 𝜇𝑖,𝑎𝑖 ∈ [0, 1] for every 𝑖 ∈ ⟦𝑑⟧, 𝑎𝑖 ∈ ⟦𝑘𝑖⟧. The reward is given by the product
of the observations 𝑟 (𝑡) = ∏

𝑖∈⟦𝑑⟧ 𝑥𝑖 (𝑡). In the FRB setting, the optimal action is:

a∗ = (𝑎∗1, . . . , 𝑎
∗
𝑑) ∈ arg max

a=(𝑎1 ,...,𝑎𝑑 ) ∈A

∏
𝑖∈⟦𝑑⟧

𝜇𝑖,𝑎𝑖 ,

and we can factorize the learning problem observing that 𝑎∗
𝑖
∈ arg max𝑎𝑖∈⟦𝑘𝑖⟧ 𝜇𝑖,𝑎𝑖

for every 𝑖 ∈ ⟦𝑑⟧. We call 𝜇∗
𝑖
= 𝜇𝑖,𝑎∗

𝑖
the expected value of the optimal action of the

𝑖th component. Given a policy 𝝅, we define its cumulative regret as:

𝑅(𝝅, 𝑇) := 𝑇
∏
𝑖∈⟦𝑑⟧

𝜇∗𝑖 −
∑︁

𝑡∈⟦𝑇⟧

∏
𝑖∈⟦𝑑⟧

𝜇𝑖,𝑎𝑖 (𝑡 ) .

The goal of the learner is to minimize the expected cumulative regret E[𝑅(𝝅, 𝑇)].
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Algorithm 3: F-UCB.
Input: Exploration param. 𝛼, Subgaussianity proxy 𝜎, Action space dim. 𝑘𝑖 , ∀𝑖 ∈ ⟦𝑑⟧
Initialize ∀𝑎𝑖 ∈ ⟦𝑘𝑖⟧, 𝑖 ∈ ⟦𝑑⟧ : 𝑁𝑖,𝑎𝑖

(0) ← 0, 𝜇𝑖,𝑎𝑖
(0) ← 0

for 𝑡 ∈ ⟦𝑇⟧ do
Select a(𝑡 ) ∈ arg maxa=(𝑎1 , ... 𝑎𝑑 ) ∈A

∏
𝑖∈⟦𝑑⟧ UCB𝑖,𝑎𝑖

(𝑡 )
Play a(𝑡 ) and observe x(𝑡 ) = (𝑥1 (𝑡 ) , . . . , 𝑥𝑑 (𝑡 ) )
Update ∀𝑖 ∈ ⟦𝑑⟧ :

𝜇𝑖,𝑎𝑖 (𝑡 ) (𝑡 )←
𝜇𝑖,𝑎𝑖 (𝑡 ) (𝑡−1) 𝑁𝑖,𝑎𝑖 (𝑡 ) (𝑡−1)+𝑥𝑖 (𝑡 )

𝑁𝑖,𝑎𝑖 (𝑡 ) (𝑡−1)+1 , 𝑁𝑖,𝑎𝑖 (𝑡 ) (𝑡 ) ← 𝑁𝑖,𝑎𝑖 (𝑡 ) (𝑡 − 1) + 1

Update ∀𝑖 ∈ ⟦𝑑⟧, ∀ 𝑗 ∈ ⟦𝑘𝑖⟧\{𝑎𝑖 (𝑡 ) } : 𝜇𝑖, 𝑗 (𝑡 )←𝜇𝑖, 𝑗 (𝑡−1) , 𝑁𝑖, 𝑗 (𝑡 )←𝑁𝑖, 𝑗 (𝑡−1)
end

Lower Bound. We characterize the expected regret that every policy 𝝅 will suffer:

E[𝑅(𝝅, 𝑇)] ≥ Ω
©«
√︄
𝑇

∑︁
𝑖∈⟦𝑑⟧

𝑘𝑖
ª®¬ .

4.2 Algorithm

We present an optimistic regret minimization algorithm for the FRB setting. Factored
Upper Confidence Bound (F-UCB, Algorithm 3) is inspired by the optimistic bound
of UCB1 (Auer et al., 2002; Bubeck, 2010). The algorithm requires as input the
action space dimension 𝑘𝑖 for every 𝑖 ∈ ⟦𝑑⟧, the exploration parameter 𝛼, and
the subgaussianity coefficient 𝜎. For every round 𝑡 ∈ ⟦𝑇⟧, we estimate the best
optimistic action, i.e., the action a(𝑡) maximizing the index:

a(𝑡) ∈ arg max
a=(𝑎1 , ..., 𝑎𝑑 ) ∈A

∏
𝑖∈⟦𝑑⟧

UCB𝑖,𝑎𝑖 (𝑡),

where UCB𝑖,𝑎𝑖 (𝑡) := 𝜇𝑖,𝑎𝑖 (𝑡−1)+𝜎
√︃

𝛼 log 𝑡
𝑁𝑖,𝑎𝑖

(𝑡−1) , calling 𝜇𝑖,𝑎𝑖 (𝑡) is the empirical mean
of the observations for the 𝑖th component of the observation vector determined by the
action component 𝑎𝑖 , and 𝑁𝑖,𝑎𝑖 (𝑡) is the number of times the such a component has
been played. Once we selected the best action according to our optimistic criterion,
we play it and retrieve the observation vector x(𝑡) = (𝑥1 (𝑡), . . . , 𝑥𝑑 (𝑡)). We use the
observation vector to update the estimators and the related counters.
Regret Guarantees. F-UCB presents a worst-case upper bound as follows:

E[𝑅(F-UCB, 𝑇)] ≤ Õ ©«𝜎
∑︁
𝑖∈⟦𝑑⟧

√︁
𝑇𝑘𝑖

ª®¬ .
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5 Conclusions

We presented three MAB settings for dynamic pricing and advertising budget op-
timization. In Section 2, we proposed a model that allows us to model temporal
dependencies in pricing through AR processes. In Section 3, we faced an advertising
problem, and we focused on a new model to optimize MMMs. In Section 4, we pro-
posed a model to optimize pricing and advertising coherently. For every scenario,
we presented an algorithm to handle it, and we discussed its theoretical guarantees.
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